Insights on the Formation Conditions of Manganese Oxides from Crimora, VA (USA)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling Location
2.2. Geologic Setting
2.3. X-ray Powder Diffraction (XRPD)
2.4. Scanning Electron Microscopy (SEM)
2.5. Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES)
3. Results
3.1. Mn-Oxides Characterization
3.2. Formation Conditions
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Post, J.E. Manganese Oxide Minerals: Crystal Structures and Economic and Environmental Significance. Proc. Natl. Acad. Sci. USA 1999, 96, 3447–3454. [Google Scholar] [CrossRef] [PubMed]
- Sun, W.; Kitchaev, D.A.; Kramer, D.; Ceder, G. Non-Equilibrium Crystallization Pathways of Manganese Oxides in Aqueous Solution. Nat. Commun. 2019, 10, 573. [Google Scholar] [CrossRef] [Green Version]
- Lu, A.; Li, Y.; Liu, F.; Liu, Y.; Ye, H.; Zhuang, Z.; Li, Y.; Ding, H.; Wang, C. The Photogeochemical Cycle of Mn Oxides on the Earth’s Surface. Mineral. Mag. 2021, 85, 22–38. [Google Scholar] [CrossRef]
- Roy, S. Genetic Diversity of Manganese Deposition in the Terrestrial Geological Record. Geol. Soc. Lond. Spec. Publ. 1997, 119, 5. [Google Scholar] [CrossRef]
- Roy, S. Sedimentary Manganese Metallogenesis in Response to the Evolution of the Earth System. Earth-Sci. Rev. 2006, 77, 273–305. [Google Scholar] [CrossRef]
- Ghosh, S.K. Diversity in the Family of Manganese Oxides at the Nanoscale: From Fundamentals to Applications. ACS Omega 2020, 5, 25493–25504. [Google Scholar] [CrossRef] [PubMed]
- Bau, M.; Schmidt, K.; Koschinsky, A.; Hein, J.; Kuhn, T.; Usui, A. Discriminating between Different Genetic Types of Marine Ferro-Manganese Crusts and Nodules Based on Rare Earth Elements and Yttrium. Chem. Geol. 2014, 381, 1–9. [Google Scholar] [CrossRef]
- Roy, S. Environments and Processes of Manganese Deposition. Econ. Geol. 1992, 87, 1218–1236. [Google Scholar] [CrossRef]
- Cannon, W.F.; Kimball, B.E.; Corathers, L.A. Manganese—Critical Mineral Resources of the United States—Economic and Environmental Geology and Prospects for Future Supply; Professional Paper; U.S. Department of the Interior U.S. Geological Survey: Reston, VA, USA, 2017; pp. L1–L28.
- Roy, S. Manganese Metallogenesis: A Review. Ore Geol. Rev. 1988, 4, 155–170. [Google Scholar] [CrossRef]
- Hein, J.R.; Koschinsky, A.; Kuhn, T. Deep-Ocean Polymetallic Nodules as a Resource for Critical Materials. Nat. Rev. Earth Environ. 2020, 1, 158–169. [Google Scholar] [CrossRef] [Green Version]
- Hein, J.R.; Spinardi, F.; Okamoto, N.; Mizell, K.; Thorburn, D.; Tawake, A. Critical Metals in Manganese Nodules from the Cook Islands EEZ, Abundances and Distributions. Ore Geol. Rev. 2015, 68, 97–116. [Google Scholar] [CrossRef]
- Xu, H.; Peng, X.; Ta, K.; Song, T.; Du, M.; Li, J.; Chen, S.; Qu, Z. Structure and Composition of Micro-Manganese Nodules in Deep-Sea Carbonate from the Zhaoshu Plateau, North of the South China Sea. Minerals 2020, 10, 1016. [Google Scholar] [CrossRef]
- Halbach, P.E.; Jahn, A.; Cherkashov, G. Marine Co-Rich Ferromanganese Crust Deposits: Description and Formation, Occurrences and Distribution, Estimated World-Wide Resources. In Deep-Sea Mining: Resource Potential, Technical and Environmental Considerations; Sharma, R., Ed.; Springer International Publishing: Cham, Switzerland, 2017; pp. 65–141. ISBN 978-3-319-52557-0. [Google Scholar]
- Crerar, D.A.; Barnes, H.L. Deposition of Deep-Sea Manganese Nodules. Geochim. Cosmochim. Acta 1974, 38, 279–300. [Google Scholar] [CrossRef]
- Pracejus, B. Nature and Formation of Supergene Manganese Deposits on Groote Eylandt. Ph.D. Thesis, University of Adelaide, Adelaide, Australia, 1989. [Google Scholar]
- De Putter, T.; Ruffet, G.; Yans, J.; Mees, F. The Age of Supergene Manganese Deposits in Katanga and Its Implications for the Neogene Evolution of the African Great Lakes Region. Ore Geol. Rev. 2015, 71, 350–362. [Google Scholar] [CrossRef] [Green Version]
- Pharoe, B.K.; Evdokimov, A.N.; Gembitskaya, I.M.; Bushuyev, Y.Y. Mineralogy, Geochemistry and Genesis of the Post-Gondwana Supergene Manganese Deposit of the Carletonville-Ventersdorp Area, North West Province, South Africa. Ore Geol. Rev. 2020, 120, 103372. [Google Scholar] [CrossRef]
- Sasmaz, A.; Sasmaz, B.; Hein, J.R. Geochemical Approach to the Genesis of the Oligocene-Stratiform Manganese-Oxide Deposit, Chiatura (Georgia). Ore Geol. Rev. 2021, 128, 103910. [Google Scholar] [CrossRef]
- Harder, E.C. Manganese Deposits of the United States, with Sections on Foreign Deposits, Chemistry, and Uses; Bulletin; US Government Printing Office: Washington, DC, USA, 1910; pp. 58–61.
- Hack, J.T. Geomorphology of the Shenandoah Valley Virginia and West Virginia and Origin of the Residual Ore Deposits. US Geol. Surv. Prof. Pap. 1965, 484, 89. [Google Scholar]
- Hewett, D.F. Some Manganese Miners in Virginia and Maryland; Bulletin; U.S. Department of the Interior: Burlington, MA, USA; U.S. Geological Survey: Menlo Park, CA, USA, 1916; pp. 37–71.
- Stose, G.W.; Miser, H.D.; Katz, F.J.; Hewe’Tt, D.F. Manganese Deposits of the West Foot of the Blue Ridge, Virginia; Bulletin; Virginia Geological Survey: Charlottesville, VA, USA, 1919; p. 206.
- USGS National Minerals Information Center Manganese Statistics and Information. Available online: https://www.usgs.gov/centers/national-minerals-information-center/manganese-statistics-and-information (accessed on 10 May 2023).
- Judd, E.K. Engineering and Mining Journal. McGraw-Hill Publ. Co. 1907, 83, 478–479. [Google Scholar]
- Gathright II, T.M.; Henika, W.S.; Sullivan, J.L., III. Publication 013: Geology of the Crimora Quadrangle, Virginia 1978. Available online: https://www.energy.virginia.gov/commercedocs/PUB_13.pdf (accessed on 28 March 2023).
- Virginia Division of Mineral Resources Geologic Map of Virginia: Virginia Division of Mineral Resources 1993. Available online: https://mrdata.usgs.gov/geology/state/geog-units.html (accessed on 28 March 2023).
- Cooper, B.N.; Haff, J.C. Max Meadows Fault Breccia. J. Geol. 1940, 48, 945–974. [Google Scholar] [CrossRef]
- U.S. Geological Survey (USGS) Virginia Geologic Map Data. Available online: https://mrdata.usgs.gov/geology/state/state.php?state=VA (accessed on 26 July 2023).
- Degen, T.; Sadki, M.; Bron, E.; König, U.; Nénert, G. The HighScore Suite. Powder Diffr. 2014, 29, S13–S18. [Google Scholar] [CrossRef] [Green Version]
- Gruner, J.W. The Chemical Relationship of Cryptomelane (Psilomelane), Hollandite, and Coronadite. Am. Mineral. 1943, 28, 497–506. [Google Scholar]
- Bonatti, E.; Zerbi, M.; Kay, R.; Rydell, H. Metalliferous Deposits from the Apennine Ophiolites: Mesozoic Equivalents of Modern Deposits from Oceanic Spreading Centers. Geol. Soc. Am. Bull. 1976, 87, 83. [Google Scholar] [CrossRef]
- Monget, J.-M.; Murray, J.W.; Mascle, J. A World-Wide Compilation of Published, Multicomponent/Analyses of Ferromanganese Concrétions; NSF-IDOE Manganese Nodule Project: Scripps Institution of Oceanography: La Jolla, CA, USA, 1976. [Google Scholar]
- Piper, D.Z.; Leong, K.; Cannon, W.F. Manganese Nodule and Surface Sediment Compositions: Domes sites A, B, and C. In Marine Geology and Oceanography of the Pacific Manganese Nodule Province; Marine Science; Bischoff, J.L., Ed.; Plenum Publishing Corporation: New York, NY, USA, 1979; pp. 437–474. Available online: https://store.pangaea.de/Projects/NOAA-MMS/chp_10.1007_978-1-4684-3518-4_13.pdf (accessed on 24 January 2023).
- Cronan, D.S. Sedimentary Rocks|Oceanic Manganese Deposits. In Encyclopedia of Geology; Selley, R.C., Cocks, L.R.M., Plimer, I.R., Eds.; Elsevier: Oxford, UK, 2005; pp. 113–120. ISBN 978-0-12-369396-9. [Google Scholar]
- Nicholson, K. An Ancient Manganese-Iron Deposit of Freshwater Origin, Islay, Argyllshire. Scott. J. Geol. 1988, 24, 175. [Google Scholar] [CrossRef]
- Ostwald, J. Manganese Oxide Mineralogy, Petrography and Genesis, Pilbara Manganese Group, Western Australia. Miner. Deposita 1993, 28, 198–209. [Google Scholar] [CrossRef]
- Marescotti, P.; Frezzotti, M.L. Alteration of Braunite Ores from Eastern Liguria (Italy) during Syntectonic Veining Processes: Mineralogy and Fluid Inclusions. Eur. J. Mineral. 2000, 12, 341–356. [Google Scholar] [CrossRef]
- Sasmaz, A.; Zagnitko, V.M.; Sasmaz, B. Major, Trace and Rare Earth Element (REE) Geochemistry of the Oligocene Stratiform Manganese Oxide-Hydroxide Deposits in the Nikopol, Ukraine. Ore Geol. Rev. 2020, 126, 103772. [Google Scholar] [CrossRef]
- Gultekin, A.H.; Balcı, N. Geochemical Characteristics of Sedimentary Manganese Deposit of Binkılıç, Trache Basin, Turkey. J. Geol. Geophys. 2018, 7, 1000336. [Google Scholar] [CrossRef]
- Gázquez, F.; Calaforra, J.M.; Forti, P. Black Mn-Fe Crusts as Markers of Abrupt Palaeoenvironmental Changes in El Soplao Cave (Cantabria, Spain). Int. J. Speleol. 2011, 40, 163–169. [Google Scholar] [CrossRef] [Green Version]
- Ivarsson, M.; Broman, C.; Gustafsson, H.; Holm, N.G. Biogenic Mn-Oxides in Subseafloor Basalts. PLoS ONE 2015, 10, e0128863. [Google Scholar] [CrossRef] [Green Version]
- Biondi, J.C.; Polgári, M.; Gyollai, I.; Fintor, K.; Kovács, I.; Fekete, J.; Mojzsis, S.J. Biogenesis of the Neoproterozoic Kremydilite Manganese Ores from Urucum (Brazil)—A New Manganese Ore Type. Precambrian Res. 2020, 340, 105624. [Google Scholar] [CrossRef] [Green Version]
- Scholtysik, G.; Dellwig, O.; Roeser, P.; Arz, H.W.; Casper, P.; Herzog, C.; Goldhammer, T.; Hupfer, M. Geochemical Focusing and Sequestration of Manganese during Eutrophication of Lake Stechlin (NE Germany). Biogeochemistry 2020, 151, 313–334. [Google Scholar] [CrossRef]
- Cronan, D.S. Manganese Nodules☆. In Encyclopedia of Ocean Sciences, 3rd ed.; Cochran, J.K., Bokuniewicz, H.J., Yager, P.L., Eds.; Academic Press: Oxford, UK, 2019; pp. 607–614. ISBN 978-0-12-813082-7. [Google Scholar]
- Onac, B.P. Chapter 84—Minerals in Caves. In Encyclopedia of Caves (Third Edition); White, W.B., Culver, D.C., Pipan, T., Eds.; Academic Press: Cambridge, MA, USA, 2019; pp. 699–709. ISBN 978-0-12-814124-3. [Google Scholar]
- Mohamed, A.-M.O.; Paleologos, E.K. Chapter 4—The Soil System. In Fundamentals of Geoenvironmental Engineering; Mohamed, A.-M.O., Paleologos, E.K., Eds.; Butterworth-Heinemann: Oxford, UK, 2018; pp. 89–127. ISBN 978-0-12-804830-6. [Google Scholar]
- Biagioni, C.; Capalbo, C.; Pasero, M. Nomenclature Tunings in the Hollandite Supergroup. Eur. J. Mineral. 2013, 25, 85–90. [Google Scholar] [CrossRef]
- Elmi, C.; Post, J.E.; Heaney, P.J.; Ilton, E.S. Effects of PH and Ca Exchange on the Structure and Redox State of Synthetic Na-Birnessite. Am. Mineral. 2021, 106, 15–27. [Google Scholar] [CrossRef]
- Lidiard, H.M.; Rae, J.E.; Parker, A. Identification of Mn-Oxide Minerals in Some Soils from Devon, UK, and Their Varying Capacity to Adsorb Co and Cu. Enviro. Geochem. Health 1993, 15, 93–104. [Google Scholar] [CrossRef] [PubMed]
- Lelong, F.; Tardy, Y.; Grandin, G.; Trescases, J.J.; Boulange, B. Pedogenesis, Chemical Weathering and Processes of Formation of Some Supergene Ore Deposits. In Supergene and Surficial Ore Deposits; Elsevier: Amsterdam, The Netherlands, 1976; pp. 93–173. ISBN 978-0-444-41403-8. [Google Scholar]
- Calvert, S.E.; Pedersen, T.F. Sedimentary Geochemistry of Manganese; Implications for the Environment of Formation of Manganiferous Black Shales. Econ. Geol. 1996, 91, 36–47. [Google Scholar] [CrossRef]
- Crerar, A.D.; Cormick, K.R.; Barnes, L.H. Organic controls on the sedimentary geochemistry of manganese. Acta Mineral.-Petrogr. 1972, 20, 217–226. [Google Scholar]
- Ostwald, J. Some Observations on the Chemical Composition of Todorokite. Mineral. Mag. 1986, 50, 336–340. [Google Scholar] [CrossRef]
- Scheinost, A.C.; Singh, B. Metal Oxides. In Reference Module in Earth Systems and Environmental Sciences; Elsevier: Amsterdam, The Netherlands, 2022; ISBN 978-0-12-409548-9. [Google Scholar]
- Tebo, B.M.; Bargar, J.R.; Clement, B.G.; Dick, G.J.; Murray, K.J.; Parker, D.; Verity, R.; Webb, S.M. BIOGENIC MANGANESE OXIDES: Properties and Mechanisms of Formation. Annu. Rev. Earth Planet. Sci. 2004, 32, 287–328. [Google Scholar] [CrossRef] [Green Version]
- Shiller, A.M.; Stephens, T.H. Microbial Manganese Oxidation in the Lower Mississippi River: Methods and Evidence. Geomicrobiol. J. 2005, 22, 117–125. [Google Scholar] [CrossRef]
- Nicholson, K. Contrasting Mineralogical-Geochemical Signatures of Manganese Oxides; Guides to Metallogenesis. Econ. Geol. 1992, 87, 1253–1264. [Google Scholar] [CrossRef]
- Gultekin, A.H. Mineralogical and Chemical Doses Are Used to Determine the Origins of Manganese Deposits. Geol. Eng. 1998, 50, 39–46. [Google Scholar]
- Zhong, Y.; Chen, Z.; Gonzalez, F.J.; Zheng, X.; Li, G.; Luo, Y.; Mo, A.; Xu, A.; Wang, S. Rare Earth Elements and Yttrium in Ferromanganese Deposits from the South China Sea: Distribution, Composition and Resource Considerations. Acta Oceanol. Sin. 2018, 37, 41–54. [Google Scholar] [CrossRef]
- Ren, J.; He, G.; Deng, X.; Deng, X.; Yang, Y.; Yao, H.; Yang, S. Metallogenesis of Co-Rich Ferromanganese Nodules in the Northwestern Pacific: Selective Enrichment of Metallic Elements from Seawater. Ore Geol. Rev. 2022, 143, 104778. [Google Scholar] [CrossRef]
- Sjöberg, S.; Callac, N.; Allard, B.; Smittenberg, R.H.; Dupraz, C. Microbial Communities Inhabiting a Rare Earth Element Enriched Birnessite-Type Manganese Deposit in the Ytterby Mine, Sweden. Geomicrobiol. J. 2018, 35, 657–674. [Google Scholar] [CrossRef] [Green Version]
Weight % | Sample |
---|---|
Quartz | 34.3(4) |
Goethite | 17.8(6) |
Illite | 3.6(3) |
Birnessite | 1.3(5) |
Hollandite | 16.2(2) |
Amorphous | 26.7(3) |
Element | Wavelength (nm) | View | Detection Limit (mg/L) |
---|---|---|---|
Mn | 257.610 | Axial | 0.00002 |
Fe | 259.940 | Axial | 0.001 |
Ba | 455.403 | Radial | 0.002 |
Ca | 422.673 | Radial | 0.01 |
K | 766.491 | Radial | 0.40 |
Na | 589.592 | Radial | 0.07 |
Mg | 279.553 | Radial | 0.0002 |
Y | 371.030 | Radial | 0.004 |
Co | 228.615 | Axial | 0.001 |
Ti | 334.941 | Axial | 0.000028 |
Ni | 231.604 | Axial | 0.002 |
Zn | 206.200 | Axial | 0.0006 |
Cr | 283.563 | Axial | 0.007 |
Li | 670.784 | Radial | 0.002 |
W | 207.911 | Axial | 0.001 |
Mo | 202.030 | Axial | 0.0002 |
In | 325.609 | Axial | 0.05 |
Tl | 190.864 | Axial | 0.004 |
V | 292.401 | Axial | 0.001 |
La | 333.749 | Axial | 0.001 |
Ce | 413.765 | Radial | 0.05 |
Sample (n = 4) | at% | ppm |
---|---|---|
Mn | 31.63 | |
Fe | 4.73 | |
Ba | 25.53 | |
Ca | 0.22 | |
K | 3.36 | |
Na | 0.97 | |
Mg | 0.17 | |
Ni | 320.91 | |
V | 219.70 | |
Co | 1092.90 | |
Ti | 789.64 | |
Zn | 891.95 | |
Cr | 116.33 | |
Li | 455.20 | |
La | 24.93 | |
In | 18,643.45 | |
Tl | 144.82 | |
Y | 374.92 | |
Ce | bdl 1 | |
Mo | bdl 1 | |
W | bdl 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elmi, C.; Whitlock, J.R.; Macdowell, M.T.; Foust, R.D., Jr. Insights on the Formation Conditions of Manganese Oxides from Crimora, VA (USA). Geosciences 2023, 13, 235. https://doi.org/10.3390/geosciences13080235
Elmi C, Whitlock JR, Macdowell MT, Foust RD Jr. Insights on the Formation Conditions of Manganese Oxides from Crimora, VA (USA). Geosciences. 2023; 13(8):235. https://doi.org/10.3390/geosciences13080235
Chicago/Turabian StyleElmi, Chiara, Jacob R. Whitlock, Matthew T. Macdowell, and Richard D. Foust, Jr. 2023. "Insights on the Formation Conditions of Manganese Oxides from Crimora, VA (USA)" Geosciences 13, no. 8: 235. https://doi.org/10.3390/geosciences13080235
APA StyleElmi, C., Whitlock, J. R., Macdowell, M. T., & Foust, R. D., Jr. (2023). Insights on the Formation Conditions of Manganese Oxides from Crimora, VA (USA). Geosciences, 13(8), 235. https://doi.org/10.3390/geosciences13080235