2D FEM Numerical Prediction of Local Seismic Effects at San Salvador Municipality (El Salvador) Induced by 2001 Earthquakes
Abstract
:1. Introduction
2. State of the Art of Microzonation Studies in Metropolitan Area of San Salvador
3. Geographical, Tectonic, and Geological Setting of the El Salvador Region
3.1. Historical Seismicity of the Metropolitan Area of San Salvador (MASS)
3.2. The Two Strong 2001 Earthquakes
4. Geological, Seismological, and Litho-Technical Features of Metropolitan Area of San Salvador
5. 2D Local Seismic Response in MASS
5.1. Equivalent Linear Analyses for Finite Element Simulations
5.2. 2D Subsoil Reconstruction
5.3. 2D numerical Models
5.4. Input Motions for 2D Numerical Simulation
6. Results
6.1. Amplification Factors
6.2. Acceleration Response Spectra and Amplification Functions
7. Discussion on 1D versus 2D Analyses
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Faraone, C.; Colantonio, F.; Vessia, G. Maps of Seismic Amplification Induced by Shallow Cavities Located in Typical Soil Succession of Italian Periadriatic Basin. SSRN Electron. J. 2022. [Google Scholar] [CrossRef]
- Stanko, D.; Markušić, S.; Gazdek, M.; Sanković, V.; Slukan, I.; Ivančić, I. Assessment of the Seismic Site Amplification in the City of Ivanec (NW Part of Croatia) Using the Microtremor HVSR Method and Equivalent-Linear Site Response Analysis. Geosciences 2019, 9, 312. [Google Scholar] [CrossRef]
- Khanbabazadeh, H.; Iyisan, R.; Ansal, A.; Hasal, M. 2D non-linear seismic response of the Dinar basin, Turkey. Soil Dyn. Earthq. Eng. 2016, 89, 5–11. [Google Scholar] [CrossRef]
- Vessia, G.; Russo, S. Relevant features of the valley seismic response: The case study of Tuscan Northern Apennine sector. Bull. Earthq. Eng. 2013, 11, 1633–1660. [Google Scholar] [CrossRef]
- Soltani, N.; Bagheripour, M.H. Seismic response analysis of soil profile: Comparison of 1D versus 2D models and parametric study. Model. Earth Syst. Environ. 2020, 6, 1017–1026. [Google Scholar] [CrossRef]
- Vessia, G.; Russo, S.; Lo Presti, D. A New Proposal for the Evaluation of the Amplification Coefficient Due to Valley Effects in the Simplified Local Seismic Response Analyses. Ital Geotech. J. 2011, 4, 51–77. [Google Scholar]
- Evangelista, L.; Landolfi, L.; d’Onofrio, A.; Silvestri, F. The Influence of the 3D Morphology and Cavity Network on the Seismic Response of Castelnuovo Hill to the 2009 Abruzzo Earthquake. Bull. Earthq. Eng. 2016, 14, 3363–3387. [Google Scholar] [CrossRef]
- Zhang, Z.; Fleurisson, J.-A.; Pellet, F.L. A Case Study of Site Effects on Seismic Ground Motions at Xishan Park Ridge in Zigong, Sichuan, China. Eng. Geol. 2018, 243, 308–319. [Google Scholar] [CrossRef]
- Moczo, P.; Kristek, J.; Bard, P.-Y.; Stripajová, S.; Hollender, F.; Chovanová, Z.; Kristeková, M.; Sicilia, D. Key structural parameters affecting earthquake ground motion in 2D and 3D sedimentary structures. Bull. Earthq. Eng. 2018, 16, 2421–2450. [Google Scholar] [CrossRef]
- Chaljub, E.; Maufroy, E.; Moczo, P.; Kristek, J.; Hollender, F.; Bard, P.-Y.; Priolo, E.; Klin, P.; De Martin, F.; Zhang, Z. 3-D Numerical Simulations of Earthquake Ground Motion in Sedimentary Basins: Testing Accuracy through Stringent Models. Geophys. J. Int. 2015, 201, 90–111. [Google Scholar] [CrossRef]
- Primofiore, I.; Baron, J.; Klin, P.; Laurenzano, G.; Muraro, C.; Capotorti, F.; Amanti, M.; Vessia, G. 3D numerical modelling for interpreting topographic effects in rocky hills for Seismic Microzonation: The case study of Arquata del Tronto hamlet. Eng. Geol. 2020, 279, 105868. [Google Scholar] [CrossRef]
- Chen, Z.; Huang, D.; Wang, G. A regional scale coseismic landslide analysis framework: Integrating physics-based simulation with flexible sliding analysis. Eng. Geol. 2023, 315, 107040. [Google Scholar] [CrossRef]
- Smerzini, C.; Vanini, M.; Paolucci, R.; Renault, P.; Traversa, P. Regional physics-based simulation of ground motion within the Rhône Valley, France, during the MW 4.9 2019 Le Teil earthquake. Bull. Earthq. Eng. 2023, 21, 1747–1774. [Google Scholar] [CrossRef]
- Vessia, G.; Rainone, M.L.; De Santis, A.; D’Elia, G. Lessons from April 6, 2009 L’Aquila Earthquake to Enhance Microzoning Studies in near-Field Urban Areas. Geoenvironmental Disasters 2020, 7, 11. [Google Scholar] [CrossRef]
- Fayjaloun, R.; Negulescu, C.; Roullé, A.; Auclair, S.; Gehl, P.; Faravelli, M. Sensitivity of Earthquake Damage Estimation to the Input Data (Soil Characterization Maps and Building Exposure): Case Study in the Luchon Valley, France. Geosciences 2021, 11, 249. [Google Scholar] [CrossRef]
- Vessia, G.; Laurenzano, G.; Pagliaroli, A.; Pilz, M. Seismic site response estimation for microzonation studies promoting the resilience of urban centers. Eng. Geol. 2021, 284, 106031. [Google Scholar] [CrossRef]
- López, M.; Bommer, J.; Méndez, P. The Seismic Performance of Bahareque Dwellings in El Salvador. In Proceedings of the Thirteenth World Conference on Earthquake Engineering, Vancouver, BC, Canada, 1–6 August 2004. [Google Scholar]
- OPAMSS (Oficina de Planificación Del Área Metropolitana de San Salvador)—Geoportal. Available online: https://opamss.org.sv/geoportal/ (accessed on 13 March 2023).
- LSR2D software—Local Seismic Responce 2D. 2019. Available online: www.stacec.com. (accessed on 1 January 2022).
- Bommer, J.; Salazar, W.; Samayoa, R. Riesgo Sísmico En La Región Metropolitana de San Salvador; PRISMA: San Salvador, El Salvador, 1998. (In Spanish) [Google Scholar]
- Kattan, C. Advances in the Study of Site Response in AMSS-MARN; Ministerio de Medio Ambiente y Recursos Naturales Dirección General del Observatorio Ambiental Servicio Geológico Nacional: San Salvador, El Salvador, 2011. (In Spanish) [Google Scholar]
- Schmidt-Thomé, M. The Geology in the San Salvador Area (El Salvador, Central America), a Basis for City Development and Planning. Geol. Jb. 1975, 13, 207–228. [Google Scholar]
- Martínez, H. Microzonificación Sísmica Del Área Metropolitana de San Salvador. Technol. Cienc. UCA 1979, 2, 111–133. (In Spanish) [Google Scholar]
- Linares, R. Microzonificación Sísmica de Área Metropolitana de San Salvador Basada En La Observación de Microtemblores, Espectros de Respuesta y Registros de Sismoscopios. Master’s Thesis, University of Central America José Simeón Cañas, San Salvador, El Salvador, 1985. [Google Scholar]
- Consorzio El Salvador. Italtekna-Italconsult Evaluación de Peligro Sísmicos En El Área Del Distrito A3 (San Salvador) y El Distrito 7 (Apopa), PARTE 4: Estudio de La Respuesta Sísmica Local y Elaboración de Mapa de Microzonificación Sísmica; 1988. (In Spanish) [Google Scholar]
- Aguilar Colato, R.A. Microzonificación En Base a Criterios Geotécnicos, Estimación de Las Propiedades Dinámicas y Análisis de Respuesta Local de Los Suelos Del Área Metropolitana de San Salvador (AMSS). National University of Engineering and Architecture Faculty of Civil Engineering: Japanese Peruvian Seismic Research and Disaster Mitigation Center: International Conference on Microzoning and Safety of Vital Public Service Systems. 1990. Available online: http://cidbimena.desastres.hn/docum/crid/Abril-Mayo2005/CD1/pdf/spa/doc1862/doc1862.htm (accessed on 15 January 2023). (In Spanish).
- Guzmán, V.; Linares Guzmán, R.E.; Morales Huezo, M.R. Microzonificación Geotécnica Del AMSS: Primera Etapa; University of Central America: San Salvador, El Salvador, 1996. (In Spanish) [Google Scholar]
- Salazar, W.; Seo, K. Spectral and Amplification Characteristics in San Salvador City (El Salvador) for Upper-Crustal and Subduction Earthquakes. In Proceedings of the 11th Japan Earthquake Engineering Symposium (JAEE); Gakkai: Tokyo, Japan, 2002; Volume 65, pp. 329–334. [Google Scholar]
- Fonseca, C.E.G. Estudio de respuesta de capas superficiales de suelo en el Área Metropolitana De San Salvador; Universidad Centroamericana “José Simeón Cañas: San Salavador, El Salvador, 2007. (In Spanish) [Google Scholar]
- Burgos, E.; Hernandez, D.; Ayala, R.; Pullinger, C. Informe Del Proyecto: Primera Fase de La Microzonificación Sísmica En Las Principales Ciudades de El Salvador, San Salvador, El Salvador. 2007. Available online: https://www.snet.gob.sv/ver/sismologia/riesgo+sismico/amenaza/antecedentes/ (accessed on 15 February 2023). (In Spanish).
- Salazar, W.; Sardina, V.; de Cortina, J. A Hybrid Inversion Technique for the Evaluation of Source, Path, and Site Effects Employing S-Wave Spectra for Subduction and Upper-Crustal Earthquakes in El Salvador. Bull. Seismol. Soc. Am. 2007, 97, 208–221. [Google Scholar] [CrossRef]
- OPAMSS. NORSAR Earthquake Risk Reduction in Guatemala, El Salvador, and Nicaragua with Regional Cooperation to Honduras, Costa Rica, and Panama, Task 6: Microzonation in San Salvador, Technical Report of the Project Activities, Norway. 2008; OPAMSS: San Salvador, El Salvador, 2008. [Google Scholar]
- Crosta, G.B.; Imposimato, S.; Roddeman, D.; Chiesa, S.; Moia, F. Small Fast-Moving Flow-like Landslides in Volcanic Deposits: The 2001 Las Colinas Landslide (El Salvador). Eng. Geol. 2005, 79, 185–214. [Google Scholar] [CrossRef]
- Martínez-Díaz, J.J.; Álvarez-Gómez, J.A.; Staller, A.; Alonso-Henar, J.; Canora, C.; Insúa-Arévalo, J.M.; Tsige, M.; Villamor, P.; Herrero-Barbero, P.; Hernández-Moreno, C.; et al. Active faults of El Salvador. J. S. Am. Earth Sci. 2021, 105, 103038. [Google Scholar] [CrossRef]
- Canora, C.; Martinez-Diaz, J.; Villamor, P.; Berryman, K.; Álvarez-Gómez, J.A.; Pullinger, C.; Capote, R. Geological and Seismological Analysis of the 13 February 2001 Mw 6.6 El Salvador Earthquake: Evidence for Surface Rupture and Implications for Seismic Hazard. Bull. Seism. Soc. Am. 2010, 100, 2873–2890. [Google Scholar] [CrossRef]
- Legrand, D.; Marroquín, G.; DeMets, C.; Mixco, L.; García, A.; Villalobos, M.; Ferrés, D.; Gutiérrez, E.; Escobar, D.; Torres, R. Active Deformation in the San Salvador Extensional Stepover, El Salvador from an Analysis of the April–May 2017 Earthquake Sequence and GPS Data. J. S. Am. Earth Sci. 2020, 104, 102854. [Google Scholar] [CrossRef]
- Alonso-Henar, J.; Álvarez-Gómez, J.A.; Martínez-Díaz, J.J. Constraints for the recent tectonics of the El Salvador Fault Zone, Central America Volcanic Arc, from morphotectonic analysis. Tectonophysics 2014, 623, 1–13. [Google Scholar] [CrossRef]
- Hernández, W. Características Geotécnicas y Vulcanológicas de Las Tefras de Tierra Blanca Joven, de Ilopango, El Salvador. Master’s Thesis, Polytechnic University of El Salvador, San Salvador, El Salvador, 2004. (In Spanish). [Google Scholar]
- Alonso-Henar, J.; Fernández, C.; Álvarez-Gómez, J.A.; Canora, C.; Staller, A.; Díaz, M.; Hernández, W.; García, V.; Martínez-Díaz, J.J. Active Triclinic Transtension in a Volcanic Arc: A Case of the El Salvador Fault Zone in Central America. Geosciences 2022, 12, 266. [Google Scholar]
- Martinez-Diaz, J.; Álvarez-Gómez, J.A.; Benito, B.; Hernández, D. Triggering of destructive earthquakes in El Salvador. Geology 2004, 32, 65. [Google Scholar] [CrossRef]
- Canora, C.; Martinez-Diaz, J.; Villamor, P.; Staller, A.; Berryman, K.; Álvarez-Gómez, J.A.; Capote, R.; Diaz, M. Structural evolution of the El Salvador Fault Zone: An evolving fault system within a volcanic arc. J. Iber. Geol. 2014, 40, 471–488. [Google Scholar] [CrossRef]
- Alonso-Henar, J.; Benito, M.B.; Staller, A.; Álvarez-Gómez, J.A.; Martínez-Díaz, J.J.; Canora, C. Main crustal seismic sources in El Salvador. Data Brief 2018, 20, 1085–1089. [Google Scholar] [CrossRef]
- Alonso-Henar, J.; Benito, B.; Staller, A.; Álvarez-Gómez, J.; Martínez-Díaz, J.; Canora, C. Large-magnitude crustal seismic sources in El Salvador and deterministic hazard scenarios. Eng. Geol. 2018, 243, 70–83. [Google Scholar] [CrossRef]
- Salazar, W.; Seo, K. Earthquake Disasters of 13 January and 13 February 2001, El Salvador. Seism. Res. Lett. 2003, 74, 420–439. [Google Scholar] [CrossRef]
- Bent, A.L.; Evans, S.G.; Rose, W.I.; Bommer, J.J.; López, D.L.; Carr, M.J.; Major, J.J. The MW 7.6 El Salvador earthquake of 13 January 2001 and implications for seismic hazard in El Salvador. Geol. Soc. Am. 2004, 375, 397–404. [Google Scholar]
- Atakan, K.; Real, M.C.; Torres, R.; Rose, W.I.; Bommer, J.J.; López, D.L.; Carr, M.J.; Major, J.J. Local site effects on microtremors, weak and strong ground motion in San Salvador, El Salvador. Geol. Soc. Am. Spec. 2004, 375, 321–338. [Google Scholar]
- Bommer, J.; Benito, M.; Ciudad-Real, M.; Lemoine, A.; López-Menjívar, M.; Madariaga, R.; Mankelow, J.; de Hasbun, P.M.; Murphy, W.; Nieto-Lovo, M.; et al. The El Salvador earthquakes of January and February 2001: Context, characteristics and implications for seismic risk. Soil Dyn. Earthq. Eng. 2002, 22, 389–418. [Google Scholar] [CrossRef]
- Peruzza, L.; Esposito, E.; Amelia, G.C.R.; Pablo, S.; Bernhard, L.E.T.; Giunta, G. MARCA-GEHN, a Prototype Macroseismic Archive of Four Central America Countries. Boll. Geofis. Teor. Ed Appl. 2021, 62, 3–196. [Google Scholar]
- Dirección General de Observatorio de Amenazas y Recursos Naturales Estadística de Registros—Cronología de Sismos Destructivos En El Salvador. Available online: http://www.snet.gob.sv/ver/sismologia/registro/estadisticas/ (accessed on 15 February 2023).
- López, M.F.; Bommer, J.; Pinho, R. Seismic hazard assessments, seismic design codes, and earthquake engineering in El Salvador. Geol. Soc. Am. 2004, 375, 301–320. [Google Scholar]
- CIG. Mappe Isosiste Preliminari per i Terremoti Del 13 Gennaio e Del 13 Febbraio 2001. Available online: http://www.snet.gob.sv/ (accessed on 15 February 2023).
- Chávez, J.A.; Valenta, J.; Schröfel, J.; Hernandez, W.; Šebesta, J. Engineering Geology Mapping in the Southern Part of the Metropolitan Area of San Salvador. Rev. Geol. Am. Cent. 2012, 46, 161–178. [Google Scholar]
- Lexa, J.; Šebesta, J.; Hernández, W.; Chavez, J.A.; Vásquez, M.E.; Alfaro, I.A. Geología Del Área Metropolitana de San Salvador (1:50,000), El Salvador. Rev. Geol. Am. Cent. 2022, 66, 1–23. [Google Scholar] [CrossRef]
- Bosse, H.R.; Lorenz, W.; Merino, A.; Mihm, A.; Rode, K.; Schmidt-Thomé, M.; Wiesemann, G.; Weber, H.S. Carta Geológica de la República de El Salvador (Centroamérica), 100,000. Maps I to VI.; Herausgegeben von der Bunderstalt fur Geowissenschaften und Rohstoffe: Hannover, Germany, 1976; Volume 1. [Google Scholar]
- Bommer, J.J.; Rolo, R.; Mitroulia, A.; Berdousis, P. Geotechnical Properties and Seismic Slope Stability of Volcanic Soils. In Proceedings of the 12th European Conference on Earthquake Engineering, London, UK, 9–13 September 2002; p. 695. [Google Scholar]
- Rolo, R.; Bommer, J.J.; Houghton, B.F.; Vallance, J.W.; Berdousis, P.; Mavrommati, C.; Murphy, W. Geologic and Engineering Characterization of Tierra Blanca Pyroclastic Ash Deposits; Special Paper of the Geological Society of America; Geological Society of America: Boulder, CO, USA, 2004. [Google Scholar]
- Hernández, E.W. Aspectos Geológicos Que Influyen En Las Aguas Subterráneas y En La Respuesta Sísmica Del Área Metropolitana de San Salvador. In Open File Report; Servicio Nacional de Estudios Territoriales: San Salvador, El Salvador, 2008; pp. 1–19. Available online: https://portafolio.snet.gob.sv/digitalizacion/pdf/spa/doc00080/doc00080.htm (accessed on 15 December 2022).
- Chávez, J.A.; Hernández, W.; Kopecky, L. Problemática y Conocimiento Actual de Las Tefras Tierra Blanca Joven En El Área Metropolitana de San Salvador, El Salvador. Rev. Geol. Am. Cent. 2012, 47, 117–132. (In Spanish) [Google Scholar] [CrossRef]
- Kramer, S.L. Geotechnical Earthquake Engineering; Pearson Education India: London, UK, 1996. [Google Scholar]
- Smith, W.D. The Application of Finite Element Analysis to Body Wave Propagation Problems. Geophys. J. R. Astron. Soc. 1975, 42, 747–768. [Google Scholar] [CrossRef]
- SM Working Group Guidelines for Seismic Microzonation, Conference of Regions and Autonomous Provinces of Italy—Civil Protection Department, Rome. 2015; (Original Italian Edition: Gruppo di lavoro MS, Indirizzi e criteri per la microzonazione sismica, Conferenza delle Regioni e delle Province autonome—Dipartimento della protezione civile, Roma, 2008, 3 vol. e Dvd). Available online: https://www.protezionecivile.gov.it/it/pubblicazione/indirizzi-e-criteri-la-microzonazione-sismica (accessed on 15 February 2023).
- López, J.M.; Mejía, J.A.; Vega, N. Aplicación Del Método de Refracción Sísmica Para La Determinación de Velocidades de Ondas P; University of Central America of El Salvador: San Salvador, El Salvador, 2008. (In Spanish) [Google Scholar]
- Barrera De Calderón, M.L. Caracterización Hidrogeoquimíca e Isotopica de Areas de Recarga En El Acuífero de San Salvador. Master’s Thesis, University of Central America of El Salvador, San Salvador, El Salvador, 2010. (In Spanish). [Google Scholar]
- González Renderos, A.N.; Palma, S.N.; Vides Escobar, E.D. Caracterización de La Respuesta Sísmica Del Suelo En Catorce Estaciones Acelerográficas de El Salvador Mediante La Estimación de Períodos de Vibración y Perfiles de Velocidad de Corte a Partir de Mediciones de Microtremores; University of Central America José Simeón Cañas: Antiguo Cuscatlàn, El Salvador, 2020. (In Spanish) [Google Scholar]
- Nováková, D.H. A hydrogeological study of the northern parts of the La Libertad, San Salvador, and Cuscatlán Districts in El Salvador: A regional and integrated study. Environ. Geol. 2007, 53, 27–33. [Google Scholar] [CrossRef]
- Electric Power Research Institute(EPRI). Guidelines for Determining Design Ground Motions; EPRI: Washington, WA, USA, 1993. [Google Scholar]
- COSMOS Virtual Data Center. Available online: https://www.strongmotioncenter.org/vdc (accessed on 15 January 2022).
- Guzel, Y.; Elia, G.; Rouainia, M.; Falcone, G. The Influence of Input Motion Scaling Strategies on Nonlinear Ground Response Analyses of Soft Soil Deposits. Geosciences 2023, 13, 17. [Google Scholar] [CrossRef]
- Kottke, A.R.; Wang, X.; Rathje, E.M. Technical Manual of STRATA Geotechnical Engineering Center; Department of Civil, Architectural and Environmental Engineering, The University of Texas at Austin: Austin, TX, USA, 2013. [Google Scholar]
- Fabozzi, S.; Catalano, S.; Falcone, G.; Naso, G.; Pagliaroli, A.; Peronace, E.; Porchia, A.; Romagnoli, G.; Moscatelli, M. Stochastic approach to study the site response in presence of shear wave velocity inversion: Application to seismic microzonation studies in Italy. Eng. Geol. 2021, 280, 105914. [Google Scholar] [CrossRef]
- Building Seismic Safety Council. NEHRP Recommended Provisions for the Development of Seismic Regulations for New Buildings, Part I: Provisions, Developed for the Federal Emergency Management Agency; Building Seismic Safety Council: Washington, DC, USA, 1994. [Google Scholar]
No. | Date | Ms | Depth (km) | Latitude (°N) | Longitude (°W) | Type of Source |
---|---|---|---|---|---|---|
1 | 25 March 1899 | 5.3 | 10 | 13.65 | 88.80 | A |
2 | 19 July 1912 | 5.9 | 10 | 13.87 | 89.57 | A |
3 | 7 September 1915 | 7.7 | 60 | 13.90 | 89.60 | B |
4 | 8 June 1917 | 6.7 | 10 | 13.82 | 89.31 | A |
5 | 8 June 1917 | 5.4 | 10 | 13.77 | 89.50 | A |
6 | 28 April 1919 | 5.9 | 10 | 13.69 | 89.19 | A |
7 | 21 May 1932 | 7.1 | 150 | 12.80 | 88.00 | B |
8 | 20 December 1936 | 6.1 | 10 | 13.72 | 88.93 | A |
9 | 25 December 1937 | 5.9 | 10 | 13.93 | 89.78 | A |
10 | 6 May 1951 | 5.9 | 10 | 13.52 | 88.40 | A |
11 | 6 May 1951 | 6.0 | 10 | 13.52 | 88.40 | A |
12 | 7 May 1951 | 5.5 | 10 | 13.48 | 88.45 | A |
13 | 3 May 1965 | 6.3 | 15 | 13.70 | 89.17 | A |
14 | 19 June 1982 | 7.3 | 80 | 13.30 | 89.40 | B |
15 | 10 October 1986 | 5.4 | 10 | 13.67 | 89.18 | A |
16 | 13 January 2001 | 7.8 | 60 | 13.05 | 88.66 | B |
17 | 13 February 2001 | 6.5 | 7 | 13.62 | 88.85 | A |
No. | Date | Magnitude | Damages |
---|---|---|---|
1 | 21 March 1839 | 6.2 (Mi) | Several damages in San Salvador’s capital city |
2 | 16 April 1854 | 6.6 (Mi) | The event caused destruction in San Salvador: the capital was relocated to Santa Tecla for a period of five years |
3 | 8 June 1917 | 6.7 (Ms) | The event caused destruction in Armenia, Ateos, Quetzaltepeque, and other towns. The earthquake was followed by an eruption of the San Salvador volcano, which resulted in lava flows to the north. |
4 | 28 April 1919 | 5.9 (Ms) | Damages at San Salvador |
5 | 3 May 1965 | 5.9 (Ms) | The earthquake caused 120 casualties, 400 injured people, and 4000 destroyed dwellings |
6 | 10 October 1986 | 5.4 (Ms) | The earthquake caused: 1500 casualties, 10,000 injured, 60,000 destroyed or seriously damaged dwellings and more than 100,000 homeless. |
7 | 13 January 2001 | 7.6 (Mw) | The earthquake caused: 944 casualties, 1155 public buildings disrupted, 108,261 destroyed dwellings, 19 damaged hospitals, 405 damaged churches and 445 landslides. |
8 | 13 February 2001 | 6.6 (Mw) | The earthquake caused: 315 casualties, 82 public buildings disrupted, 41,302 destroyed dwellings, 5 damaged hospitals, 73 damaged churches, 71 landslides. |
9 | 4 October 2017 | 4.8 (Mw) | The seismic event caused VIIMM over MASS territory |
San Salvador Department | |||
---|---|---|---|
Casualties | Collapsed Houses | Homeless | |
13 January 2001 | 24 | 10,372 | 107,083 |
13 February 2001 | 4 | 0 | 1370 |
Name of the Site | ID | Type of Site | Geophysic and Geognostic Investigation | References |
---|---|---|---|---|
Instituto Geografico Nacional | IGN | Seismic station | 2 DH tests, 1 SR test, 1 HVRS measure | [25,28,62] |
Centro de Investigaciones Geotecnicas | CIG | Seismic station | 2 DH tests, 1 SR test | [25,28,62] |
Hogar del Niño | HDN | Seismic station | 1 DH test, 1 SR test, 1 HVSR measure | [25,28,62] |
Observatorio | OBS | Seismic station | 1 DH test | [28] |
Hotel Camino Real | HCR | Seismic station | 1 DH test | [28] |
P1 Metrocentro | BH1 | Borehole | 1 Borehole test | [63] |
P3 El Socorro | BH2 | Borehole | 1 Borehole test | [63] |
Universidad Tecnológica de El Salvador | UTEC | Seismic station | 1 Vs profile | [64] |
Material | Code | Thickness Range (m) | ρ (Kg/m3) | Vs (m/s) | Vp (m/s) | Poisson Coefficient ν (−) | Shear Modulus Reduction Curve G/G0 | Damping D Curve |
---|---|---|---|---|---|---|---|---|
Loose Pyroclastic deposit | TBJ | 3–6 (2–17) | 1122 | 155 | 290 | 0.35 | EPRI (93) 0–6 m | EPRI (93) 0–6 m |
Dense Pyroclastic deposit | TB2 | 5–15 (4–14) | 1223 | 225 (250) | 560 | 0.40 | EPRI (93) 6–15 m | EPRI (93) 6–15 m |
Alluvial Deposit | AL | 2–17 | 1820 | 170 | 310 | 0.30 | EPRI (93) 6–15 m | EPRI (93) 6–15 m |
Tuff | TB3 | 5–10 (4–25) | 2243 | 370 (475) | 890 | 0.32 (0.3) | EPRI (93) 15–36 m | EPRI (93) 15–36 m |
Volcanic ash | VA | 5–10 (8–25) | 2243 | 560 (530) | 1090 | 0.35 | EPRI (93) 15–36 m | EPRI (93) 15–36 m |
Andesitic/Basaltic Lava | Bedrock | Semi-infinite | 2447 | 2100 | 3240 | 0.14 | Linear = 1 | Linear = 0.1% |
Station Name & (Code) | Station Coordinates (Lat, Long) | Date of the Event | Event Time UTC (hh:mm:ss) | Epicentral Distance (km) | Mw | Horizontal Component | PGA (g) |
---|---|---|---|---|---|---|---|
Panchimalco (PA) | 13.6140° −89.1790° | 13 January 2001 | 17:33:32 | 85 | 7.6 | NS | 0.19 |
EW | 0.15 | ||||||
13 February 2001 | 14:22:05 | 12 | 6.6 | NS | −0.18 | ||
EW | −0.10 |
Control Points | Ct1 (m) | Vsw (m/s) | Ct2 (m) | Vsw (m/s) | Ct (m) | Vsw (m/s) | 1D Period Ct1 (s) | 1D Period Ct2 (s) | 1D Period Ct (s) | 2D Period (s) |
---|---|---|---|---|---|---|---|---|---|---|
1A | 17.3 | 215 | 6.0 | 475 | 23.3 | 282 | 0.3 | 0.05 | 0.3 | 0.05–0.1 and 0.2–0.55 |
2A | 21.4 | 234 | 12.5 | 508 | 33.9 | 335 | 0.4 | 0.1 | 0.4 | 0.1–0.3 and 0.4–0.7 |
3A | 8.1 | 202 | 3.7 | 475 | 11.8 | 288 | 0.2 | 0.03 | 0.2 | 0.03–0.12 and 0.15–0.26 |
4A | 16.0 | 186 | 5.5 | 475 | 21.5 | 260 | 0.3 | 0.04 | 0.3 | 0.04–0.2 and 0.4–1.0 |
5A | 13.9 | 220 | 48.4 | 502 | 62.3 | 439 | 0.3 | 0.4 | 0.57 | 0.13–0.7 |
Control Points | Ct1 (m) | Vsw (m/s) | Ct2 (m) | Vsw (m/s) | Ct (m) | Vsw (m/s) | 1D Period Ct1 (s) | 1D Period Ct2 (s) | 1D Period Ct (s) | 2D Period (s) |
---|---|---|---|---|---|---|---|---|---|---|
1B | 17 | 184 | 8 | 370 | 25 | 243 | 0.4 | 0.07 | 0.3 | 0.07–0.1 and 0.4–0.6 |
2B | 20 | 182 | 8 | 370 | 28 | 235 | 0.4 | 0.07 | 0.4 | 0.07–0.1 and 0.4–0.7 |
3B | 17 | 190 | 9 | 370 | 26 | 252 | 0.4 | 0.08 | 0.3 | 0.07–0.2 and 0.35–0.7 |
4B | 16 | 203 | 17 | 476 | 33 | 344 | 0.3 | 0.15 | 0.4 | 0.1–0.5 |
5B | 17 | 200 | 12.6 | 476 | 29.6 | 317 | 0.4 | 0.11 | 0.4 | 0.1–0.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Faraone, C.; Caravaggio, S.; Chávez, J.A.; Castillo Ramos, L.A.; Rainone, M.L.; Vessia, G. 2D FEM Numerical Prediction of Local Seismic Effects at San Salvador Municipality (El Salvador) Induced by 2001 Earthquakes. Geosciences 2023, 13, 116. https://doi.org/10.3390/geosciences13040116
Faraone C, Caravaggio S, Chávez JA, Castillo Ramos LA, Rainone ML, Vessia G. 2D FEM Numerical Prediction of Local Seismic Effects at San Salvador Municipality (El Salvador) Induced by 2001 Earthquakes. Geosciences. 2023; 13(4):116. https://doi.org/10.3390/geosciences13040116
Chicago/Turabian StyleFaraone, Chiara, Serena Caravaggio, José Alexander Chávez, Luis Alfonso Castillo Ramos, Mario Luigi Rainone, and Giovanna Vessia. 2023. "2D FEM Numerical Prediction of Local Seismic Effects at San Salvador Municipality (El Salvador) Induced by 2001 Earthquakes" Geosciences 13, no. 4: 116. https://doi.org/10.3390/geosciences13040116
APA StyleFaraone, C., Caravaggio, S., Chávez, J. A., Castillo Ramos, L. A., Rainone, M. L., & Vessia, G. (2023). 2D FEM Numerical Prediction of Local Seismic Effects at San Salvador Municipality (El Salvador) Induced by 2001 Earthquakes. Geosciences, 13(4), 116. https://doi.org/10.3390/geosciences13040116