High-Latitude Depositional Systems, Provenance, and Basinal Setting of the Late Cretaceous Cantwell Basin, Denali National Park and Preserve, Alaska: A Stratigraphic Framework for Paleontological and Paleoclimatic Studies
Abstract
:1. Introduction
2. Geologic Background
2.1. Paleontology and Paleoclimate
2.2. Existing Structural and Stratigraphic Framework
2.2.1. Age Control
2.2.2. Previous Stratigraphic Analyses of the Cantwell Basin
2.2.3. Tectonic Setting of the Central Alaska Range
3. Methods
3.1. Stratigraphic Nomenclature
3.2. Stratigraphic Analysis
3.3. Geologic Mapping
3.4. U-Pb Detrital Zircon Geochronology
4. Stratigraphic Framework
4.1. Cantwell Formation Stratigraphy—Polychrome Member
4.1.1. Representative Locations and Measured Sections
4.1.2. Sedimentology
4.2. Cantwell Formation Stratigraphy—Cabin Creek–Double Mountain Member
4.2.1. Representative Locations and Measured Sections
4.2.2. Sedimentology
4.3. Correlation of Published Measured Sections
4.3.1. Correlation of the Polychrome Member
4.3.2. Correlation of the Cabin Creek–Double Mountain Member
5. Depositional Environments of the Cantwell Basin
5.1. Polychrome Member
5.1.1. Lower Polychrome Member—Fluvial-Dominated Alluvial Fans
5.1.2. Middle Polychrome Member—Braided Fluvial System
5.1.3. Upper Polychrome Member—Coastal Fluvial System
5.2. Cabin Creek–Double Mountain Member
5.3. Stratigraphic Context of Trace Fossils in the Cantwell Formation
6. Structural Configuration
6.1. Geologic Mapping and Structural Observations
6.1.1. Thrust System along the Northern Basin Margin
6.1.2. Thrust System along the Southern Basin Margin
6.2. Interpretation of Deformational Timing
7. Provenance of the Cantwell Basin
7.1. U-Pb Detrital Zircon Geochronology Results
7.1.1. Polychrome Member
7.1.2. Cabin Creek–Double Mountain Member
7.2. Detrital Zircon Provenance Interpretation
- (1)
- The youngest population (ca. 77–66 Ma) overlaps with the deposition of the Cantwell Formation and was derived from a coeval magmatic arc system located south of the basin.
- (2)
- Cretaceous grains with ages that precede the deposition of the Cantwell basin were derived from older exhumed Cretaceous plutons exposed throughout south-central Alaska, primarily south of the Cantwell basin.
- (3)
- Sediment was recycled from Paleozoic and Mesozoic metasedimentary strata that were locally uplifted in syndepositional thrust systems along the southern and northern basin margins.
- (4)
- Sediment was recycled from Jurassic–Cretaceous sedimentary sources that were exhumed in a Cretaceous suture zone presently exposed south of the basin.
- (5)
- Precambrian grains were recycled from metamorphic rocks exposed north of the Cantwell basin that represent the ancestral North American margin.
7.2.1. Paleogeographic Insights from Provenance Interpretations
7.2.2. Regional Sediment Recycling
7.2.2.1. Recycling of the Kahiltna Assemblage
7.2.2.2. Recycling Driven by Syndepositional Exhumation of the Cantwell Basin Margins
7.2.2.3. Regional Sediment Recycling from the Yukon Composite Terrane
8. Regional Paleogeography of Mid- to Late Cretaceous Foreland Basin Depositional Systems: Next Steps
9. Conclusions
- (1)
- A thorough geologic and paleogeographic characterization of the Cantwell Formation is important because it provides a stratigraphic framework for recent and future paleontological and paleoclimate investigations of a Late Cretaceous high-latitude ecosystem. Our stratigraphic data allow the Cantwell Formation to be divided into two mappable members. The lower member, the Polychrome member (minimum thickness: ~1500 m), consists of wet alluvial fan, braided stream, and coastal fluvial strata. The upper member, the Cabin Creek–Double Mountain member (minimum thickness: ~1200 m), was deposited in estuarine and coastal lacustrine depositional environments. The coastal fluvial and tidal environments are associated with the remarkable preservation of vertebrate trackways such as theropods, hadrosaurs, and wading birds.
- (2)
- The configuration of the Cantwell basin was heavily influenced by syndepositional deformation along the northern and southern basin margins. In our study area, the basin margins are defined by opposing thrust belts, including a previously undocumented south-verging thrust system along the northern basin margin. The Cantwell Formation was deformed within these basinward propagating thrust systems from the Late Cretaceous through the Paleocene. Upper Paleocene–lower Eocene volcanic strata of the Teklanika formation were deposited unconformably atop the Cantwell Formation, and contractional deformation of both formations continued through at least the early Eocene.
- (3)
- U-Pb detrital zircon data from the Cantwell Formation (n = 4657) indicate that sediment was sourced from a coeval Late Cretaceous magmatic arc, as well as older exhumed Cretaceous plutonic sources. Plutons of the Late Cretaceous arc system that bordered the southern margin of the basin during the deposition of the Cantwell Formation are now exposed ~400 km to the southwest in the western Alaska Range due to dextral offset along the Denali fault system. Sediment sources north of the Cantwell basin included Upper Triassic–Lower Jurassic plutonic rocks of the Taylor Mountain batholith, as well as metamorphic rocks of the ancestral North American margin that provided recycled Proterozoic and Archean detrital zircons. Other secondary (recycled sedimentary) sources of sediment include Paleozoic and Mesozoic metasedimentary strata exposed in syndepositional thrust sheets along the margins of the basin and the Upper Jurassic–Cretaceous Kahiltna assemblage.
- (4)
- The Cantwell basin is interpreted to have formed in the proximal part of a now-dismembered foreland basin system and drained to the northeast into a Late Cretaceous interior seaway. Future studies may seek to better define the stratigraphic relationships between the interior seaway, likely represented by relatively unstudied Cretaceous strata of interior Alaska, and terrestrial and estuarine depositional systems of south-central and northern Alaska. These regional datasets would serve to better integrate disparate records of the Cretaceous high-latitude paleo-landscape of Alaska and would contribute to our understanding of relationships between depositional systems, faunal populations, and basinal settings. These datasets may also be critical for understanding paleogeographic and faunal connections between northwestern North American and Eurasia.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hickman, R.G.; Sherwood, K.W.; Craddock, C. Structural Evolution of the Early Tertiary Cantwell Basin, South Central Alaska. Tectonics 1990, 9, 1433–1449. [Google Scholar] [CrossRef]
- Ridgway, K.D.; Trop, J.M.; Sweet, A.R. Thrust-Top Basin Formation along a Suture Zone, Cantwell Basin, Alaska Range: Implications for Development of the Denali Fault System. Geol. Soc. Am. Bull. 1997, 109, 505–523. [Google Scholar] [CrossRef]
- Tomsich, C.S.; McCarthy, P.J.; Fiorillo, A.R.; Stone, D.B.; Benowitz, J.A.; O’Sullivan, P.B. New Zircon U-Pb Ages for the Lower Cantwell Formation: Implications for the Late Cretaceous Paleoecology and Paleoenvironment of the Lower Cantwell Formation near Sable Mountain, Denali National Park and Preserve, Central Alaska Range, USA. In Proceedings of the International Conference on Arctic Margins VI, Fairbanks, AK, USA, May 30–June 2 2011; VSEGEI: St. Petersburg, Russia, 2014; pp. 19–60. [Google Scholar]
- Fiorillo, A.R.; Hasiotis, S.T.; Kobayashi, Y.; Breithaupt, B.H.; McCarthy, P.J. Bird Tracks from the Upper Cretaceous Cantwell Formation of Denali National Park, Alaska, USA: A New Perspective on Ancient Northern Polar Vertebrate Biodiversity. J. Syst. Palaeontol. 2011, 9, 33–49. [Google Scholar] [CrossRef]
- Fiorillo, A.R.; McCarthy, P.J.; Flaig, P.P. A Multi-Disciplinary Perspective on Habitat Preferences among Dinosaurs in a Cretaceous Arctic Greenhouse World, North Slope, Alaska (Prince Creek Formation: Lower Maastrichtian). Palaeogeogr. Palaeoclimatol. Palaeoecol. 2016, 441, 377–389. [Google Scholar] [CrossRef]
- Fiorillo, A.R.; McCarthy, P.J.; Kobayashi, Y.; Tomsich, C.S.; Tykoski, R.S.; Lee, Y.; Tanaka, T.; Noto, C.R. An Unusual Association of Hadrosaur and Therizinosaur Tracks within Late Cretaceous Rocks of Denali National Park, Alaska. Sci. Rep. 2018, 8, 12. [Google Scholar] [CrossRef]
- Fiorillo, A.R.; McCarthy, P.J.; Kobayashi, Y.; Suarez, M.B. Cretaceous Dinosaurs across Alaska Show the Role of Paleoclimate in Structuring Ancient Large-Herbivore Populations. Geosciences 2022, 12, 161. [Google Scholar] [CrossRef]
- Salazar-Jaramillo, S. Paleoclimate and Paleoenvironment of the Prince Creek and Cantwell Formations, Alaska: Terrestrial Evidence of a Middle Maastrichtian Greenhouse Event. Master’s Thesis, University of Alaska, Fairbanks, AK, USA, 2014. [Google Scholar]
- Tomsich, C.S.; McCarthy, P.J.; Fowell, S.J.; Sunderlin, D. Paleofloristic and Paleoenvironmental Information from a Late Cretaceous (Maastrichtian) Flora of the Lower Cantwell Formation near Sable Mountain, Denali National Park, Alaska. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2010, 295, 389–408. [Google Scholar] [CrossRef]
- Cole, R.B.; Ridgway, K.D.; Layer, P.W.; Drake, J. Kinematics of Basin Development during the Transition from Terrane Accretion to Strike-Slip Tectonics. Late Cretaceous-Early Tertiary Cantwell Formation, South Central Alaska. Tectonics 1999, 18, 1224–1244. [Google Scholar] [CrossRef]
- Trop, J.M.; Benowitz, J.A.; Cole, R.B.; O’Sullivan, P. Cretaceous to Miocene Magmatism, Sedimentation, and Exhumation within the Alaska Range Suture Zone: A Polyphase Reactivated Terrane Boundary. Geosphere 2019, 15, 1066–1101. [Google Scholar] [CrossRef]
- Druckenmiller, M.L.; Moon, T.A.; Thoman, R.L.; Ballinger, T.J.; Berner, L.T.; Bernhard, G.H.; Bhatt, U.S.; Bjerke, J.W.; Box, J.E.; Brown, R.; et al. The Arctic. Bull. Am. Meteorol. Soc. 2021, 102, S263–S316. [Google Scholar] [CrossRef]
- Thoman, R.L.; Richter-Menge, J.; Druckenmiller, M.L. Arctic Report Card 2020 Executive Summary; Arctic Report Card; NOAA: Washington, DC, USA, 2020; pp. 1–4.
- Fiorillo, A.R.; Hasiotis, S.T.; Kobayashi, Y.; Tomsich, C.S. A Pterosoaur Manus Track from Denali National Park, Alaska, Range, Alaska, United States. PALAIOS 2009, 24, 466–472. [Google Scholar] [CrossRef]
- Fiorillo, A.R.; Hasiotis, S.T.; Kobayashi, Y. Herd Structure in Late Cretaceous Polar Dinosaurs: A Remarkable New Dinosaur Tracksite, Denali National Park, Alaska, USA. Geology 2014, 42, 719–722. [Google Scholar] [CrossRef]
- Fiorillo, A.R.; Contessi, M.; Kobayashi, Y.; Mccarthy, P.J. Theropod Tracks from the Lower Cantwell Formation (Upper Cretaceous) of Denali National Park, Alaska, USA with Comments on Theropod Diversity in an Ancient, High-Latitude Terrestrial Ecosystem. In Fossil Footprints of Western North America; Lockley, M.G., Lucas, S.G., Eds.; NMMNHS Bulletin; New Mexico Museum of Natural History and Science: Albuquerque, NM, USA, 2014; pp. 429–449. [Google Scholar]
- Fiorillo, A.R.; Adams, T.L. A Therizinosaur Track from the Lower Cantwell Formation (Upper Cretaceous) of Denali National Park, Alaska. PALAIOS 2012, 27, 395–400. [Google Scholar] [CrossRef]
- Stewart, D.G. Vertebrate Ichnology and Paleoenvironmental Associations of Alaska’s Largest Dinosaur Track Site in the Cretaceous Cantwell Formation (Maastrichtian) of Denali National Park and Preserve. Master’s Thesis, University of Alaska Fairbanks, Fairbanks, AK, USA, 2020. [Google Scholar]
- Pasch, A.D.; May, K.C. First Occurrence of a Hadrosaur (Dinosauria) from the Matanuska Formation (Turonian) in the Talkeetna Mountains of South-Central Alaska; Alaska Division of Geological & Geophysical Surveys: Fairbanks, AK, USA, 1998; pp. 99–109.
- Fiorillo, A.R.; Kobayashi, Y.; McCarthy, P.J.; Tanaka, T.; Tykoski, R.S.; Lee, Y.-N.; Takasaki, R.; Yoshida, J. Dinosaur Ichnology and Sedimentology of the Chignik Formation (Upper Cretaceous), Aniakchak National Monument, Southwestern Alaska; Further Insights on Habitat Preferences of High-Latitude Hadrosaurs. PLoS ONE 2019, 14, e0223471. [Google Scholar] [CrossRef]
- Fiorillo, A.R.; Adams, T.L.; Kobayashi, Y. New Sedimentological, Palaeobotanical, and Dinosaur Ichnological Data on the Palaeoecology of an Unnamed Late Cretaceous Rock Unit in Wrangell-St. Elias National Park and Preserve, Alaska, USA. Cretac. Res. 2012, 37, 291–299. [Google Scholar] [CrossRef]
- Fiorillo, A.R.; Fanti, F.; Hults, C.; Hasiotis, S.T. New Ichnological, Paleobotanical, and Detrital Zircon Data from an Unnamed Rock Unit in Yukon-Charley Rivers National Preserve (Cretaceous: Alaska): Stratigraphic Implications for the Region. PALAIOS 2014, 29, 16–26. [Google Scholar] [CrossRef]
- Fiorillo, A.R.; McCarthy, P.J.; Flaig, P.P. Taphonomic and Sedimentologic Interpretations of the Dinosaur-Bearing Upper Cretaceous Strata of the Prince Creek Formation, Northern Alaska: Insights from an Ancient High-Latitude Terrestrial Ecosystem. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2010, 295, 376–388. [Google Scholar] [CrossRef]
- Brown, C.M.; Druckenmiller, P. Basal Ornithopod (Dinosauria: Ornithischia) Teeth from the Prince Creek Formation (Early Maastrichtian) of Alaska. Can. J. Earth Sci. 2011, 48, 1342–1354. [Google Scholar] [CrossRef]
- Mori, H.; Druckenmiller, P.; Erickson, G. A New Arctic Hadrosaurid (Dinosauria: Hadrosauridae) from the Prince Creek Formation (Lower Maastrichtian) of Northern Alaska. Acta Palaeontol. Pol. 2016, 61, 15–32. [Google Scholar] [CrossRef]
- Spicer, R.A.; Herman, A.B. The Late Cretaceous Environment of the Arctic: A Quantitative Reassessment Based on Plant Fossils. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2010, 295, 423–442. [Google Scholar] [CrossRef]
- Flaig, P.P.; McCarthy, P.J.; Fiorillo, A.R. A Tidally Influenced, High-Latitude Coastal-Plain The Upper Cretaceous (Maastrichtian) Prince Creek Formation, North Slope, Alaska. In From River to Rock Record: The Preservation of Fluvial Sediments and Their Subsequent Interpretation; SEPM Special Publication; SEPM Society for Sedimentary Geology: Tulsa, OK, USA, 2011; pp. 233–264. ISBN 978-1-56576-305-0. [Google Scholar]
- Chaney, R.W. Age of the Cantwell Formation. In Proceedings of the Geological Society of America Proceedings 1936; Geological Society of America: Boulder, CO, USA, 1937; pp. 355–356. [Google Scholar]
- Imlay, R.W.; Reeside, J.B. Correlation of the Cretaceous Formations of Greenland and Alaska. GSA Bull. 1954, 65, 223–246. [Google Scholar] [CrossRef]
- Wolfe, J.A.; Wahrhaftig, C. The Cantwell Formation of the Central Alaska Range. In Changes in Stratigraphic Nomenclature by the U.S. Geological Survey, 1968; U.S. Geological Survey Bulletin; United States Geological Survey: Denver, CO, USA, 1970; Volume 1294-A, pp. A41–A46. [Google Scholar]
- Hickman, R.G. Structural Geology and Stratigraphy along a Segment of the Denali Fault System, Central Alaska Range, Alaska. Ph.D. Thesis, University of Wisconsin, Madison, WI, USA, 1974. [Google Scholar]
- Sherwood, K.W. Stratigraphy, Metamorphic Geology, and Structural Geology of the Central Alaska Range, Alaska. Ph.D. Thesis, University of Wisconsin, Madison, WI, USA, 1979. [Google Scholar]
- Csejtey, B.; Mullen, M.W.; Cox, D.P.; Gilbert, W.G.; Yeend, W.E.; Smith, T.E.; Wahrhaftig, C.; Craddock, C.; Brewer, W.M.; Sherwood, K.W.; et al. Geology and Geochronology of the Healy Quadrangle, South-Central Alaska; Open-File Report; United States Geological Survey: Denver, CO, USA, 1986; p. 92.
- Csejtey, B.; Mullen, M.W.; Cox, D.P.; Stricker, G.D. Geology and Geochronology of the Healy Quadrangle, South-Central Alaska; United States Geological Survey: Denver, CO, USA, 1992; p. 63.
- Reed, J.C. Geology of the Mount McKinley Quadrangle, Alaska; Mineral Resources of Alaska; United States Geological Survey: Denver, CO, USA, 1961; p. 43.
- Gilbert, W.G.; Redman, E.C. Geologic Map and Structure Sections of Healy C-6 Quadrangle, Alaska; State of Alaska Department of Natural Resources Division of Geological and Geophysical Surveys; DGGS: Fairbanks, AK, USA, 1975; p. 3.
- Jones, D.L.; Silberling, N.J.; Hillhouse, J. Wrangellia—A Displaced Terrane in Northwestern North America. Can. J. Earth Sci. 1977, 14, 2565–2577. [Google Scholar] [CrossRef]
- Ridgway, K.D.; Trop, J.M.; Nokleberg, W.J.; Davidson, C.M.; Eastham, K.R. Mesozoic and Cenozoic Tectonics of the Eastern and Central Alaska Range: Progressive Basin Development and Deformation in a Suture Zone. Geol. Soc. Am. Bull. 2002, 114, 1480–1504. [Google Scholar] [CrossRef]
- Brennan, P.R.K.; Gilbert, H.; Ridgway, K.D. Crustal Structure across the Central Alaska Range: Anatomy of a Mesozoic Collisional Zone: Crustal Structure of a Collisional Zone. Geochem. Geophys. Geosyst. 2011, 12, 1–23. [Google Scholar] [CrossRef]
- Romero, M.C.; Ridgway, K.D.; Gehrels, G.E. Geology, U-Pb Geochronology, and Hf Isotope Geochemistry Across the Mesozoic Alaska Range Suture Zone (South-Central Alaska): Implications for Cordilleran Collisional Processes and Tectonic Growth of North America. Tectonics 2020, 39, 1–32. [Google Scholar] [CrossRef]
- Waldien, T.S.; Roeske, S.M.; Benowitz, J.A. Tectonic Underplating and Dismemberment of the Maclaren-Kluane Schist Records Late Cretaceous Terrane Accretion Polarity and ~480 Km of Post-52 Ma Dextral Displacement on the Denali Fault. Tectonics 2021, 40, e2020TC006677. [Google Scholar] [CrossRef]
- Hampton, B.A.; Ridgway, K.D.; Gehrels, G.E. A Detrital Record of Mesozoic Island Arc Accretion and Exhumation in the North American Cordillera: U-Pb Geochronology of the Kahiltna Basin, Southern Alaska: A Detrital Record of Arc Accretion. Tectonics 2010, 29, 1–21. [Google Scholar] [CrossRef]
- Box, S.E.; Karl, S.M.; Jones, J.V.; Bradley, D.C.; Haeussler, P.J.; O’Sullivan, P.B. Detrital Zircon Geochronology along a Structural Transect across the Kahiltna Assemblage in the Western Alaska Range: Implications for Emplacement of the Alexander-Wrangellia-Peninsular Terrane against North America. Geosphere 2019, 15, 1774–1808. [Google Scholar] [CrossRef]
- Trop, J.M.; Ridgway, K.D. Mesozoic and Cenozoic Tectonic Growth of Southern Alaska: A Sedimentary Basin Perspective. In Tectonic Growth of a Collisional Continental Margin: Crustal Evolution of Southern Alaska; Ridgway, K.D., Trop, J.M., Glen, J.M.G., O’Neill, J.M., Eds.; Geological Society of America Special Paper; Geological Society of America: Boulder, CO, USA, 2007; pp. 55–94. ISBN 978-0-8137-2431-7. [Google Scholar]
- Keough, B.M.; Ridgway, K.D. Tectonic Growth of the Late Paleozoic-Middle Mesozoic Northwestern Margin of Laurentia and Implications for the Farewell Terrane: Stratigraphic, Structural, and Provenance Records from the Central Alaska Range. Tectonics 2021, 40, 1–35. [Google Scholar] [CrossRef]
- Gilbert, W.G.; Ferrell, V.M.; Turner, D.L. The Teklanika Formation—A New Paleocene Volcanic Formation in the Central Alaska Range; Alaska Division of Geological & Geophysical Surveys: Fairbanks, AK, USA, 1976; p. 16.
- Trop, J.M. Sedimentological, Provenance, and Structural Analysis of the Lower Cantwell Formation, Cantwell Basin, Central Alaska Range, Implications for the Development of a Thrust-Top Basin. Master’s Thesis, Purdue University, West Lafayette, IN, USA, 1996. [Google Scholar]
- Wilson, F.H.; Hults, C.P.; Mull, C.G.; Karl, S.M. Geologic Map of Alaska; U.S. Geological Survey Scientific Investigations Map 3340; United States Geological Survey: Anchorage, AK, USA, 2015.
- Gehrels, G. Detrital Zircon U-Pb Geochronology: Current Methods and New Opportunities. In Tectonics of Sedimentary Basins; Busby, C., Azor, A., Eds.; John Wiley & Sons, Ltd.: Chichester, UK, 2012; pp. 45–62. ISBN 978-1-4443-4716-6. [Google Scholar]
- Gehrels, G. Detrital Zircon U-Pb Geochronology Applied to Tectonics. Annu. Rev. Earth Planet. Sci. 2014, 42, 127–149. [Google Scholar] [CrossRef]
- Gehrels, G.E.; Valencia, V.A.; Ruiz, J. Enhanced Precision, Accuracy, Efficiency, and Spatial Resolution of U-Pb Ages by Laser Ablation-Multicollector-Inductively Coupled Plasma-Mass Spectrometry: Technical Brief. Geochem. Geophys. Geosyst. 2008, 9, 1–13. [Google Scholar] [CrossRef]
- Gehrels, G.; Pecha, M. Detrital Zircon U-Pb Geochronology and Hf Isotope Geochemistry of Paleozoic and Triassic Passive Margin Strata of Western North America. Geosphere 2014, 10, 49–65. [Google Scholar] [CrossRef]
- Sundell, K.E.; Gehrels, G.E.; Pecha, M.E. Rapid U-Pb Geochronology by Laser Ablation Multi-Collector ICP-MS. Geostand. Geoanalytical Res. 2021, 45, 37–57. [Google Scholar] [CrossRef]
- Stacey, J.S.; Kramers, J.D. Approximation of Terrestrial Lead Isotope Evolution by a Two-Stage Model. Earth Planet. Sci. Lett. 1975, 26, 207–221. [Google Scholar] [CrossRef]
- Ludwig, K. User’s Manual for Isoplot Version 3.75–4.15: A Geochronological Toolkit for Microsoft Excel; Special publication; Berkeley Geochronology Center: Berkeley, CA, USA, 2008. [Google Scholar]
- Geisler, T.; Pidgeon, R.T.; van Bronswijk, W.; Kurtz, R. Transport of Uranium, Thorium, and Lead in Metamict Zircon under Low-Temperature Hydrothermal Conditions. Chem. Geol. 2002, 191, 141–154. [Google Scholar] [CrossRef]
- Jo, H.R.; Rhee, C.W.; Chough, S.K. Distinctive Characteristics of a Streamflow-Dominated Alluvial Fan Deposit: Sanghori Area, Kyongsang Basin (Early Cretaceous), Southeastern Korea. Sediment. Geol. 1997, 110, 51–79. [Google Scholar] [CrossRef]
- Ghinassi, M.; Ielpi, A. Morphodynamics and Facies Architecture of Streamflow-Dominated, Sand-Rich Alluvial Fans, Pleistocene Upper Valdarno Basin, Italy. In Geology and Geomorphology of Alluvial and Fluvial Fans: Terrestrial and Planetary Perspectives; Ventra, D., Clarke, L.E., Eds.; Geological Society of London: London, UK, 2018; Volume 440, pp. 175–200. ISBN 978-1-78620-267-3. [Google Scholar]
- Ballance, P.F. Sheet-Flow-Dominated Gravel Fans of the Non-Marine Middle Cenozoic Simmler Formation, Central California. Sediment. Geol. 1984, 38, 337–359. [Google Scholar] [CrossRef]
- Bull, W.B. Recognition of Alluvial Fan Deposits in the Stratigraphic Record. In Recognition of Ancient Sedimentary Environments; Rigby, J.K., Hamblin, W.K., Eds.; Society of Economic Paleontologists and Mineralogists Special Publication; SEPM Society for Sedimentary Geology: Tulsa, OK, USA, 1972; Volume 16, pp. 63–83. [Google Scholar]
- Ridgway, K.D.; Decelles, P.G. Stream-Dominated Alluvial Fan and Lacustrine Depositional Systems in Cenozoic Strike-Slip Basins, Denali Fault System, Yukon Territory, Canada. Sedimentology 1993, 40, 645–666. [Google Scholar] [CrossRef]
- Major, J.J. Depositional Processes in Large-Scale Debris-Flow Experiments. J. Geol. 1997, 105, 345–366. [Google Scholar] [CrossRef]
- Collinson, J.D. Alluvial Sediments. In Sedimentary Environments and Facies; Reading, H.G., Ed.; Blackwell: Oxford, UK, 1986; pp. 20–62. [Google Scholar]
- Smith, N.D.; Cross, T.A.; Dufficy, J.P.; Clough, S.R. Anatomy of an Avulsion. Sedimentology 1989, 36, 1–23. [Google Scholar] [CrossRef]
- Cherven, V.B. Fluvial and Deltaic Facies in the Sentinel Butte Formation, Central Williston Basin. SEPM JSR 1978, 48, 159–170. [Google Scholar] [CrossRef]
- Dalrymple, R.W.; Choi, K. Morphologic and Facies Trends through the Fluvial–Marine Transition in Tide-Dominated Depositional Systems: A Schematic Framework for Environmental and Sequence-Stratigraphic Interpretation. Earth-Sci. Rev. 2007, 81, 135–174. [Google Scholar] [CrossRef]
- Reineck, H.-F.; Wunderlich, F. Classification and Origin of Flaser and Lenticular Bedding. Sedimentology 1968, 11, 99–104. [Google Scholar] [CrossRef]
- Dalrymple, R.W. Tidal Depositional Systems. In Facies Models 4; Geotext; Geological Association of Canada: St. John’s, NL, Canada, 2010; pp. 201–232. ISBN 978-1-897095-50-8. [Google Scholar]
- Mutti, E.; Rosell, J.; Allen, G.P.; Fonessu, F.; Sgavetti, M. The Eocene Baronia Tide Dominated Delta-Shelf System in the Ager Basin. In Excursion Guidebook, 6th European Regional Meeting. International Association of Sedimentologists, Lleida, Spain; Milla, M.D., Rosell, J., Eds.; International Association of Sedimentologists: Gent, Belgium, 1985; pp. 579–600. [Google Scholar]
- Schieber, J. Microbial Mats in Terrigenous Clastics: The Challenge of Identification in the Rock Record. PALAIOS 1999, 14, 3–12. [Google Scholar] [CrossRef]
- Bose, S.; Chafetz, H.S. Morphology and Distribution of Miss: A Comparison Between Modern Siliciclastic and Carbonate Settings. In Microbial Mats in Siliciclastic Depositional Systems Through Time; Noffke, N., Chafetz, H., Eds.; SEPM Special Publication; SEPM Society for Sedimentary Geology: Tulsa, OK, USA, 2012; Volume 101, pp. 3–14. ISBN 978-1-56576-283-1. [Google Scholar]
- Noffke, N.; Awramik, S. Stromatolites and MISS—Differences between Relatives. GSA Today 2013, 23, 4–9. [Google Scholar] [CrossRef]
- Schieber, J.; Bose, P.K.; Eriksson, P.G.; Banerjee, S.; Sarkar, S.; Alterman, W.; Catuneanu, O. Atlas of Microbial Mat Features Preserved within the Siliciclastic Rock Record: Atlases in Geosciences; Elsevier: Amsterdam, The Netherlands, 2007. [Google Scholar]
- Renaut, R.W.; Gierlowski-Kordesch, E.H. Lakes. In Facies Models 4; Geotext; Geological Association of Canada: St. John’s, NL, Canada, 2010; pp. 541–576. ISBN 978-1-897095-50-8. [Google Scholar]
- Hancock, J.M.; Kauffman, E.G. The Great Transgressions of the Late Cretaceous. J. Geol. Soc. Lond. 1979, 136, 175–186. [Google Scholar] [CrossRef]
- Hancock, J.M. Transatlantic Correlations in the Campanian-Maastrichtian Stages by Eustatic Changes of Sea-Level. Geol. Soc. Lond. Spec. Publ. 1993, 70, 241–256. [Google Scholar] [CrossRef]
- Braman, D.R.; Sweet, A.R. Terrestrial Palynomorph Biostratigraphy of the Cypress Hills, Wood Mountain, and Turtle Mountain Areas (Upper Cretaceous-Paleocene) of Western Canada. Can. J. Earth Sci. 1999, 36, 725–741. [Google Scholar] [CrossRef]
- Fiorillo, A.R.; McCarthy, P.J.; Breithaupt, B.H.; Brease, P.F. Dinosauria and Fossil Aves Footprints from the Lower Cantwell Formation (Latest Cretaceous), Denali National Park and Preserve. In Proceedings of the Central Alaska Park Science Symposium, Denali, AK, USA, 12–14 September 2006; Alaska Regional Office, National Park Service, U.S. Department of Interior: Denali National Park and Preserve, AK, USA, 2007; Volume 6, pp. 41–43. [Google Scholar]
- Allen, J.R.L. Subfossil Mammalian Tracks (Flandrian) in the Severn Estuary, S.W. Britain: Mechanics of Formation, Preservation and Distribution. Phil. Trans. R. Soc. Lond. B 1997, 352, 481–518. [Google Scholar] [CrossRef]
- Epard, J.L.; Groshong, R.H. Kinematic Model of Detachment Folding Including Limb Rotation, Fixed Hinges and Layer-Parallel Strain. Tectonophysics 1995, 247, 85–103. [Google Scholar] [CrossRef]
- Trop, J.M.; Ridgway, K.D. Petrofacies and Provenance of a Late Cretaceous Suture Zone Thrust-Top Basin, Cantwell Basin, Central Alaska Range. J. Sediment. Res. 1997, 67, 469–485. [Google Scholar] [CrossRef]
- Christie-Blick, N.; Biddle, K.T. Deformation and Basin Formation along Strike-Slip Faults. In Strike-Slip Deformation, Basin Formation, and Sedimentation; Biddle, K.T., Christie-Blick, N., Eds.; SEPM Society for Sedimentary Geology: Tulsa, OK, USA, 1985; Volume 37, pp. 1–34. ISBN 978-1-56576-167-4. [Google Scholar]
- Jones, J.V.; Todd, E.; Box, S.E.; Haeussler, P.J.; Holm-Denoma, C.S.; Karl, S.M.; Graham, G.E.; Bradley, D.C.; Kylander-Clark, A.R.C.; Friedman, R.M.; et al. Cretaceous to Oligocene Magmatic and Tectonic Evolution of the Western Alaska Range: Insights from U-Pb and 40Ar/39Ar Geochronology. Geosphere 2021, 17, 118–153. [Google Scholar] [CrossRef]
- Koeneman, L.L.; Wilson, F.H. Legacy K/Ar and 40Ar/39Ar Geochronologic Data from the Alaska-Aleutian Range Batholith of South-Central Alaska; United States Geological Survey: Denver, CO, USA, 2018; p. 8.
- Moll-Stalcup, E.J. Latest Cretaceous and Cenozoic Magmatism in Mainland Alaska. In The Geology of Alaska; Plafker, G., Berg, H.C., Eds.; Geological Society of America: Boulder, CO, USA, 1994; Volume G-1, ISBN 978-0-8137-5453-6. [Google Scholar]
- Reed, B.L.; Lanphere, M.A. Generalized Geologic Map of the Alaska-Aleutian Range Batholith Showing Potassium-Argon Ages of the Plutonic Rocks; United States Geological Survey: Denver, CO, USA, 1972; 2 sheets.
- Reed, B.L.; Lanphere, M.A. Alaska-Aleutian Range Batholith: Geochronology, Chemistry, and Relation to Circum-Pacific Plutonism. Geol. Soc. Am. Bull. 1973, 84, 2583–2610. [Google Scholar] [CrossRef]
- Lanphere, M.A.; Reed, B.L. The McKinley Sequence of Granitic Rocks: A Key Element in the Accretionary History of Southern Alaska. J. Geophys. Res. 1985, 90, 11413–11430. [Google Scholar] [CrossRef]
- Wallace, W.K.; Engebretson, D.C. Relationships between Plate Motions and Late Cretaceous to Paleogene Magmatism in Southwestern Alaska. Tectonics 1984, 3, 295–315. [Google Scholar] [CrossRef]
- Wilson, F.H.; Smith, J.G.; Shew, N. Review of Radiometric Data from the Yukon Crystalline Terrane, Alaska and Yukon Territory. Can. J. Earth Sci. 1985, 22, 525–537. [Google Scholar] [CrossRef]
- Day, W.C.; O’Neill, J.M.; Dusel-Bacon, C.; Aleinikoff, J.N.; Siron, C.R. Geologic Map of the Kechumstuk Fault Zone in the Mount Veta Area, Fortymile Mining District, East-Central Alaska; United States Geological Survey: Denver, CO, USA, 2014.
- Dusel-Bacon, C.; Williams, I.S. Evidence for Prolonged Mid-Paleozoic Plutonism and Ages of Crustal Sources in East-Central Alaska from SHRIMP U–Pb Dating of Syn-Magmatic, Inherited, and Detrital Zircon. Can. J. Earth Sci. 2009, 46, 21–39. [Google Scholar] [CrossRef]
- Aleinikoff, J.N. Geochronology of Augen Gneiss and Related Rocks, Yukon-Tanana Terrane, East-Central Alaska. Geol. Soc. Am. Bull. 1986, 97, 626–637. [Google Scholar] [CrossRef]
- Day, W.C.; Aleinikoff, J.N.; Roberts, P.; Smith, M.; Gamble, B.M.; Henning, M.W.; Gough, L.P.; Morath, L.C. Geologic Map of the Big Delta B-2 Quadrangle, East-Central Alaska; United States Geological Survey: Denver, CO, USA, 2003. [Google Scholar]
- Dusel-Bacon, C.; Aleinikoff, J.N. Petrology and Tectonic Significance of Augen Gneiss from a Belt of Mississippian Granitoids in the Yukon-Tanana Terrane, East-Central Alaska. Geol. Soc. Am. Bull. 1985, 96, 411–425. [Google Scholar] [CrossRef]
- Dusel-Bacon, C.; Hopkins, M.J.; Mortensen, J.K.; Dashevsky, S.S.; Bressler, J.R.; Day, W.C. Paleozoic Tectonic and Metallogenic Evolution of the Pericratonic Rocks of East-Central Alaska and Adjacent Yukon. In Paleozoic Evolution and Metallogeny of Pericratonic Terranes at the Ancient Pacific Marign of North America, Canadian and Alaskan Cordillera; Colpron, M., Nelson, J.L., Eds.; Geological Association of Canada Special Papers; Geological Association of Canada: St. John’s, NL, Canada, 2006; Volume 45, pp. 25–74. [Google Scholar]
- Dusel-Bacon, C.; Wooden, J.L.; Hopkins, M.J. U-Pb Zircon and Geochemical Evidence for Bimodal Mid-Paleozoic Magmatism and Syngenetic Base-Metal Mineralization in the Yukon-Tanana Terrane, Alaska. Geol. Soc. Am. Bull. 2004, 116, 989–1015. [Google Scholar] [CrossRef]
- Johnston, S.T.; Mortensen, J.K.; Erdmer, P. Igneous and Metaigneous Age Constraints for the Aishihik Metamorphic Suite, Southwest Yukon. Can. J. Earth Sci. 1996, 33, 1543–1555. [Google Scholar] [CrossRef]
- Mortensen, J.K. Geology and U–Pb Geochronology of the Klondike District, West-Central Yukon Territory. Can. J. Earth Sci. 1990, 27, 903–914. [Google Scholar] [CrossRef]
- Nelson, J.L.; Colpron, M.; Piercey, S.J.; Dusel-Bacon, C.; Murphy, D.C. Paleozoic Tectonic and Metallogenetic Evolution of Pericratonic Terranes in Yukon, Northern British Columbia and Eastern Alaska. In Paleozoic Evolution and Metallogeny of Pericratonic Terranes at the Ancient Pacific Margin of North America, Canadian and Alaskan Cordillera; Colpron, M., Nelson, J.L., Eds.; Geological Association of Canada Special Papers; Geological Association of Canada: St. John’s, NL, Canada, 2006; Volume 45, pp. 323–360. [Google Scholar]
- Greig, C.J.; Gehrels, G.E. U–Pb Zircon Geochronology of Lower Jurassic and Paleozoic Stikinian Strata and Tertiary Intrusions, Northwestern British Columbia. Can. J. Earth Sci. 1995, 32, 1155–1171. [Google Scholar] [CrossRef]
- Kalbas, J.L.; Ridgway, K.D.; Gehrels, G.E. Stratigraphy, Depositional Systems, and Provenance of the Lower Cretaceous Kahiltna Assemblage, Western Alaska Range: Basin Development in Response to Oblique Collision. In Tectonic Growth of a Collisional Continental Margin: Crustal Evolution of Southern Alaska; Ridgway, K.D., Trop, J.M., Glen, J.M.G., O’Neill, J.M., Eds.; Geological Society of America Special Paper; Geological Society of America: Boulder, CO, USA, 2007; pp. 307–343. ISBN 978-0-8137-2431-7. [Google Scholar]
- Hampton, B.A.; Ridgway, K.D.; O’Neill, J.M.; Gehrels, G.E.; Schmidt, J.; Blodgett, R.B. Pre-, Syn-, and Postcollisional Stratigraphic Framework and Provenance of Upper Triassic–Upper Cretaceous Strata in the Northwestern Talkeetna Mountains, Alaska. In Tectonic Growth of a Collisional Continental Margin: Crustal Evolution of Southern Alaska; Ridgway, K.D., Trop, J.M., Glen, J.M.G., O’Neill, J.M., Eds.; Geological Society of America Special Paper; Geological Society of America: Boulder, CO, USA, 2007; pp. 401–438. ISBN 978-0-8137-2431-7. [Google Scholar]
- Hults, C.P.; Wilson, F.H.; Donelick, R.A.; O’Sullivan, P.B. Two Flysch Belts Having Distinctly Different Provenance Suggest No Stratigraphic Link between the Wrangellia Composite Terrane and the Paleo-Alaskan Margin. Lithosphere 2013, 5, 575–594. [Google Scholar] [CrossRef]
- Pálfy, J.; Smith, P.L.; Mortensen, J.K.; Friedman, R.M. Integrated Ammonite Biochronology and U-Pb Geochronometry from a Basal Jurassic Section in Alaska. Geol. Soc. Am. Bull. 1999, 111, 1537–1549. [Google Scholar] [CrossRef]
- Amato, J.M.; Rioux, M.E.; Kelemen, P.B.; Gehrels, G.E.; Clift, P.D.; Pavlis, T.L.; Draut, A.E. U-Pb Geochronology of Volcanic Rocks from the Jurassic Talkeetna Formation and Detrital Zircons from Prearc and Postarc Sequences: Implications for the Age of Magmatism and Inheritance in the Talkeetna Arc. In Tectonic Growth of a Collisional Continental Margin: Crustal Evolution of Southern Alaska; Ridgway, K.D., Trop, J.M., Glen, J.M.G., O’Neill, J.M., Eds.; Geological Society of America Special Paper; Geological Society of America: Boulder, CO, USA, 2007; pp. 253–271. ISBN 978-0-8137-2431-7. [Google Scholar]
- Rioux, M.; Hacker, B.; Mattinson, J.; Kelemen, P.; Blusztajn, J.; Gehrels, G. Magmatic Development of an Intra-Oceanic Arc: High-Precision U-Pb Zircon and Whole-Rock Isotopic Analyses from the Accreted Talkeetna Arc, South-Central Alaska. Geol. Soc. Am. Bull. 2007, 119, 1168–1184. [Google Scholar] [CrossRef]
- Rioux, M.; Mattinson, J.; Hacker, B.; Grove, M. Growth and Evolution of the Accreted Talkeetna Arc, South-Central Alaska: Solutions to the “Arc Paradox”. In Proceedings of the AGU Fall Meeting Abstracts; American Geophysical Union: Washington DC, USA, 2002; p. V12C-11. [Google Scholar]
- Rioux, M.; Mattinson, J.; Hacker, B.; Kelemen, P.; Blusztajn, J.; Hanghøj, K.; Gehrels, G. Intermediate to Felsic Middle Crust in the Accreted Talkeetna Arc, the Alaska Peninsula and Kodiak Island, Alaska: An Analogue for Low-Velocity Middle Crust in Modern Arcs: Talkeetna Arc Middle Crust. Tectonics 2010, 29, 1–17. [Google Scholar] [CrossRef]
- Nokleberg, W.J.; Plafker, G.; Wilson, F.H.; Berg, H.C. Geology of South-Central Alaska. In The Geology of Alaska; Geological Society of America: Boulder, CO, USA, 1994; Volume G-1, pp. 311–366. [Google Scholar]
- Plafker, G.; Nokleberg, W.J.; Lull, J.S. Bedrock Geology and Tectonic Evolution of the Wrangellia, Peninsular, and Chugach Terranes along the Trans- Alaska Crustal Transect in the Chugach Mountains and Southern Copper River Basin, Alaska. J. Geophys. Res. 1989, 94, 4255–4295. [Google Scholar] [CrossRef]
- Roeske, S.M.; Snee, L.W.; Pavlis, T.L. Dextral-Slip Reactivation of an Arc-Forearc Boundary during Late Cretaceous-Early Eocene Oblique Convergence in the Northern Cordillera. In Geology of a Transpressional Orogen Developed during Ridge-Trench Interaction along the North Pacific Margin; Sisson, V.B., Roeske, S.M., Pavlis, T.L., Eds.; Geological Society of America Special Paper; Geological Society of America: Boulder, CO, USA, 2003; pp. 141–169. ISBN 978-0-8137-2371-6. [Google Scholar]
- Day, E.M.; Pavlis, T.L.; Amato, J.M. Detrital Zircon Ages Indicate an Early Cretaceous Episode of Blueschist-Facies Metamorphism in Southern Alaska: Implications for the Mesozoic Paleogeography of the Northern Cordillera. Lithosphere 2016, 8, 451–462. [Google Scholar] [CrossRef] [Green Version]
- Beranek, L.P.; McClelland, W.C.; van Staal, C.R.; Israel, S.; Gordee, S.M. Late Jurassic Flare-up of the Coast Mountains Arc System, NW Canada, and Dynamic Linkages across the Northern Cordilleran Orogen: Flare-Up of the Coast Mountains Arc. Tectonics 2017, 36, 877–901. [Google Scholar] [CrossRef]
- Snyder, D.C.; Hart, W.K. The White Mountain Granitoid Suite: Isotopic Constraints on Source Reservoirs for Cretaceous Magmatism within the Wrangellia Terrane. In Tectonic Growth of a Collisional Continental Margin: Crustal Evolution of Southern Alaska; Ridgway, K.D., Trop, J.M., Glen, J.M.G., O’Neill, J.M., Eds.; Geological Society of America Special Paper; Geological Society of America: Boulder, CO, USA, 2007; pp. 379–399. ISBN 978-0-8137-2431-7. [Google Scholar]
- Graham, G.E.; Kelley, K.D.; Holm-Denoma, C.S.; Ayuso, R.A.; Kokaly, R.F.; Hoefen, T.M.; Selby, D. Geochronology of Early Cretaceous Porphyry Cu Deposits in Eastern Alaska. In Proceedings of the 35th International Geological Congress, Capetown, South Africa, 27 August–4 September 2016. [Google Scholar]
- Dusel-Bacon, C.; Holm-Denoma, C.S.; Jones, J.V.; Aleinikoff, J.N.; Mortensen, J.K. Detrital Zircon Geochronology of Quartzose Metasedimentary Rocks from Parautochthonous North America, East-Central Alaska. Lithosphere 2017, 9, 927–952. [Google Scholar] [CrossRef]
- Ross, G.M. Precambrian Basement in the Canadian Cordillera: An Introduction. Can. J. Earth Sci. 1991, 28, 1133–1139. [Google Scholar] [CrossRef]
- Rainbird, R.; Cawood, P.; Gehrels, G. The Great Grenvillian Sedimentation Episode: Record of Supercontinent Rodinia’s Assembly. In Tectonics of Sedimentary Basins; Busby, C., Azor, A., Eds.; Recent Advances; Blackwell Publishing Ltd.: Chichester, UK, 2012; pp. 583–601. ISBN 978-1-4443-4716-6. [Google Scholar]
- Brennan, P.R.K.; Ridgway, K.D. Detrital Zircon Record of Neogene Exhumation of the Central Alaska Range: A Far-Field Upper Plate Response to Flat-Slab Subduction. Geol. Soc. Am. Bull. 2015, 127, 945–961. [Google Scholar] [CrossRef]
- Lease, R.O.; Haeussler, P.J.; O’Sullivan, P. Changing Exhumation Patterns during Cenozoic Growth and Glaciation of the Alaska Range: Insights from Detrital Thermochronology and Geochronology: Alaska Range Exhumation Patterns. Tectonics 2016, 35, 934–955. [Google Scholar] [CrossRef]
- Eisbacher, G.H. Sedimentology of the Dezadeash Flysch and Its Implications for Strike-Slip Faulting along the Denali Fault, Yukon Territory and Alaska. Can. J. Earth Sci. 1976, 13, 1495–1513. [Google Scholar] [CrossRef]
- Nokleberg, W.J.; Jones, D.L.; Silberling, N.J. Origin and Tectonic Evolution of the Maclaren and Wrangellia Terranes, Eastern Alaska Range, Alaska. GSA Bull. 1985, 96, 1251–1270. [Google Scholar] [CrossRef]
- Fasulo, C.R.; Ridgway, K.D.; Trop, J.M. Detrital Zircon Geochronology and Hf Isotope Geochemistry of Mesozoic Sedimentary Basins in South-Central Alaska: Insights into Regional Sediment Transport, Basin Development, and Tectonics along the NW Cordilleran Margin. Geosphere 2020, 16, 1125–1152. [Google Scholar] [CrossRef]
- Nokleberg, W.J.; Aleinikoff, J.N.; Dutro, J.T.; Lanphere, M.A.; Silberling, N.J.; Silva, S.R.; Smith, T.E.; Turner, D.L. Map, Tables, and Summary of Fossil and Isotopic Age Data, Mount Hayes Quadrangle, Eastern Alaska Range, Alaska; United States Geological Survey: Denver, CO, USA, 1992.
- Trop, J.M.; Benowitz, J.A.; Koepp, D.Q.; Sunderlin, D.; Brueseke, M.E.; Layer, P.W.; Fitzgerald, P.G. Stitch in the Ditch: Nutzotin Mountains (Alaska) Fluvial Strata and a Dike Record ca. 117–114 Ma Accretion of Wrangellia with Western North America and Initiation of the Totschunda Fault. Geosphere 2020, 16, 29. [Google Scholar] [CrossRef]
- Till, A.B.; Harris, A.G.; Wardlaw, B.R.; Mullen, M. Upper Triassic Continental Margin Strata of the Central Alaska Range: Implications for Paleogeographic Reconstruction. In Tectonic Growth of a Collisional Continental Margin: Crustal Evolution of Southern Alaska; Ridgway, K.D., Trop, J.M., Glen, J.M.G., O’Neill, J.M., Eds.; Geological Society of America Special Paper; Geological Society of America: Boulder, CO, USA, 2007; pp. 191–205. ISBN 978-0-8137-2431-7. [Google Scholar]
- Trop, J.M.; Ravn, R.L. Sedimentology, Palynology, and Petrology of the Cretaceous Matanuska Formation, South-Central Alaska: Relationships between Forearc Basin Development and Accretionary Tectonic Events. In Geological Society of America Abstracts with Programs; Geological Society of America: Boulder, CO, USA, 2003; Volume 35, p. 559. [Google Scholar]
- Trop, J.M. Latest Cretaceous Forearc Basin Development along an Accretionary Convergent Margin: South-Central Alaska. Geol. Soc. Am. Bull. 2008, 120, 207–224. [Google Scholar] [CrossRef]
- Amato, J.M.; Pavlis, T.L. Detrital Zircon Ages from the Chugach Terrane, Southern Alaska, Reveal Multiple Episodes of Accretion and Erosion in a Subduction Complex. Geology 2010, 38, 459–462. [Google Scholar] [CrossRef]
- Amato, J.M.; Pavlis, T.L.; Clift, P.D.; Kochelek, E.J.; Hecker, J.P.; Worthman, C.M.; Day, E.M. Architecture of the Chugach Accretionary Complex as Revealed by Detrital Zircon Ages and Lithologic Variations: Evidence for Mesozoic Subduction Erosion in South-Central Alaska. Geol. Soc. Am. Bull. 2013, 125, 1891–1911. [Google Scholar] [CrossRef]
- Stevens Goddard, A.L.; Trop, J.M.; Ridgway, K.D. Detrital Zircon Record of a Mesozoic Collisional Forearc Basin in South Central Alaska: The Tectonic Transition from an Oceanic to Continental Arc. Tectonics 2018, 37, 529–557. [Google Scholar] [CrossRef]
- Huff, C.J. Paleozoic to Neogene Stratigraphic and Structural History of the Alaska Range Suture Zone, North of the Denali Fault, East Central Alaska Range. Master’s Thesis, University of California Davis, Davis, CA, USA, 2012. [Google Scholar]
- Box, S.E.; Elder, W.P. Depositional and Biostratigraphic Framework of the Upper Cretaceous Kuskokwim Group, Southwestern Alaska. In Geologic Studies in Alaska by the U.S. Geological Survey, 1990; Bradley, D.C., Ford, A.B., Eds.; U.S. Geological Survey Bulletin 1999; U.S. Geological Survey: Denver, CO, USA, 1992; pp. 8–16. [Google Scholar]
- Decker, J.; Bergman, S.C.; Blodgett, R.B.; Box, S.E.; Bundtzen, T.K.; Clough, J.G.; Coonrad, W.L.; Gilbert, W.G.; Miller, M.L.; Murphy, J.M.; et al. Geology of Southwestern Alaska. In The Geology of Alaska; Plafker, G., Berg, H.C., Eds.; The Geology of North America; Geological Society of America: Boulder, CO, USA, 1994; Volume G-1, pp. 285–310. ISBN 978-0-8137-5219-8. [Google Scholar]
- Miller, M.L.; Bradley, D.C.; Bundtzen, T.K.; McClelland, W. Late Cretaceous through Cenozoic Strike-Slip Tectonics of Southwestern Alaska. J. Geol. 2002, 110, 247–270. [Google Scholar] [CrossRef]
- Miller, M.L.; Bundtzen, T.K. Generalized Geologic Map of the Iditarod Quadrangle, Alaska, Showing Potassium-Argon, Major-Oxide, Trace-Element, Fossil, Paleocurrent, and Archaeological Sample Localities; United States Geological Survey: Reston, VA, USA, 1994; p. 48.
- Weber, F.R.; Wheeler, K.L.; Rinehart, C.D.; Chapman, R.M.; Blodgett, R.B. Geologic Map of the Livengood Quadrangle, Alaska; United States Geological Survey: Denver, CO, USA, 1992; p. 20.
- Weber, F.R.; Wheeler, K.L.; Rinehart, C.D.; Light, T.D. Generalized Geologic Map of the Livengood Quadrangle, Alaska; United States Geological Survey: Denver, CO, USA, 1997; 20p, 1 sheet.
- Dover, J.H. Geology of Part of East-Central Alaska. In The Geology of Alaska; Plafker, G., Berg, H.C., Eds.; Geological Society of America: Boulder, CO, USA, 1994; Volume G-1, pp. 135–155. ISBN 978-0-8137-5453-6. [Google Scholar]
- Johnsson, M.J. Tectonic Assembly of East-Central Alaska: Evidence from Cretaceous–Tertiary Sandstones of the Kandik River Terrane. Geol. Soc. Am. Bull. 2000, 112, 1023–1042. [Google Scholar] [CrossRef]
Provenance Interpretation | Source Ages/Location | References | |
---|---|---|---|
Primary Sources | Active Late Cretaceous magmatic arc | 110–55 Ma: Plutons exposed in the central and western Alaska range 70–50 Ma: Upper Cretaceous–Eocene plutons exposed in the eastern Alaska range | Jones et al. [83]; Koeneman and Wilson [84]; Moll-Stalcup [85]; Reed and Lanphere [86,87]; Lanphere and Reed [88]; Wallace and Engebretson [89] Moll-Stalcup [85] and references therein; Wilson et al. [90] |
Early and Late Cretaceous plutons of the Alaska Range | 110–85 Ma: Plutons exposed in the eastern Alaska range – some are intruded into the Yukon composite terrane | Moll-Stalcup [85] and references therein; Wilson et al. [90] | |
Taylor Mountain Batholith | 216–181 Ma: Plutons exposed in eastern Alaska — intruded into the Yukon composite terrane | Day et al. [91]; Dusel-Bacon and Williams [92] | |
(Meta)plutonic rocks of the Yukon composite terrane | 380–330 Ma: Orthogneiss — eastern Alaska and Yukon 365–320 Ma: Quesnellia and Slide Mountain terranes — Yukon and B.C. | Aleinikoff et al. [93]; Day et al. [94]; Dusel-Bacon and Aleinikoff [95]; Dusel-Bacon et al. [96,97]; Johnston et al. [98]; Mortensen [99]; Nelson et al. [100] Greig and Gehrels [101]; Johnston et al. [98]; Mortensen [99] | |
Secondary Sources | Recycled sediment from the Kahiltna assemblage | Northern belt: sediment derived primarily from the Yukon composite terrane (ancestral North American margin) Southern belt: sediment derived primarily from the Wrangellia composite terrane (includes arc sources listed below) | Kalbas et al. [102]; Hampton et al. [42,103]; Hults et al. [104]; Box et al. [43]; Romero et al. [40] |
Talkeetna arc * | 201–153 Ma: Peninsular terrane — south-central Alaska | Pálfy et al. [105]; Amato et al. [106]; Rioux et al. [107,108,109] | |
Chitina arc * | 175–135 Ma: Wrangellia terrane — south-central Alaska | Nokleberg et al. [110]; Plafker et al. [111]; Roeske et al. [112]; Day et al. [113]; Beranek et al. [114] | |
Chisana arc * | 140–115 Ma: Wrangellia terrane — south-central Alaska | Snyder and Hart [115]; Graham et al. [116] | |
Recycled from thrust sheets along basin margins | Key populations: 700–400 Ma and 1000–900 Ma | Keough and Ridgway [45] | |
Recycled from the Yukon composite terrane | Key populations: 2800–2600 Ma, 2000–1800 Ma, and 1100–1000 Ma | Dusel-Bacon et al. [117]; Ross [118]; Rainbird et al. [119]; Romero et al. [40], and references therein | |
* Arc sources interpreted in the Cantwell Formation as recycled from the Kahiltna assemblage Note: Colors for primary sources correspond to colored bands in Figure 11 which represent these sources |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Keough, B.; Ridgway, K. High-Latitude Depositional Systems, Provenance, and Basinal Setting of the Late Cretaceous Cantwell Basin, Denali National Park and Preserve, Alaska: A Stratigraphic Framework for Paleontological and Paleoclimatic Studies. Geosciences 2023, 13, 181. https://doi.org/10.3390/geosciences13060181
Keough B, Ridgway K. High-Latitude Depositional Systems, Provenance, and Basinal Setting of the Late Cretaceous Cantwell Basin, Denali National Park and Preserve, Alaska: A Stratigraphic Framework for Paleontological and Paleoclimatic Studies. Geosciences. 2023; 13(6):181. https://doi.org/10.3390/geosciences13060181
Chicago/Turabian StyleKeough, Brandon, and Kenneth Ridgway. 2023. "High-Latitude Depositional Systems, Provenance, and Basinal Setting of the Late Cretaceous Cantwell Basin, Denali National Park and Preserve, Alaska: A Stratigraphic Framework for Paleontological and Paleoclimatic Studies" Geosciences 13, no. 6: 181. https://doi.org/10.3390/geosciences13060181
APA StyleKeough, B., & Ridgway, K. (2023). High-Latitude Depositional Systems, Provenance, and Basinal Setting of the Late Cretaceous Cantwell Basin, Denali National Park and Preserve, Alaska: A Stratigraphic Framework for Paleontological and Paleoclimatic Studies. Geosciences, 13(6), 181. https://doi.org/10.3390/geosciences13060181