Numerical Modeling of an Asteroid Impact on Earth: Matching Field Observations at the Chicxulub Crater Using the Distinct Element Method (DEM)
Abstract
:1. Introduction
2. Characteristics of Chicxulub Crater
3. Methodology
Profile Reconstruction and Comparison Methodology
4. DEM Model
4.1. Constitutive Model
4.2. Boundary Conditions
4.3. Control (Measurement) Circles
5. Simulation Results
5.1. Crater Surface Topography
5.2. Simulated vs. Target Profile Analysis
5.3. Velocity Fields
5.4. Horizontal and Vertical Stresses
5.5. Contact Force Chains
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A. Final Crater Profile and Crater Evolution
Appendix A.1. Final Crater Profile after 2 Million Calculation Cycles
Appendix A.2. Evolution of the Crater Impact
References
- Schulte, P.; Alegret, L.; Arenillas, I.; Arz, J.A.; Barton, P.J.; Bown, P.R.; Bralower, T.J.; Christeson, G.L.; Claeys, P.; Cockell, C.S.; et al. The Chicx-ulub asteroid impact and mass extinction at the Cretaceous-Paleogene boundary. Science 2010, 327, 1214–1218. [Google Scholar] [CrossRef]
- Salguero-Hernandez, E.; Urrutia-Fucugauchi, J.; Ramirez-Cruz, L. Fracturing and Deformation in the Chicxulub Crater—Complex Trace Analysis of Instataneous Seismic Attributes. Rev. Mex. Cienc. Geol. 2011, 27, 175–184. [Google Scholar]
- Urrutia-Fucugauchi, J.; Camargo–Zanoguera, A.; Pérez–Cruz, L.; Pérez–Cruz, G. The Chicxulub Multi-Ring Impact Cra-ter, Yucatan Carbonate Platform, Gulf of Mexico. Geofis. Int. 2011, 50, 99–127. [Google Scholar]
- Gulick, S.P.S.; Christeson, G.L.; Barton, P.J.; Grieve, R.A.F.; Morgan, J.V.; Urrutia-Fucugauchi, J. Geophysical characteri-zation of the Chicxulub impact crater. Rev. Geophys. 2013, 51, 31–52. [Google Scholar] [CrossRef]
- Urrutia-Fucugauchi, J.; Perez-Cruz, L. Chicxulub Asteroid Impact: An Extreme Event at the Cretaceous/Paleogene Boundary. In Extreme Events: Observations, Modeling, and Economics; Geophysical Monograph Series 214; Chavez, M., Ghil, M., Urrutia-Fucugauchi, J., Eds.; Wiley-Blackwell: Hoboken, NJ, USA, 2016. [Google Scholar]
- Holsapple, K.A.; Schmidt, R.M. On the scaling of crater dimensions: 1. Explosive processes. J. Geophys. Res. Atmos. 1980, 85, 7247–7256. [Google Scholar] [CrossRef]
- Holsapple, K.A.; Schmidt, R.M. On the scaling of crater dimensions: 2. Impact processes. J. Geophys. Res. Atmos. 1982, 87, 1849–1870. [Google Scholar] [CrossRef]
- Austin, M.G.; Thomsen, J.M.; Ruhl, S.F.; Orphal, D.L.; Borden, W.F.; Larson, S.A.; Schultz, P.H. Z-Model Analysis of Impact Cratering: An Overview. Multi-ring Basins: Formation and Evolution. In Proceedings of the Lunar and Planetary Science Conference, Houston, TX, USA, 10–12 November 1980. [Google Scholar]
- Takata, T.; Ahren, T.J. Numerical Simulation of Impact Cratering at Chicxulub and the Possible Causes of KT Catastrophe; Lunar and Planetary Institute: Houston, TX, USA, 1994; p. 125. [Google Scholar]
- Ivanov, B.A.; Badukov, D.D.; Yakovlev, O.L.; Gerasimov, M.V.; Dikov, Y.P.; Pope, K.O.; Ocampo, A.C. Degassing of Sed-imentary Rocks Due to Chicxulub Impact: Hydrocode and Physical Simulations. Cretac.-Tert. Event Other Catastr. Earth Hist. 1996, 307, 125–139. [Google Scholar]
- Morgan, J.V.; Gulick, S.P.S.; Bralower, T.; Chenot, E.; Christeson, G.; Claeys, P.; Cockell, C.; Collins, G.S.; Coolen, M.J.L.; Ferrière, L.; et al. The formation of peak rings in large impact craters. Science 2016, 354, 878–882. [Google Scholar] [CrossRef] [PubMed]
- Robertson, D.K.; Mathias, D.L. Hydrocode simulations of asteroid airbursts and constraints for Tunguska. Icarus 2018, 327, 36–47. [Google Scholar] [CrossRef]
- Pierazzo, E.; Melosh, H.J. Hydrocode modeling of Chicxulub as an oblique impact event. Earth Planet. Sci. Lett. 1999, 165, 163–176. [Google Scholar] [CrossRef]
- Collins, G.S.; Melosh, H.J.; Marcus, R.A. Earth Impact Effects Program: A Web-based computer program for calculating the regional environmental consequences of a meteoroid impact on Earth. Meteorit. Planet. Sci. 2005, 40, 817–840. [Google Scholar] [CrossRef]
- Ivanov, B.A. Large Impact Crater Modeling: Chicxulub. In Proceedings of the Third International Conference on Large Meteorite Impacts, Nordlingen, Germany, 5–7 August 2003. [Google Scholar]
- Collins, G.S.; Morgan, J.; Barton, P.; Christeson, G.L.; Gulick, S.; Urrutia, J.; Warner, M.; Wünnemann, K. Dynamic modeling suggests terrace zone asymmetry in the Chicxulub crater is caused by target heterogeneity. Earth Planet. Sci. Lett. 2008, 270, 221–230. [Google Scholar] [CrossRef]
- Collins, G.S.; Wünnemann, K.; Artemieva, N.; Pierazzo, E. Numerical Modelling of Impact Processes. In Impact Cratering; Osinski, G.R., Pierazzo, E., Eds.; Blackwell: Oxford, UK, 2012; pp. 254–270. [Google Scholar] [CrossRef]
- Collins, G.S.; Patel, N.; Davison, T.M.; Rae, A.S.P.; Morgan, J.V.; Gulick, S.P.S.; Christeson, G.L.; Chenot, E.; Claeys, P.; Cockell, C.S.; et al. A steeply-inclined trajectory for the Chicxulub impact. Nat. Commun. 2020, 11, 1480. [Google Scholar] [CrossRef] [PubMed]
- Collins, G.S.; Patel, N.; Rae, A.S.P.; Davison, T.M.; Morgan, J.V.; Gulick, S.; Expedition 364 Scientists. Numerical Simulations of Chicxulub Crater Formation by Oblique Impact. In Proceedings of the Lunar and Planetary Science XLVIII Conference, Houston, TX, USA, 20–24 March 2017. [Google Scholar]
- Artemieva, N.; Morgan, J.; Expedition 364 Science Party. Quantifying the Release of Climate-Active Gases by Large Meteorite Impacts with a Case Study of Chicxulub. Geophys. Res. Lett. 2017, 44, 10180–10188. [Google Scholar] [CrossRef]
- Amsden, A.A.; Ruppel, H.M. SALE-3D: A Simplified SALE Computer Program for Calculating Three-Dimensional Fluid Flow; Los Alamos National Lab.: Los Alamos, NM, USA, 1981. [Google Scholar]
- Gisler, G.; Weaver, R.P.; Mader, C.; Gittings, M. Two- and Three-Dimensional Simulations of Asteroid Ocean Impacts. Sci. Tsunami Harzard 2003, 21, 119–134. [Google Scholar] [CrossRef]
- Elbeshausen, D.; Wünnemann, K.; Collins, G.S. Scaling of oblique impacts in frictional targets: Implications for crater size and formation mechanisms. Icarus 2009, 204, 716–731. [Google Scholar] [CrossRef]
- McCall, N.; Gulick, S.P.; Hall, B.; Rae, A.S.; Poelchau, M.H.; Riller, U.; Lofi, J.; Morgan, J.V. Orientations of planar cataclasite zones in the Chicxulub peak ring as a ground truth for peak ring formation models. Earth Planet. Sci. Lett. 2021, 576, 117236. [Google Scholar] [CrossRef]
- Kring, D.A.; Tikoo, S.M.; Schmieder, M.; Riller, U.; Rebolledo-Vieyra, M.; Simpson, S.L.; Osinski, G.R.; Gattacceca, J.; Wittmann, A.; Verhagen, C.M.; et al. Probing the hydrothermal system of the Chicxulub impact crater. Sci. Adv. 2020, 6, eaaz3053. [Google Scholar] [CrossRef] [PubMed]
- Cundall, P.A.; Strack, O.D.L. A discrete numerical model for granular assemblies. Géotechnique 1979, 29, 47–65. [Google Scholar] [CrossRef]
- Zhu, H.P.; Zhou, Z.Y.; Yang, R.Y.; Yu, A.B. Discrete particle simulation of particulate systems: A review of major applications and findings. Chem. Eng. Sci. 2008, 63, 5728–5770. [Google Scholar] [CrossRef]
- Potyondy, D.O. The bonded-particle model as a tool for rock mechanics research and application: Current trends and future directions. Geosyst. Eng. 2015, 18, 1–28. [Google Scholar] [CrossRef]
- Yanbei, Z. Probabilistic Calibration of a Discrete Particle Model. Master’s Thesis, Texas A&M University, College Station, TX, USA, 2010. [Google Scholar]
- Noble, P.A. Uncertainty Quantification of the Homogeneity of Granular Materials through Discrete Element Modeling and X-rays Computed Tomography. Master’s Thesis, Texas A&M University, College Station, TX, USA, 2012. [Google Scholar]
- Duong, T.N.M.; Hernawan, B.; Medina-Cetina, Z. Experimental and Numerical Assessment of Sample Heterogeneity and Failure Mechanism of Speciments Formed with Granular Material. Minerals 2023. submitted. [Google Scholar]
- Ledgerwood, L.W. PFC Modeling of Rock Cutting under High Pressure Conditions. In Proceedings of the 1st Canada—U.S. Rock Mechanics Symposium, Vancouver, BC, Canada, 27–31 May 2007. [Google Scholar]
- Giese, S. Numerical simulation of vibroflotation compaction—Application of dynamic boundary conditions. In Numerical Modeling in Micromechanics via Particle Methods; Routledge: New York, NY, USA, 2003; pp. 117–124. [Google Scholar] [CrossRef]
- Hardy, S. Discrete Element Modelling of Pit Crater Formation on Mars. Geosciences 2021, 11, 268. [Google Scholar] [CrossRef]
- Smart, K.J.; Wyrick, D.Y.; Ferrill, D.A. Discrete element modeling of Martian pit crater formation in response to extensional fracturing and dilational normal faulting. J. Geophys. Res. Planets 2011, 116, 383–392. [Google Scholar] [CrossRef]
- Caldwell, W.K.; Euser, B.; Plesko, C.S.; Larmat, C.; Lei, Z.; Knight, E.E.; Rougier, E.; Hunter, A. Benchmarking Numerical Methods for Impact and Cratering Applications. Appl. Sci. 2021, 11, 2504. [Google Scholar] [CrossRef]
- Çelik, O.; Ballouz, R.-L.; Scheeres, D.J.; Kawakatsu, Y. A numerical simulation approach to the crater-scaling relationships in low-speed impacts under microgravity. Icarus 2022, 377, 114882. [Google Scholar] [CrossRef]
- Zhang, Y.; Jutzi, M.; Michel, P.; Raducan, S.; Arakawa, M. Effect of material strength and heterogeneity on small asteroid cratering events. In Proceedings of the Europlanet Science Congress 2021, online, 13–24 September 2021. [Google Scholar] [CrossRef]
- Medina-Cetina, Z. Probabilistic Calibration of a Soil Model. Ph.D. Thesis, Johns Hopkins University, Baltimore, MD, USA, 2007. [Google Scholar]
- Medina-Cetina, Z.; Nadim, F. Stochastic design of an early warning system. Georisk: Assess. Manag. Risk Eng. Syst. Geohazards 2008, 2, 223–236. [Google Scholar] [CrossRef]
- Medina-Cetina, Z.; Arson, C. Probabilistic calibration of a damage rock mechanics model. Géotech. Lett. 2014, 4, 17–21. [Google Scholar] [CrossRef]
- Gulick, S.; Morgan, J.; Mellet, C.L.; Expedition 364 Scientists. Expedition 364 Preliminary Report: Chicxulub: Drilling the K-Pg Impact Crater; International Ocean Discovery Program: College Station, TX, USA, 2017. [Google Scholar] [CrossRef]
- Alvarez, L.W.; Alvarez, W.; Asaro, F.; Michel, H.V. Extraterrestrial Cause for the Cretaceous-Tertiary Extinction. Science 1980, 208, 1095–1108. [Google Scholar] [CrossRef] [PubMed]
- Hildebrand, A.R.; Pilkington, M.; Ortiz-Aleman, C.; Chavez, R.E.; Urrutia-Fucugauchi, J.; Connors, M.; Graniel-Castro, E.; Camara-Zi, A.; Halpenny, J.F.; Niehaus, D. Mapping Chicxulub crater structure with gravity and seismic reflection data. In Meteorites: Flux with Time and Impact Effects. Geological Society; Graddy, M.M., Hutchinson, R., McCall, G.J.H., Rotherby, D.A., Eds.; Special Publications: London, UK, 1998; Volume 140, pp. 155–176. [Google Scholar] [CrossRef]
- Navarro, K.F.; Urrutia-Fucugauchi, J.; Villagran-Muniz, M.; Sánchez-Aké, C.; Pi-Puig, T.; Pérez-Cruz, L.; Navarro-González, R. Emission spectra of a simulated Chicxulub impact-vapor plume at the Cretaceous–Paleogene boundary. Icarus 2020, 346, 113813. [Google Scholar] [CrossRef]
- Potyondy, D. Material-Modeling Support in PFC. Technical Memorandum ICG7766-L; Itasca Consulting Group: Minneapolis, MN, USA, 2015. [Google Scholar]
- Itasca. PFC3D 7.0 Manual. Particles Flow Code in three Dimensions-PFC3D. 2019s. Available online: https://docs.itascacg.com/pfc700/contents.html (accessed on 2 May 2023).
- Trinquier, A.; Birck, J.-L.; Allègre, C.J. The nature of the KT impactor. A 54Cr reappraisal. Earth Planet. Sci. Lett. 2006, 241, 780–788. [Google Scholar] [CrossRef]
- Goderis, S.; Sato, H.; Ferrière, L.; Schmitz, B.; Burney, D.; Kaskes, P.; Vellekoop, J.; Wittmann, A.; Schulz, T.; Chernonozhkin, S.M.; et al. Globally distributed iridium layer preserved within the Chicxulub impact structure. Sci. Adv. 2021, 7, eabe3647. [Google Scholar] [CrossRef] [PubMed]
- Gelinas, A.; Kring, D.A.; Zurcher, L.; Urrutia-Fucugauchi, J.; Morton, O.; Walker, R.J. Osmium isotope constraints on the proportion of bolide component in Chicxulub impact melt rocks. Meteorit. Planet. Sci. 2004, 39, 1003–1008. [Google Scholar] [CrossRef]
- Davison, T.M.; Collins, G.S. Complex Crater Formation by Oblique Impacts on the Earth and Moon. Geophys. Res. Lett. 2022, 49, e2022GL101117. [Google Scholar] [CrossRef]
- Kenkmann, T.; Poelchau, M.H.; Wulf, G. Structural geology of impact craters. J. Struct. Geol. 2014, 62, 156–182. [Google Scholar] [CrossRef]
Layer | Material | Layer Depth (m) | Particle Diameter (m) |
---|---|---|---|
1 | Sedimentary Limestone | 10 | 5 |
2 | 30 | 5 | |
3 | Rock Basement | 90 | 5 |
4 | 180 | 10 | |
5 | 180 | 10 | |
6 | 180 | 10 | |
7 | 360 | 20 | |
8 | 360 | 20 | |
9 | 610 | 40 |
Name | Contact Type | Particle Normal Stiffness | Particle Shear Stiffness | Friction Coefficient | Bond Normal Stiffness | Bond Shear Stiffness | Bond Tension | Bond Cohesion |
---|---|---|---|---|---|---|---|---|
Pa | Pa | - | Pa | Pa | N | N | ||
Asteroid | Linear parallel bond | 4.0 × 109 | 1.6 × 109 | 0.3 | 4.0 × 109 | 1.6 × 109 | 4.0 × 106 | 4.0 × 106 |
Sedimentary limestone | Linear parallel bond | 4.0 × 109 | 1.6 × 109 | 0.3 | 4.0 × 109 | 1.6 × 109 | 4.0 × 106 | 4.0 × 106 |
Rock basement | Linear parallel bond | 40.0 × 109 | 16.0 × 109 | 0.3 | 40.0 × 109 | 16.0 × 109 | 40.0 × 106 | 40.0 × 106 |
Walls | Linear contact | 5 × 1010 | 5 × 1010 | 0 | - | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duong, T.N.-M.; Hernawan, B.; Medina-Cetina, Z.; Urrutia Fucugauchi, J. Numerical Modeling of an Asteroid Impact on Earth: Matching Field Observations at the Chicxulub Crater Using the Distinct Element Method (DEM). Geosciences 2023, 13, 139. https://doi.org/10.3390/geosciences13050139
Duong TN-M, Hernawan B, Medina-Cetina Z, Urrutia Fucugauchi J. Numerical Modeling of an Asteroid Impact on Earth: Matching Field Observations at the Chicxulub Crater Using the Distinct Element Method (DEM). Geosciences. 2023; 13(5):139. https://doi.org/10.3390/geosciences13050139
Chicago/Turabian StyleDuong, Tam N.-M., Billy Hernawan, Zenon Medina-Cetina, and Jaime Urrutia Fucugauchi. 2023. "Numerical Modeling of an Asteroid Impact on Earth: Matching Field Observations at the Chicxulub Crater Using the Distinct Element Method (DEM)" Geosciences 13, no. 5: 139. https://doi.org/10.3390/geosciences13050139
APA StyleDuong, T. N. -M., Hernawan, B., Medina-Cetina, Z., & Urrutia Fucugauchi, J. (2023). Numerical Modeling of an Asteroid Impact on Earth: Matching Field Observations at the Chicxulub Crater Using the Distinct Element Method (DEM). Geosciences, 13(5), 139. https://doi.org/10.3390/geosciences13050139