Twisting Theory: A New Artificial Adaptive System for Landslide Prediction
Abstract
:1. Introduction
- Reconstruct the cause-and-effect relationships that evolve over time between the monitored points. In other words, determine “which displacement” is the most probable cause of “which other displacement,” thereby identifying the points that are the center of the landslide and those that are its by-products. To achieve this objective, we will utilize a patented and published algorithm named the Crowd Clustering Algorithm (CCA) [18,19];
- Determine the shape of the entire landslide area based on the monitored points in a risk zone. To attain this goal, we will utilize an updated version of a previously patented and published algorithm named Twisting Theory (TWT) [18,19]. After reconstructing the landslide shape at time T(n), we can predict its new shape at a subsequent time T(n + 1). To accomplish this forecasting task, we will utilize a novel Deep Neural Network (DNN) [20,21,22,23,24,25,26,27,28,29,30,31,32]. In other words, this innovative DNN has the capability to learn from the images of the complete landslide grids produced by TWT at every observation stage, and predict the location of the sensors and the shape of the entire landslide at time T(n + 1).
2. Materials and Methods
2.1. Crowd Clustering Algorithm (CCA)
- Space Position of each entity (Space—“S”).
- Amount, quantity, of displacement of each entity (Quantity—“Q”)
- These data (space position, S, and the amount of displacement, Q) are present for each entity at any time step (Time “T”).
- A table of the most likely and prevalent cause-and-effect relationship among the given sensors (points) during and at the end of the temporal flow.
- A sparse and a directed graph of the most effective excitatory relationship among the sensors during the whole process.
- A sparse and a directed graph of the most effective inhibitory relationship among the sensors during the whole process.
- The displacement of each sensor at each temporal observation is calculated (Equations (1) and (2):
- The calculation of the phase and of the momentum between any couple of sequential displacement of all the sensors is represented by Equations (3) and (4):
- Then the calculation of the strength of each displacement of any sensor is calculated (Equation (5)):
- The calculation of the resonance of the phase, the momentum, and the strength of any pair of sensors are inferred by Equations (6)–(8):
- Finally, the global strength with which the displacement of each sensor acts on the displacement of any other, also considering their reciprocal geographical distance is calculated:
- f.
- The calculation specified by Equations (10) and (11) is performed for each sensor in order to determine its maximum excitatory strength over time. This step enables the algorithm to identify the sensor that is most likely to induce the displacement of any other sensor during the temporal flow.
- g.
- The calculation, for each sensor, of the maximum inhibitory strength it exerts on other sensors in time is provided by Equations (12) and (13). This step enables the algorithm to identify which sensor is most likely to exhibit the greatest inhibitory strength among all the sensors during the temporal progression.
- A matrix of the excitatory relations, C + (i, j), among the sensors indicating which sensor imposes the direction of its displacement on any other sensor;
- A matrix of inhibitory relations, C − (i, j), among the sensors indicating which sensor constrains the direction of the displacement on any other sensor.
2.2. Twisting Theory (TWT)
- Both the algorithms are unsupervised.
- The number of the epochs for TWT is also defined a priori, according to the number of observation campaigns sampled to monitor the landslide.
- During the training phase the TWT codebooks are represented by the progressive twisting of the regular grid defined at the beginning. These codebook at the end of the training represent the weights of TWT, able to provide a picture of how the GNSSs movement has deformed the entire space of the land slide.
- These codebook are the weights that TWT show at the end of the training phase. They are locale and explainable because the deformation of the entire plane is defined only by the local weights that deform the landslide plane in each specific part of the space. So, TWT does not work as a black box, but is more like the ANNs whose learning law is vectorial quantization (Learning Vector Quantization [23], Adaptive Vector Quantization [24]).
- TWT is different form a SOM because during its training phase it works only on temporal series (series of observational campaigns); under this profile TWT is a special kind of recurrent ANN, because any updating of its weights considers all the previous states of the algorithm.
- While most classic ANNs start their training with a random initialization of their weight matrices, TWT initializes its weights with the same values (regular grid—see point “c”), in the same way in which a special type of ANN, the Auto Contractive Map [6], used to do.
- The only big difference that the TWT algorithm has with the classic ANNs is that TWT has only the training phase, because TWT modifies its weights (codebook) every time that a new observation campaign is added to the old data set. The prediction TWT was add the TWT in order to allow to the TWT to make predictions about the next step of any landslide, after the training phase. The prediction TWT will be explained in the next paragraphers, where TWT will need the support of the classic supervised ANNs to complete its predictive job.
2.3. Predictive Twisting Theory (P-TWT)
- A specifying coding of the data generated by each grid;
- An ANN (deep or shallow) able to learn from the data already generated from the grids, in order to make estimations about the new positions of the GNSSs at the next observation. In this study, classic neural networks (both deep and shallow) as well as non-classical networks such as SVCM (deep) are utilized. Additionally, the MLP with multiple hidden layers was preinitialized with autoencoders and RBMs to prepare the weights of each layer (see [25,26]).
- number or name of the ANN layer;
- ;
- ;;
- .
3. Application 1: The Assisi Landslide
3.1. CCA Algorithm
3.2. The Twisting Theory Algorithm (TWT)
- The number of observational times (T) and the number of GNSS points (P), that are inherent in the data set.
- The number of grid cells (L) that represent the entire region where the landslide can occur. The higher the density, the more spatial details will be defined by TWT.
- A matrix of parameters (F) representing the rigidity/elasticity of each cell of the analyzed area. In this application, it will be assumed that each grid cell has the same elasticity.
3.3. The Predictive TWT
4. Application 2: The Corvara Landslide
4.1. Corvara Landslide: TWT Application
- To reconstruct the movement of the entire landslide, including its edges, the varying sliding speeds in each region, and the potential subsidence areas;
- To predict its evolution in the future based on the data collected from 2001 to 2005, in order to anticipate the shape of the landslide in 2008.
4.2. Corvara Landslide: TWT Prediction
4.3. Corvara Landslide: CCA Application
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Huang, F.; Zhang, J.; Zhou, C.; Wang, Y.; Huang, J.; Zhu, L. A Deep Learning Algorithm Using a Fully Connected Sparse Autoencoder Neural Network for Landslide Susceptibility Prediction. Landslides 2020, 17, 217–229. [Google Scholar] [CrossRef]
- Conforti, M.; Pascale, S.; Robustelli, G.; Sdao, F. Evaluation of Prediction Capability of the Artificial Neural Networks for Mapping Landslide Susceptibility in the Turbolo River Catchment (Northern Calabria, Italy). Catena 2014, 113, 236–250. [Google Scholar] [CrossRef]
- Gomez, H.; Kavzoglu, T. Assessment of Shallow Landslide Susceptibility Using Artificial Neural Networks in Jabonosa River Basin, Venezuela. Eng. Geol. 2005, 78, 11–27. [Google Scholar] [CrossRef]
- Bui, D.T.; Tsangaratos, P.; Nguyen, V.-T.; Liem, N.V.; Trinh, P.T. Comparing the Prediction Performance of a Deep Learning Neural Network Model with Conventional Machine Learning Models in Landslide Susceptibility Assessment. Catena 2020, 188, 104426. [Google Scholar] [CrossRef]
- Dong, V.D.; Abolfazl, J.; Mahmoud, B.; Davood, M.-G.; Qi, C.; Hossein, M.; Tran, V.P.; Hai-Bang, L.; Tien-Thinh, L.; Phan, T.T.; et al. A Spatially Explicit Deep Learning Neural Network Model for the Prediction of Landslide Susceptibility. Catena 2020, 188, 104451. [Google Scholar] [CrossRef]
- Rudin, C. Stop Explaining Black Box Machine Learning Models for High Stakes Decisions and Use Interpretable Models Instead. Nat. Mach. Intell. 2019, 1, 206–215. [Google Scholar] [CrossRef] [Green Version]
- Gunning, D.; Stefik, M.; Choi, J.; Miller, T.; Stumpf, S.; Yang, G.-Z. XAI-Explainable Artificial Intelligence. Sci. Robot. 2019, 4, eaay7120. [Google Scholar] [CrossRef] [Green Version]
- Adadi, A.; Berrada, M. Peeking Inside the Black-Box: A Survey on Explainable Artificial Intelligence (XAI). IEEE Access 2018, 6, 52138–52160. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, L.; Yin, K.; Luo, H.; Li, J. Landslide Identification Using Machine Learning. Geosci. Front. 2021, 12, 351–364. [Google Scholar] [CrossRef]
- Luti, T.; Segoni, S.; Catani, F.; Munafò, M.; Casagli, N. Integration of Remotely Sensed Soil Sealing Data in Landslide Susceptibility Mapping. Remote Sens. 2020, 12, 1486. [Google Scholar] [CrossRef]
- Xiao, T.; Segoni, S.; Chen, L.; Yin, K.; Casagli, N. A Step beyond Landslide Susceptibility Maps: A Simple Method to Investigate and Explain the Different Outcomes Obtained by Different Approaches. Landslides 2020, 17, 627–640. [Google Scholar] [CrossRef] [Green Version]
- Cui, Y.; Cheng, D.; Choi, C.E.; Jin, W.; Lei, Y.; Kargel, J.S. The Cost of Rapid and Haphazard Urbanization: Lessons Learned from the Freetown Landslide Disaster. Landslides 2019, 16, 1167–1176. [Google Scholar] [CrossRef] [Green Version]
- Froude, M.J.; Petley, D.N. Global Fatal Landslide Occurrence from 2004 to 2016. Nat. Hazards Earth Syst. Sci. 2018, 18, 2161–2181. [Google Scholar] [CrossRef] [Green Version]
- Huang, R.; Fan, X. The Landslide Story. Nat. Geosci. 2013, 6, 325–326. [Google Scholar] [CrossRef]
- Azarafza, M.; Azarafza, M.; Akgün, H.; Atkinson, P.M.; Derakhshani, R. Deep Learning-Based Landslide Susceptibility Mapping. Sci. Rep. 2021, 11, 24112. [Google Scholar] [CrossRef]
- Nikoobakht, S.; Azarafza, M.; Akgün, H.; Derakhshani, R. Landslide Susceptibility Assessment by Using Convolutional Neural Network. Appl. Sci. 2022, 12, 5992. [Google Scholar] [CrossRef]
- Nanehkaran, Y.; Mao, Y.; Azarafza, M.; Kockar, M.; Zhu, H.-H. Fuzzy-Based Multiple Decision Method for Landslide Susceptibility and Hazard Assessment: A Case Study of Tabriz, Iran. Geomech. Eng. 2021, 24, 407–418. [Google Scholar] [CrossRef]
- Massimi, V.; Asadi-Zeydabady, M.; Buscema, M.; Dominici, D.; Lodwick, W.; Simeoni, L. The Contribution of Artificial Adaptive System to Limit the Influence of Systematic Errors in the Definition of the Kinematic Behavior of an Extremely-Slow Landslide. Eng. Geol. 2016, 203, 30–44. [Google Scholar] [CrossRef]
- Buscema, M.; Sacco, P.L.; Grossi, E.; Lodwick, W. Spatiotemporal Mining: A Systematic Approach to Discrete Diffusion Models for Time and Space Extrapolation. In Data Mining Applications Using Artificial Adaptive Systems; Springer: New York, NY, USA, 2013; pp. 231–275. ISBN 978-1-4614-4222-6. [Google Scholar]
- Bengio, Y. Learning Deep Architectures for AI. Found. Trends® Mach. Learn. 2009, 2, 1–127. [Google Scholar] [CrossRef]
- Buscema, P.M.; Massini, G.; Breda, M.; Lodwick, W.A.; Newman, F.; Asadi-Zeydabadi, M. Artificial Adaptive Systems Using Auto Contractive Maps: Theory, Applications and Extensions, 1st ed.; Springer: Berlin, Germany, 2018; ISBN 978–3-319–75048–4. [Google Scholar]
- Kohonen, T. Self-Organized Formation of Topologically Correct Feature Maps. Biol. Cybern. 1982, 43, 59–69. [Google Scholar] [CrossRef]
- Kohonen, T. Improved versions of learning vector quantization. In Proceedings of the 1990 IJCNN International Joint Conference on Neural Networks, San Diego, CA, USA, 17–21 June 1990. [Google Scholar] [CrossRef]
- Buscema, M.; Catzola, L. AVQ1 Basic and AVQ2 Advanced. In Semeion Report; Semeion: Rome, Italy, 2007. [Google Scholar]
- Liu, W.; Wang, Z.; Liu, X.; Zeng, N.; Liu, Y.; Alsaadi, F.E. A Survey of Deep Neural Network Architectures and Their Applications. Neurocomputing 2017, 234, 11–26. [Google Scholar] [CrossRef]
- Buscema, M. Recirculation Neural Networks. Subst. Use Misuse 1998, 33, 383–388. [Google Scholar] [CrossRef] [PubMed]
- Buscema, M.; Benzi, R. Quakes Prediction Using Highly Non Linear Systems and A Minimal Dataset. In Advanced Networks, Algorithms and Modeling for Earthquake Prediction; River Publishers: Aalborg, Denmark, 2011. [Google Scholar]
- Buscema, M.; Massini, G.; Maurelli, G. Artificial Adaptive Systems to Predict the Magnitude of Earthquakes. Boll. Geofis. Teor. Ed Appl. 2015, 56, 227–256. [Google Scholar]
- Buscema, P.M.; Grossi, E.; Massini, G.; Breda, M.; Della Torre, F. Computer Aided Diagnosis for Atrial Fibrillation Based on New Artificial Adaptive Systems. Comput. Methods Programs Biomed. 2020, 191, 105401. [Google Scholar] [CrossRef]
- Le Cun, Y.; Kanter, I.; Solla, S.A. Eigenvalues of Covariance Matrices: Application to Neural-Network Learning. Phys. Rev. Lett. 1991, 66, 2396–2399. [Google Scholar] [CrossRef] [PubMed]
- Le Cun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-Based Learning Applied to Document Recognition. Proc. IEEE 1998, 86, 2278–2324. [Google Scholar] [CrossRef] [Green Version]
- Bovenga, F.; Nitti, D.O.; Fornaro, G.; Radicioni, F.; Stoppini, A.; Brigante, R. Using C/X-Band SAR Interferometry and GNSS Measurements for the Assisi Landslide Analysis. Int. J. Remote Sens. 2013, 34, 4083–4104. [Google Scholar] [CrossRef]
- Raina, R.; Madhavan, A.; Ng, A.Y. Large-Scale Deep Unsupervised Learning Using Graphics Processors. In Proceedings of the Proceedings of the 26th Annual International Conference on Machine Learning, Montreal, QC, Canada, 14 June 2009; ACM: New York, NY, USA, 2009; pp. 873–880. [Google Scholar]
- Raiko, T.; Valpola, H.; Lecun, Y. Deep Learning Made Easier by Linear Transformations in Perceptrons. In Proceedings of the Proceedings of the Fifteenth International Conference on Artificial Intelligence and Statistics, Auckland, New Zealand, 21 March 2012; pp. 924–932. [Google Scholar]
- Schmidhuber, J. Deep Learning in Neural Networks: An Overview. Neural Netw. 2015, 61, 85–117. [Google Scholar] [CrossRef] [Green Version]
- Sameen, M.I.; Pradhan, B.; Lee, S. Application of Convolutional Neural Networks Featuring Bayesian Optimization for Landslide Susceptibility Assessment. Catena 2020, 186, 104249. [Google Scholar] [CrossRef]
- Youssef, A.; Pradhan, B.; Dikshit, A.; Al-Katheeri, M.; Matar, S.; Mahdi, A. Landslide Susceptibility Mapping Using CNN-1D and 2D Deep Learning Algorithms: Comparison of Their Performance at Asir Region, KSA. Bull. Eng. Geol. Environ. 2022, 81, 165. [Google Scholar] [CrossRef]
- Kikuchi, T.; Sakita, K.; Nishiyama, S.; Takahashi, K. Landslide Susceptibility Mapping Using Automatically Constructed CNN Architectures with Pre-Slide Topographic DEM of Deep-Seated Catastrophic Landslides Caused by Typhoon Talas. Nat. Hazards 2023, in press. [Google Scholar] [CrossRef]
- Mandal, K.; Saha, S.; Mandal, S. Applying Deep Learning and Benchmark Machine Learning Algorithms for Landslide Susceptibility Modelling in Rorachu River Basin of Sikkim Himalaya, India. Geosci. Front. 2021, 12, 101203. [Google Scholar] [CrossRef]
- Yi, Y.; Zhang, W.; Xu, X.; Zhang, Z.; Wu, X. Evaluation of Neural Network Models for Landslide Susceptibility Assessment. Int. J. Digit. Earth 2022, 15, 934–953. [Google Scholar] [CrossRef]
- Chen, Y.; Ming, D.; Ling, X.; Lv, X.; Zhou, C. Landslide Susceptibility Mapping Using Feature Fusion Based CPCNN-ML in Lantau Island, Hong Kong. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 3625–3639. [Google Scholar] [CrossRef]
- Suto, J.; Oniga, S. Efficiency Investigation from Shallow to Deep Neural Network Techniques in Human Activity Recognition. Cogn. Syst. Res. 2019, 54, 37–49. [Google Scholar] [CrossRef]
Feature | TWT–CCA | Classic LSA ANNs |
---|---|---|
Monitoring | Can monitor slowly moving landslides. | Cannot provide specific information about monitoring. |
Modeling | Can model the dynamics of a landslide and identify its most energetic location. | Can define a global landslide risk map through macro-division into regions. |
Prediction | Can provide specific information on the evolution of landslides over time. | Can estimate the levels of territory risk aimed at land use planning. |
Achieving Goals | Finding cause-and-effect relationships and determining the shape of the landslide. | Definition of a “global landslide risk map through macro-division into regions”. |
Application | Can be applied to large areas with the requirement of GNSS sensors only. | Needs specific measures regarding topographic, geologic, climatologic, seismic, human activity-related factors. |
Process | Sensor 1 | Sensor 2 | Sensor … | Sensor M | ||||
---|---|---|---|---|---|---|---|---|
Lat. | Long. | Lat. | Long. | Lat. | Long. | Lat. | Long. | |
t(1) | x1(1) | y1(1) | x2(1) | y2(1) | … | … | xM(1) | yM(1) |
t(2) | x1(2) | y1(2) | x2(2) | y2(2) | … | … | xM(2) | yM(2) |
… | … | … | … | … | … | … | … | … |
t(N) | x1(N) | y1(N) | x2(N) | y2(N) | … | … | xM(N) | yM(N) |
(a) SVCm Architecture (Assisi) | (b) SVCm Architecture (Corvara) | ||
---|---|---|---|
Input: 18 | Input: 18 | ||
Hidden 1: 48 | LCoef: 0.0100 Function: 24 Contractives | Hidden 1: 24 | LCoef: 0.0100 Function: 24 Contractives |
Hidden 2: 48 | LCoef: 0.0100 Function: 24 Contractives | Hidden 2: 24 | LCoef: 0.0100 Function: 24 Contractives |
Output: 2 | LCoef: 0.0100 Function: 2 Contractives | Output: 2 | LCoef: 0.0100 Function: 2 Contractives |
Training Patterns: 612 Testing Patterns: 51 Epochs (Train): 2771 RMSE (Train): 0.0051103 | Training Patterns: 65 Testing Patterns: 13 Epochs (Train): 49,572 RMSE (Train): 0.00117701 |
Excitations [0,1] | |||||||
---|---|---|---|---|---|---|---|
Cause | Effect | Strenght | Cause Module T_1 | Effect Module T_2 | Cause Degree T_1 | Effect Degree T_2 | |
P2 | → | P3-- | 0.015217 | 0.230837 | 0.455262 | 247.948959° | 312.468597° |
→ | P4 | 0.043036 | 0.230837 | 1 | 247.948959° | 254.608795° | |
→ | P7++ | 0.004337 | 0.230837 | 0.322421 | 247.948959° | 268.315308° | |
P3-- | → | P1 | 0.001568 | 0.27031 | 0.134086 | 52.326408° | 51.972771° |
→ | P5 | 0.002237 | 0.27031 | 0.385002 | 52.326408° | 32.795769° | |
P4 | → | P2 | 0.008367 | 0.216745 | 0.215642 | 268.388977° | 258.407837° |
P7++ | → | P6 | 0.095422 | 0.492819 | 0.869689 | 239.630249° | 268.394012° |
→ | P10 | 0.000144 | 0.492819 | 0.42529 | 239.630249° | 316.548187° | |
P8 | → | P13 | 0.06098 | 0.407436 | 0.507571 | 192.280960° | 207.658875° |
P9 | → | P12 | 0.000244 | 0.209448 | 0.411627 | 220.279877° | 304.003754° |
P12 | → | P11 | 0.019294 | 0.201505 | 0.66613 | 216.253845° | 239.995087° |
P13 | → | P8 | 0.095164 | 0.681295 | 0.701071 | 209.010361° | 248.589050° |
→ | P9 | 0.3411 | 0.681295 | 0.193786 | 209.010361° | 243.434967° |
Excitations [0,1] | |||||||
---|---|---|---|---|---|---|---|
Cause | Effect | Strenght | Cause Module T_3 | Effect Module T_4 | Cause Degree T_3 | Effect Degree T_4 | |
P1 | → | P3-- | 0.001854 | 0.04297 | 0.069856 | 178.106628° | 232.431427° |
→ | P10 | 0.00001 | 0.04297 | 0.087575 | 178.106628° | 109.903755° | |
→ | P12 | 0.000005 | 0.04297 | 0.071665 | 178.106628° | 123.690071° | |
P2 | → | P4 | 0.012232 | 0.050972 | 0.329537 | 257.125000° | 238.073135° |
P6 | → | P2 | 0.003544 | 0.17583 | 0.470611 | 196.898651° | 257.011871° |
→ | P5 | 0.001302 | 0.17583 | 0.245087 | 196.898651° | 324.192261° | |
→ | P7 | 0.018873 | 0.17583 | 0.550277 | 196.898651° | 227.771057° | |
P7 | → | P6 | 0.030652 | 0.101252 | 0.499697 | 167.035507° | 243.871765° |
P9++ | → | P11 | 0.006346 | 0.157026 | 0.511014 | 194.664459° | 193.495728° |
→ | P13 | 0.069017 | 0.157026 | 1 | 194.664459° | 206.565063° | |
P11 | → | P1 | -0.000001 | 0.168732 | 0.05679 | 104.620872° | 269.641907° |
P13 | → | P8 | 0.046129 | 0.046223 | 0.939036 | 222.510452° | 223.345932° |
→ | P9++ | 0.032914 | 0.046223 | 0.510582 | 222.510452° | 210.772507° |
Excitations [0,1] | |||||||
---|---|---|---|---|---|---|---|
Cause | Effect | Strenght | Cause Module T_4 | Effect Module T_5 | Cause Degree T_4 | Effect Degree T_5 | |
P1 | → | P3 | 0.000882 | 0.043026 | 0.15963 | 269.641907° | 124.707367° |
P2-- | → | P4 | 0.0428 | 0.35655 | 0.510164 | 257.011871° | 254.938263° |
P4 | → | P2-- | 0.22346 | 0.249668 | 0.485026 | 238.073135° | 241.161392° |
P5 | → | P1 | 0.007402 | 0.185686 | 0.128173 | 324.192261° | 315.850037° |
→ | P12 | 0.000004 | 0.185686 | 0.099819 | 324.192261° | 307.116852° | |
P6 | → | P7 | 0.091283 | 0.378586 | 0.764968 | 243.871765° | 230.276962° |
P7 | → | P6 | 0.105379 | 0.416908 | 0.710315 | 227.771057° | 236.237747° |
P8 | → | P13++ | 0.233903 | 0.711443 | 0.856142 | 223.345932° | 221.077576° |
P11 | → | P10 | 0.00448 | 0.387161 | 0.126509 | 193.495728° | 174.143997° |
P12 | → | P5 | −0.000001 | 0.054295 | 0.217289 | 123.690071° | 80.094704° |
P13++ | → | P8 | 0.190976 | 0.757632 | 0.723519 | 206.565063° | 220.629013° |
→ | P9 | 0.311705 | 0.757632 | 1 | 206.565063° | 213.416580° | |
→ | P11 | 0.014745 | 0.757632 | 0.410018 | 206.565063° | 181.804001° |
Excitations [0,1] | |||||||
---|---|---|---|---|---|---|---|
Cause | Effect | Strenght | Cause Module T_5 | Effect Module T_6 | Cause Degree T_5 | Effect Degree T_6 | |
P1 | → | P3-- | 0.001652 | 0.128173 | 0.152114 | 315.850037° | 324.061981° |
P2 | → | P4 | 0.050661 | 0.485026 | 0.092368 | 241.161392 | 252.725571° |
P4 | → | P2 | 0.021211 | 0.510164 | 0.255459 | 254.938263 | 348.832031° |
P5 | → | P1 | 0.010875 | 0.217289 | 0.133274 | 80.094704 | 17.364714° |
P6 | → | P7 | 0.110596 | 0.710315 | 0.12913 | 236.237747 | 268.329376° |
P7 | → | P6 | 0.136612 | 0.764968 | 0.144331 | 230.276962° | 242.480103° |
P8 | → | P13++ | 0.2668 | 0.723519 | 0.221791 | 220.629013° | 182.501633° |
P9 | → | P10 | 0.016019 | 1 | 0.089762 | 213.416580° | 224.028992° |
→ | P12 | 0.004555 | 1 | 0.140562 | 213.416580° | 204.407669° | |
P12 | → | P5 | -0.000001 | 0.099819 | 0.031462 | 307.116852° | 0.000000° |
P13++ | → | P8 | 0.225587 | 0.856142 | 0.163312 | 221.077576° | 193.715912° |
→ | P9 | 0.340571 | 0.856142 | 0.128086 | 221.077576° | 187.721832° | |
→ | P11 | 0.016386 | 0.856142 | 0.136656 | 221.077576° | 154.846893° |
Time Step | Coord. | Point 1 | Point 2 | Point 3 | Point 4 | Point 5 | Point 6 | Point 7 | Point 8 | Point 9 | Point 10 | Point 11 | Point 12 | Point 13 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Time N | x | 0.004253 | 176.194458 | 239.602814 | 34.952839 | 20.625507 | 175.710831 | 278.025146 | 394.52475 | 511.235687 | 684.584656 | 733.727356 | 814.494507 | 464.439484 |
y | 785.632751 | 612.993774 | 610.464661 | 557.697205 | 870.910645 | 862.164673 | 835.528748 | 962.20166 | 1098.542847 | 1138.179443 | 962.467896 | 1094.271606 | 1030.632324 | |
x | −34.371132 | 141.171097 | 199.122299 | −5.431697 | −5.462948 | 141.161331 | 258.783783 | 376.433807 | 492.280426 | 669.680725 | 698.658875 | 787.339905 | 434.339417 | |
y | 792.45105 | 615.077881 | 615.067688 | 557.165955 | 879.317871 | 850.369507 | 821.381409 | 967.991699 | 1085.648315 | 1143.585815 | 968.04895 | 1085.674194 | 1025.897339 | |
x | −34.384129 | 141.164474 | 199.124237 | −5.438146 | −5.461166 | 141.169312 | 258.800354 | 376.446411 | 492.265625 | 669.694092 | 698.664124 | 787.345581 | 434.34549 | |
y | 761.693726 | 586.110962 | 586.105591 | 528.199158 | 850.359436 | 821.416809 | 792.437683 | 939.044006 | 1056.673218 | 1114.640137 | 939.082825 | 1056.719604 | 996.943298 | |
x | −5.461305 | 170.12471 | 229.892838 | 23.511894 | 23.525455 | 170.128159 | 287.734192 | 405.402313 | 523.063049 | 698.660522 | 727.617371 | 816.303833 | 463.325378 | |
y | 821.398987 | 645.840332 | 645.877686 | 586.109497 | 908.306274 | 879.337219 | 850.331848 | 996.960266 | 1114.620972 | 1172.566772 | 997.010193 | 1114.637451 | 1056.693359 | |
x | 0.004253 | 176.194458 | 239.602814 | 34.952839 | 20.625507 | 175.710831 | 278.025146 | 394.52475 | 511.235687 | 684.584656 | 733.727356 | 814.494507 | 464.439484 | |
y | 785.632751 | 612.993774 | 610.464661 | 557.697205 | 870.910645 | 862.164673 | 835.528748 | 962.20166 | 1098.542847 | 1138.179443 | 962.467896 | 1094.271606 | 1030.632324 | |
x | −5.401855 | 170.115128 | 229.896591 | 23.512184 | 23.514975 | 170.134537 | 287.76767 | 405.423584 | 523.061218 | 698.653931 | 727.620056 | 816.310181 | 463.323578 | |
y | 761.671997 | 586.100281 | 586.151428 | 528.18927 | 850.375305 | 821.420898 | 792.444702 | 939.060913 | 1056.698608 | 1114.63855 | 939.086243 | 1056.723267 | 996.960876 | |
x | 23.515982 | 199.119385 | 258.854736 | 52.472984 | 52.476437 | 199.083801 | 316.723663 | 434.34549 | 552.03418 | 727.618286 | 756.582214 | 845.264038 | 492.265625 | |
y | 821.415955 | 645.840942 | 645.880127 | 586.110352 | 908.296997 | 879.332581 | 850.361023 | 996.943298 | 1114.631836 | 1172.564453 | 997.005554 | 1114.63855 | 1056.673218 | |
x | 23.537193 | 199.122299 | 258.857361 | 52.487679 | 52.46249 | 199.076218 | 316.743805 | 434.35611 | 552.0354 | 727.611877 | 756.579895 | 845.268799 | 492.268951 | |
y | 792.463623 | 615.067688 | 615.112 | 557.164734 | 879.322754 | 850.364746 | 821.420837 | 967.993408 | 1085.672729 | 1143.597168 | 968.047791 | 1085.682251 | 1025.90625 | |
x | 0.004253 | 176.194458 | 239.602814 | 34.952839 | 20.625507 | 175.710831 | 278.025146 | 394.52475 | 511.235687 | 684.584656 | 733.727356 | 814.494507 | 464.439484 | |
y | 785.632751 | 612.993774 | 610.464661 | 557.697205 | 870.910645 | 862.164673 | 835.528748 | 962.20166 | 1098.542847 | 1138.179443 | 962.467896 | 1094.271606 | 1030.632324 | |
Time N + 1 | x | 0.006601 | 176.193222 | 239.611572 | 34.945271 | 20.634718 | 175.710144 | 278.024872 | 394.517456 | 511.233154 | 684.593506 | 733.717896 | 814.501038 | 464.426666 |
y | 785.635742 | 612.987732 | 610.455139 | 557.669678 | 870.916565 | 862.139954 | 835.519531 | 962.183044 | 1098.537842 | 1138.171143 | 962.451477 | 1094.261841 | 1030.62561 |
Imput Vector = 18 (x-y of each GNSS + the x-y of first 8 neighbours) | Imput Vector = 2 (x-y of the GNSS at the next step) | Number of Patterns |
---|---|---|
Step 1 | Step 2 | 51 |
Step 2 | Step 3 | 51 |
Step 3 | Step 4 | 51 |
Step 4 | Step 5 | 51 |
Step 5 | Step 6 | 51 |
Step 6 | Step 7 | 51 |
Step 7 | Step 8 | 51 |
Step 8 | Step 9 | 51 |
Step 9 | Step 10 | 51 |
Step 10 | Step 11 | 51 |
Step 11 | Step 12 | 51 |
Step 12 | Step 13 | 51 |
Number of Training Steps | 12 | |
Number of Training Patterns | 612 |
ANN | RMSE | Real Error | Absolute Error | Linear Corr. |
---|---|---|---|---|
D_FF_SVCm(48 × 48)(Step22) | 0.00630936 | 0.00159118 | 11.36599193 | 0.99970293 |
Prediction at the Step 22nd | X | Y | ||
---|---|---|---|---|
Real | ANN | Real | ANN | |
GNSS_1 | 399.974 | 465.6641 | 8735.555 | 8738.035 |
GNSS_2 | 515.66 | 530.3192 | 8536.587 | 8536.059 |
GNSS_3 | 620.589 | 609.1868 | 8588.925 | 8586.828 |
GNSS_4 | 620.508 | 618.0858 | 8510.746 | 8510.3 |
GNSS_5 | 865.304 | 855.3544 | 8470.225 | 8471.014 |
GNSS_6 | 763.245 | 743.9014 | 8383.587 | 8385.679 |
GNSS_7 | 919.8909 | 922.0909 | 8261.178 | 8261.914 |
GNSS_8 | 1093.098 | 1091.929 | 8173.648 | 8174.809 |
GNSS_9 | 1238.316 | 1252.554 | 8202.036 | 8201.741 |
GNSS_10 | 1422.422 | 1424.259 | 8099.366 | 8098.508 |
GNSS_11 | 1171.875 | 1175.442 | 8023.99 | 8024.207 |
GNSS_12 | 1288.773 | 1288.494 | 7917.83 | 7922.718 |
GNSS_13 | 1505.48 | 1505.159 | 7948.988 | 7949.073 |
GNSS_14 | 1648.827 | 1642.184 | 7965.847 | 7967.287 |
GNSS_15 | 1842.655 | 1845.073 | 8007.324 | 8009.797 |
GNSS_16 | 1978.895 | 1971.305 | 8082.523 | 8082.572 |
GNSS_17 | 2045.661 | 2026.637 | 7955.034 | 7953.752 |
GNSS_18 | 1973.314 | 1964.695 | 8182.971 | 8184.664 |
GNSS_19 | 1821.737 | 1814.413 | 8281.33 | 8283.653 |
GNSS_20 | 1983.416 | 1971.528 | 8459.516 | 8461.534 |
GNSS_21 | 2366.539 | 2362.008 | 8087.827 | 8087.436 |
GNSS_22 | 2542.893 | 2549.193 | 8057.985 | 8057.367 |
GNSS_23 | 2576.425 | 2577.606 | 8210.325 | 8210.667 |
GNSS_24 | 2675.274 | 2677.164 | 8296.943 | 8297.728 |
GNSS_25 | 2932.199 | 2950.701 | 8269.991 | 8270.685 |
GNSS_26 | 2782.021 | 2803.382 | 8219.553 | 8220.042 |
GNSS_27 | 2911.671 | 2922.029 | 8370.89 | 8371.251 |
GNSS_28 | 2861.902 | 2852.833 | 8487.488 | 8484.992 |
GNSS_29 | 3255.407 | 3224.392 | 8594.464 | 8592.706 |
GNSS_30 | 3297.295 | 3282.94 | 8443.846 | 8443.185 |
GNSS_31 | 3451.029 | 3413.756 | 8004.191 | 8012.435 |
GNSS_32 | 3461.288 | 3421.679 | 7886.743 | 7885.536 |
GNSS_33 | 3268.818 | 3258.694 | 7581.099 | 7591.052 |
GNSS_34 | 2698.638 | 2697.54 | 8864.894 | 8886.041 |
GNSS_35 | 2422.933 | 2426.773 | 8989.194 | 8958.019 |
GNSS_36 | 1806.663 | 1793.816 | 8959.01 | 8940.632 |
GNSS_37 | 1779.911 | 1778.615 | 8711.944 | 8715.452 |
GNSS_38 | 2336.938 | 2331.204 | 8166.558 | 8164.779 |
GNSS_39 | 1297.579 | 1304.43 | 8686.978 | 8686.729 |
GNSS_40 | 1407.376 | 1409.538 | 8584.639 | 8583.33 |
GNSS_41 | 1140.48 | 1150.454 | 8464.103 | 8464.272 |
GNSS_42 | 1133.942 | 1139.68 | 8804.358 | 8813.357 |
GNSS_43 | 838.0848 | 829.4269 | 8834.597 | 8842.23 |
GNSS_44 | 829.9848 | 821.1478 | 8711.107 | 8712.023 |
GNSS_45 | 702.3591 | 693.5692 | 8735.002 | 8736.819 |
GNSS_46 | 982.203 | 988.3502 | 8563.483 | 8560.64 |
GNSS_47 | 1997.305 | 1984.407 | 8345.618 | 8348.143 |
GNSS_48 | 2599.636 | 2591.549 | 8410.392 | 8410.652 |
GNSS_49 | 2532.747 | 2521.965 | 8450.682 | 8452.008 |
GNSS_50 | 2414.119 | 2401.271 | 8389.094 | 8390.367 |
GNSS_51 | 2324.149 | 2302.229 | 8215.997 | 8218.747 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Buscema, P.M.; Lodwick, W.A.; Asadi-Zeydabadi, M.; Newman, F.; Breda, M.; Petritoli, R.; Massini, G.; Buscema, D.; Dominici, D.; Radicioni, F. Twisting Theory: A New Artificial Adaptive System for Landslide Prediction. Geosciences 2023, 13, 115. https://doi.org/10.3390/geosciences13040115
Buscema PM, Lodwick WA, Asadi-Zeydabadi M, Newman F, Breda M, Petritoli R, Massini G, Buscema D, Dominici D, Radicioni F. Twisting Theory: A New Artificial Adaptive System for Landslide Prediction. Geosciences. 2023; 13(4):115. https://doi.org/10.3390/geosciences13040115
Chicago/Turabian StyleBuscema, Paolo Massimo, Weldon A. Lodwick, Masoud Asadi-Zeydabadi, Francis Newman, Marco Breda, Riccardo Petritoli, Giulia Massini, David Buscema, Donatella Dominici, and Fabio Radicioni. 2023. "Twisting Theory: A New Artificial Adaptive System for Landslide Prediction" Geosciences 13, no. 4: 115. https://doi.org/10.3390/geosciences13040115
APA StyleBuscema, P. M., Lodwick, W. A., Asadi-Zeydabadi, M., Newman, F., Breda, M., Petritoli, R., Massini, G., Buscema, D., Dominici, D., & Radicioni, F. (2023). Twisting Theory: A New Artificial Adaptive System for Landslide Prediction. Geosciences, 13(4), 115. https://doi.org/10.3390/geosciences13040115