Leachate Experiments to Evaluate Weathering of Waste Rock for Backfill Aquifers in Restored Coal Mine Pits, Powder River Basin, USA
Abstract
:1. Introduction
1.1. Powder River Basin Geology
1.2. Powder River Basin Waste Rock and Groundwater Contaminants
2. Study Methods
2.1. Waste Rock Collection
2.2. Waste Rock Characterization
2.3. Leach Columns
2.4. Data Analysis
3. Results and Discussion
3.1. Waste Rock Characterization
3.2. Leachate Environmental Conditions
3.3. Weathering Processes and Solute Trends
3.3.1. Salt Dissolution or Nanoparticle Flushing
3.3.2. Sulfide Oxidation
3.3.3. Bulk Solid Weathering
3.3.4. Multiple Source Weathering
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sharma, V.K.; Filip, J.; Zboril, R.; Varma, R.S. Natural Inorganic Nanoparticles—Formation, Fate, and Toxicity in the Environment. Chem. Soc. Rev. 2015, 44, 8410–8423. [Google Scholar] [CrossRef]
- Jun, Y.-S.; Lee, B.; Waychunas, G.A. In Situ Observations of Nanoparticle Early Development Kinetics at Mineral−Water Interfaces. Environ. Sci. Technol. 2010, 44, 8182–8189. [Google Scholar] [CrossRef] [PubMed]
- Acero, P.; Ayora, C.; Carrera, J.; Saaltink, M.W.; Olivella, S. Multiphase Flow and Reactive Transport Model in Vadose Tailings. Appl. Geochem. 2009, 24, 1238–1250. [Google Scholar] [CrossRef]
- Blowes, D.W.; Jambor, J.L. The Pore-Water Geochemistry and the Mineralogy of the Vadose Zone of Sulfide Tailings, Waite Amulet, Quebec, Canada. Appl. Geochem. 1990, 5, 327–346. [Google Scholar] [CrossRef]
- Dosseto, A.; Turner, S.P.; Chappell, J. The Evolution of Weathering Profiles through Time: New Insights from Uranium-Series Isotopes. Earth Planet. Sci. Lett. 2008, 274, 359–371. [Google Scholar] [CrossRef]
- Yoo, K.; Mudd, S.M. Discrepancy between Mineral Residence Time and Soil Age: Implications for the Interpretation of Chemical Weathering Rates. Geology 2008, 36, 35–38. [Google Scholar] [CrossRef]
- Slagle, S.E.; Lewis, B.D.; Lee, R.W. Ground-Water Resources and Potential Hydrologic Effects of Surface Coal Mining in the Northern Powder River Basin, Southeastern Montana; Water Supply Paper; U.S. Geological Survey: Reston, VA, USA, 1985. [Google Scholar] [CrossRef]
- Bartos, T.T.; Ogle, K.M. Water Quality and Environmental Isotopic Analyses of Ground-Water Samples Collected from the Wasatch and Fort Union Formations in Areas of Coalbed Methane Development: Implications to Recharge and Ground-Water Flow, Eastern Powder River Basin, Wyoming; Water Resources Investigations Report 02-4045; U.S. Geological Survey: Reston, VA, USA, 2002. [Google Scholar] [CrossRef]
- Colman, S.M. Rock-Weathering Rates as Functions of Time. Quat. Res. 1981, 15, 250–264. [Google Scholar] [CrossRef]
- Drever, J.I.; Clow, D.W. Weathering Rates in Catchments. In Reviews in Mineralogy and Geochemistry; White, A.F., Brantley, S.L., Eds.; Mineralogical Society of America: Chantilly, VA, USA, 1995; Volume 31, pp. 463–483. [Google Scholar]
- St-Arnault, M.; Vriens, B.; Blaskovich, R.; Aranda, C.; Klein, B.; Ulrich Mayer, K.; Beckie, R.D. Geochemical and Mineralogical Assessment of Reactivity in a Full-Scale Heterogeneous Waste-Rock Pile. Miner. Eng. 2020, 145, 106089. [Google Scholar] [CrossRef]
- Futter, M.N.; Klaminder, J.; Lucas, R.W.; Laudon, H.; Köhler, S.J. Uncertainty in Silicate Mineral Weathering Rate Estimates: Source Partitioning and Policy Implications. Environ. Res. Lett. 2012, 7, 024025. [Google Scholar] [CrossRef]
- Malmström, M.E.; Destouni, G.; Banwart, S.A.; Strömberg, B.H.E. Resolving the Scale-Dependence of Mineral Weathering Rates. Environ. Sci. Technol. 2000, 34, 1375–1378. [Google Scholar] [CrossRef]
- Salmon, S.U.; Malmström, M.E. Quantification of Mineral Dissolution Rates and Applicability of Rate Laws: Laboratory Studies of Mill Tailings. Appl. Geochem. 2006, 21, 269–288. [Google Scholar] [CrossRef]
- Banwart, S.A.; Evans, K.A.; Croxford, S. Predicting Mineral Weathering Rates at Field Scale for Mine Water Risk Assessment. Geol. Soc. Lond. Spec. Publ. 2002, 198, 137–157. [Google Scholar] [CrossRef]
- Malmström, M.; Banwart, S. Biotite Dissolution at 25 °C: The pH Dependence of Dissolution Rate and Stoichiometry. Geochim. Cosmochim. Acta 1997, 61, 2779–2799. [Google Scholar] [CrossRef]
- Stockwell, J.; Smith, L.; Jambor, J.L.; Beckie, R. The Relationship between Fluid Flow and Mineral Weathering in Heterogeneous Unsaturated Porous Media: A Physical and Geochemical Characterization of a Waste-Rock Pile. Appl. Geochem. 2006, 21, 1347–1361. [Google Scholar] [CrossRef]
- Hochella, M.F., Jr.; Lower, S.K.; Maurice, P.A.; Penn, R.L.; Sahai, N.; Sparks, D.L.; Twining, B.S. Nanominerals, Mineral Nanoparticles, and Earth Systems. Science 2008, 319, 1631–1635. [Google Scholar] [CrossRef]
- Hochella, M.F., Jr.; Mogk, D.W.; Ranville, J.; Allen, I.C.; Luther, G.W.; Marr, L.C.; McGrail, B.P.; Murayama, M.; Qafoku, N.P.; Rosso, K.M.; et al. Natural, Incidental, and Engineered Nanomaterials and Their Impacts on the Earth System. Science 2019, 363, eaau8299. [Google Scholar] [CrossRef]
- Dolton, G.L.; Fox, J.E.; Clayton, J.L. Petroleum Geology of the Powder River Basin, Wyoming and Montana; Open-File Report, 88-450-P; U.S. Geological Survey: Reston, VA, USA, 1990. [Google Scholar] [CrossRef]
- Flores, R.M. Coalbed Methane in the Powder River Basin, Wyoming and Montana: An Assessment of the Tertiary-Upper Cretaceous Coalbed Methane Total Petroleum System; Digital Data Series DDS–69–C; U.S. Geological Survey: Reston, VA, USA, 2004. [Google Scholar]
- Fort Union Coal Assessment Team. Resource Assessment of Selected Tertiary Coal Beds and Zones in the Northern Rocky Mountains and Great Plains Region; Professional Paper 1625-A; U.S. Geological Survey: Reston, VA, USA, 1999. [Google Scholar] [CrossRef]
- Yuretich, R.F.; Hickey, L.J.; Gregson, B.P.; Hsia, Y.L. Lacustrine Deposits in the Paleocene Fort Union Formation, Northern Bighorn Basin, Montana. J. Sediment. Res. 1984, 54, 836–852. [Google Scholar] [CrossRef]
- Pocknall, D.T. Paleoenvironments and Age of the Wasatch Formation (Eocene), Powder River Basin, Wyoming. PALAIOS 1987, 2, 368–376. [Google Scholar] [CrossRef]
- Lorenz, J.C.; Nadon, G.C. Braided-River Deposits in A Muddy Depositional Setting: The Molina Member of the Wasatch Formation (Paleogene), West-Central Colorado, U.S.A. J. Sediment. Res. 2002, 72, 376–385. [Google Scholar] [CrossRef]
- Roehler, H.W. Revised Stratigraphic Nomenclature for the Wasatch and Green River Formations of Eocene Age, Wyoming, Utah, and Colorado; Professional Paper 1506-B; U.S. Geological Survey: Reston, VA, USA, 1991. [Google Scholar] [CrossRef]
- Hoy, R.; Ogle, K.; Taylor, M. Evaluation of Water Quality Conditions in Coal Mine Backfill in the Powder River Basin of Wyoming. J. Am. Soc. Min. Reclam. 2003, 2003, 427–447. [Google Scholar] [CrossRef]
- Belt, E.S.; Flores, R.M.; Warwick, P.D.; Conway, K.M.; Johnson, K.R.; Waskowitz, R.S. Relationship of Fluviodeltaic Facies to Coal Deposition in the Lower Fort Union Formation (Palaeocene), South-Western North Dakota. In Sedimentology of Coal and Coal-Bearing Sequences; Rahmani, R.A., Flores, R.M., Eds.; Wiley: Hoboken, NJ, USA, 1985. [Google Scholar] [CrossRef]
- Ellis, M.S. Quality of Economically Extractable Coal Beds in the Gillette Coal Field as Compared with Other Tertiary Coal Beds in the Powder River Basin, Wyoming and Montana; Open-File Report 2002-174; U.S. Geological Survey: Reston, VA, USA, 2002. [Google Scholar] [CrossRef]
- McClurg, J.E. Peat Forming Wetlands and the Thick Powder River Basin Coals; American Association of Petroleum Geologists, Eastern Powder River Basin—Black Hills. In Proceedings of the 39th Annual Field Conference Guidebook, Casper, WY, USA, 9–11 September 1988. [Google Scholar]
- Moore, T.A. The Effects of Clastic Sedimentation on Organic Facies Development within a Tertiary Subbituminous Coal Bed, Powder River Basin, Montana, U.S.A. Int. J. Coal Geol. 1991, 18, 187–209. [Google Scholar] [CrossRef]
- Palmer, C.A.; Mroczkowski, S.J.; Kolker, A.; Finkelman, R.B.; Bullock, J.H., Jr. Chemical Analysis and Modes of Occurrence of Selected Trace Elements in a Powder River Basin Coal and Its Corresponding Simulated Cleaned Coal; Open-File Report 2000-323; U.S. Geological Survey: Reston, VA, USA, 2001. [Google Scholar] [CrossRef]
- Milligan, C.; Reddy, K. Monitoring of Groundwater Contamination by Trace Elements from CBNG Disposal Ponds Across the Powder River Basin, Wyoming. J. Am. Soc. Min. Reclam. 2007, 2007, 520–527. [Google Scholar] [CrossRef]
- Wyoming State Engineer’s Office. Fort Union Formation Aquifer Monitoring Plan and Preliminary Aquifer Management Plan; Wyoming Water Development Commission: Gillette, WY, USA, 1995; p. 73. [Google Scholar]
- U.S. Environmental Protection Agency. Method 1669, Sampling Ambient Water for Trace Metals at EPA Water Quality Criteria Levels; USEPA Office of Water Engineering and Analysis Division: Washington, DC, USA, 1996; p. 35. [Google Scholar]
- U.S. Geological Survey. National Field Manual for Collection of Water-Quality Data—Chapter A4. In Collection of Water Samples; U.S. Geological Survey: Reston, VA, USA, 2006; p. 231. [Google Scholar]
- ASTM D75/D75M-19; Practice for Sampling Aggregates. ASTM International: West Conshohocken, PA, USA, 2019; p. 7. [CrossRef]
- Lapakko, K.A.; White, W.W. Modification of the ASTM 5744-96 Kinetic Test. In Proceedings of the Fifth International Conference on Acid Rock Drainage; Society for Mining, Metallurgy, and Exploration: Littleton, CO, USA, 2000; pp. 631–639. [Google Scholar]
- American Society for Testing and Materials. Test Method for Laboratory Weathering of Solid Materials Using a Humidity Cell; ASTM International: West Conshohocken, PA, USA, 2018; p. 24. [Google Scholar]
- ASTM D4644-04; Test Method for Slake Durability of Shales and Similar Weak Rocks. ASTM International: West Conshohocken, PA, USA, 2010; p. 4. [CrossRef]
- Fan, R.; Qian, G.; Li, Y.; Short, M.D.; Schumann, R.C.; Chen, M.; Smart, R.S.C.; Gerson, A.R. Evolution of Pyrite Oxidation from a 10-Year Kinetic Leach Study: Implications for Secondary Mineralisation in Acid Mine Drainage Control. Chem. Geol. 2022, 588, 120653. [Google Scholar] [CrossRef]
- Kolker, A.; Palmer, C.A.; Bragg, L.J.; Bunnell, J.E. Arsenic in Coal; Fact Sheet 2005–3152; U.S. Geological Survey: Reston, VA, USA, 2005; p. 4. [Google Scholar]
- Hagmaier, J.L. Groundwater Flow, Hydrochemistry, and Uranium Deposition in the Powder River Basin, Wyoming. Ph.D. Dissertation, University of North Dakota, Grand Forks, ND, USA, 1971. [Google Scholar]
- Ayers, W.B., Jr. Lacustrine and Fluvial-Deltaic Depositional Systems, Fort Union Formation (Paleocene), Powder River Basin, Wyoming and Montana, American Association of Petroleum Geologists. AAPG Bull. 1986, 70, 1651–1673. [Google Scholar]
- Harrison, A.L.; Dipple, G.M.; Song, W.; Power, I.M.; Mayer, K.U.; Beinlich, A.; Sinton, D. Changes in Mineral Reactivity Driven by Pore Fluid Mobility in Partially Wetted Porous Media. Chem. Geol. 2017, 463, 1–11. [Google Scholar] [CrossRef]
- Nordstrom, D.K. Sulfide Mineral Oxidation. In Encyclopedia of Geobiology; Reitner, J., Thiel, V., Eds.; Encyclopedia of Earth Sciences Series; Springer: Dordrecht, The Netherlands, 2011; pp. 856–858. ISBN 978-1-4020-9211-4. [Google Scholar]
- Carroll, D. Rock Weathering; Monographs in Geoscience; Springer: Greer, SC, USA, 1970; ISBN 978-1-4684-1796-8. [Google Scholar]
- Finkelman, R.B.; Palmer, C.A.; Wang, P. Quantification of the Modes of Occurrence of 42 Elements in Coal. Int. J. Coal Geol. 2018, 185, 138–160. [Google Scholar] [CrossRef]
- Finkelman, R. The Inorganic Geochemistry of Coal: A Scanning Electron Microscopy View. Scanning Microsc. 1987, 21, 9. [Google Scholar]
- Sharp, W.N.; McKay, E.J.; McKeown, F.A.; White, A.M. Geology and Uranium Deposits of the Pumpkin Buttes Area of the Powder River Basin, Wyoming; Contributions to the Geology of Uranium; Bulletin 1107-H; U.S. Geological Survey: Reston, VA, USA, 1964. [Google Scholar] [CrossRef]
- Luppens, J.A.; Scott, D.C.; Haacke, J.E.; Osmonson, L.M.; Rohrbacher, T.J.; Ellis, M.S. Assessment of Coal Geology, Resources, and Reserves in the Gillette Coalfield, Powder River Basin, Wyoming; Open-File Report 2008-1202; U.S. Geological Survey: Reston, VA, USA, 2008. [Google Scholar] [CrossRef]
- Frascoli, F.; Hudson-Edwards, K.A. Geochemistry, Mineralogy and Microbiology of Molybdenum in Mining-Affected Environments. Minerals 2018, 8, 42. [Google Scholar] [CrossRef]
- Horan, K. The Oxidative Weathering of Organic Matter and Its Carbon Dioxide Emissions: Insight from the Trace Elements Rhenium and Molybdenum. Ph.D. Dissertation, Durham University, Durham, UK, 2018. [Google Scholar]
- Yudovich, Y.E.; Ketris, M.P. Selenium in Coal: A Review. Int. J. Coal Geol. 2006, 67, 112–126. [Google Scholar] [CrossRef]
- Bao, Z.; Bain, J.; Saurette, E.; Zou Finfrock, Y.; Hu, Y.; Ptacek, C.J.; Blowes, D.W. Mineralogy-Dependent Sulfide Oxidation via Polysulfide and Thiosulfate Pathways during Weathering of Mixed-Sulfide Bearing Mine Waste Rock. Geochim. Cosmochim. Acta 2022, 317, 523–537. [Google Scholar] [CrossRef]
- Dreher, G.B.; Finkelman, R.B. Selenium Mobilization in a Surface Coal Mine, Powder River Basin, Wyoming, U.S.A. Environ. Geol. Water Sci. 1992, 19, 155–167. [Google Scholar] [CrossRef]
- Stillings, L.L.; Foster, A.L.; Koski, R.A.; Munk, L.; Shanks, W.C. Temporal Variation and the Effect of Rainfall on Metals Flux from the Historic Beatson Mine, Prince William Sound, Alaska, USA. Appl. Geochem. 2008, 23, 255–278. [Google Scholar] [CrossRef]
- Wang, H.; Jiang, R.; Wang, B.; Yao, S. The Effect of Gypsum on the Fixation of Selenium in the Iron/Calcium-Selenium Coprecipitation Process. Bull. Environ. Contam. Toxicol. 2021, 106, 121–125. [Google Scholar] [CrossRef] [PubMed]
- Lee, R.W. Geochemistry of Water in the Fort Union Formation of the Northern Powder River Basin, Southeastern Montana; Open-File Report; Open-File Report 80-336; U.S. Geological Survey: Reston, VA, USA, 1980. [Google Scholar] [CrossRef]
- Huggins, F.E.; Huffman, G.P.; Lin, M.C. Observations on Low-Temperature Oxidation of Minerals in Bituminous Coals. Int. J. Coal Geol. 1983, 3, 157–182. [Google Scholar] [CrossRef]
- See, R.B.; Reddy, K.J.; Vance, G.F.; Fadlelmawla, A.A.; Blaylock, M.J. Geochemical Processes and the Effects of Natural Organic Solutes on the Solubility of Selenium in Coal-Mine Backfill Samples from the Powder River Basin, Wyoming; Water-Resources Investigations Report 95-4200; U.S. Geological Survey: Reston, VA, USA, 1995. [Google Scholar] [CrossRef]
- Healy, R.W.; Rice, C.A.; Bartos, T.T.; McKinley, M.P. Infiltration from an Impoundment for Coal-Bed Natural Gas, Powder River Basin, Wyoming: Evolution of Water and Sediment Chemistry. Water Resour. Res. 2008, 44. [Google Scholar] [CrossRef]
- Rice, C.A.; Flores, R.M.; Stricker, G.D.; Ellis, M.S. Chemical and Stable Isotopic Evidence for Water/Rock Interaction and Biogenic Origin of Coalbed Methane, Fort Union Formation, Powder River Basin, Wyoming and Montana U.S.A. Int. J. Coal Geol. 2008, 76, 76–85. [Google Scholar] [CrossRef]
- Elrashidi, M.A.; Adriano, D.C.; Workman, S.M.; Lindsay, W.L. Chemical Equilibria of Selenium in Soils: A Theoretical Development. Soil Sci. 1987, 144, 141–152. [Google Scholar] [CrossRef]
- Paydary, P.; Schellenger, A.E.P.; Teli, M.; Jaisi, D.P.; Onnis-Hayden, A.; Larese-Casanova, P. Chemical Oxidation of Selenite to Selenate: Evaluation of Reactive Oxygen Species and O Transfer Pathways. Chem. Geol. 2021, 575, 120229. [Google Scholar] [CrossRef]
- Torres, J.; Pintos, V.; Gonzatto, L.; Domínguez, S.; Kremer, C.; Kremer, E. Selenium Chemical Speciation in Natural Waters: Protonation and Complexation Behavior of Selenite and Selenate in the Presence of Environmentally Relevant Cations. Chem. Geol. 2011, 288, 32–38. [Google Scholar] [CrossRef]
- Stoeppler, M. Hazardous Metals in the Environment; Techniques and Instrumentation in Analytical Chemistry; Elsevier Science: Amsterdam, The Netherlands, 1992; ISBN 978-0-08-087560-6. [Google Scholar]
- Brownfield, M.E.; Cathcart, J.D.; Affolter, R.H.; Brownfield, I.K.; Rice, C.A.; O’Connor, J.T.; Zielinski, R.A.; Bullock, J.H.; Hower, J.C.; Meeker, G.P. Characterization and Modes of Occurrence of Elements in Feed Coal and Coal Combustion Products from a Power Plant Utilizing Low-Sulfur Coal from the Powder River Basin, Wyoming; Scientific Investigations Report 2004-5271; U.S. Geological Survey: Reston, VA, USA, 2005. [Google Scholar] [CrossRef]
- Li, X.; Zhou, J.; Zhou, T.; Li, Z.; Hu, P.; Luo, Y.; Christie, P.; Wu, L. Potential Mobilization of Cadmium and Zinc in Soils Spiked with Smithsonite and Sphalerite under Different Water Management Regimes. J. Environ. Manag. 2022, 324, 116336. [Google Scholar] [CrossRef]
- Acero, P.; Cama, J.; Ayora, C. Sphalerite Dissolution Kinetics in Acidic Environment. Appl. Geochem. 2007, 22, 1872–1883. [Google Scholar] [CrossRef]
- Langman, J.B.; Moore, M.L.; Ptacek, C.J.; Smith, L.; Sego, D.; Blowes, D.W. Diavik Waste Rock Project: Evolution of Mineral Weathering, Element Release, and Acid Generation and Neutralization during a Five-Year Humidity Cell Experiment. Minerals 2014, 4, 257–278. [Google Scholar] [CrossRef]
- Williamson, M.A.; Rimstidt, J.D. The Kinetics and Electrochemical Rate-Determining Step of Aqueous Pyrite Oxidation. Geochim. Cosmochim. Acta 1994, 58, 5443–5454. [Google Scholar] [CrossRef]
- Hu, G.; Dam-Johansen, K.; Wedel, S.; Hansen, J.P. Decomposition and Oxidation of Pyrite. Prog. Energy Combust. Sci. 2006, 32, 295–314. [Google Scholar] [CrossRef]
- Langman, J.B.; Blowes, D.W.; Veeramani, H.; Wilson, D.; Smith, L.; Sego, D.C.; Paktunc, D. The Mineral and Aqueous Phase Evolution of Sulfur and Nickel with Weathering of Pyrrhotite in a Low Sulfide, Granitic Waste Rock. Chem. Geol. 2015, 401, 169–179. [Google Scholar] [CrossRef]
- Wunderly, M.D.; Blowes, D.W.; Frind, E.O.; Ptacek, C.J. Sulfide Mineral Oxidation and Subsequent Reactive Transport of Oxidation Products in Mine Tailings Impoundments: A Numerical Model. Water Resour. Res. 1996, 32, 3173–3187. [Google Scholar] [CrossRef]
- Langman, J.B.; Ali, J.D.; Child, A.W.; Wilhelm, F.M.; Moberly, J.G. Sulfur Species, Bonding Environment, and Metal Mobilization in Mining-Impacted Lake Sediments: Column Experiments Replicating Seasonal Anoxia and Deposition of Algal Detritus. Minerals 2020, 10, 849. [Google Scholar] [CrossRef]
- Dos Santos, E.C.; de Mendonça Silva, J.C.; Duarte, H.A. Pyrite Oxidation Mechanism by Oxygen in Aqueous Medium. J. Phys. Chem. C 2016, 120, 2760–2768. [Google Scholar] [CrossRef]
- Lehmann, N.; Lantuit, H.; Böttcher, M.E.; Hartmann, J.; Eulenburg, A.; Thomas, H. Alkalinity Generation from Carbonate Weathering in a Silicate-Dominated Headwater Catchment at Iskorasfjellet, Northern Norway. Biogeosciences 2023, 20, 3459–3479. [Google Scholar] [CrossRef]
- Agbenin, J.O.; van Raij, B. Rate Processes of Calcium, Magnesium and Potassium Desorption from Variable-Charge Soils by Mixed Ion-Exchange Resins. Geoderma 1999, 93, 141–157. [Google Scholar] [CrossRef]
- White, A.F.; Blum, A.E.; Schulz, M.S.; Bullen, T.D.; Harden, J.W.; Peterson, M.L. Chemical Weathering Rates of a Soil Chronosequence on Granitic Alluvium: I. Quantification of Mineralogical and Surface Area Changes and Calculation of Primary Silicate Reaction Rates. Geochim. Cosmochim. Acta 1996, 60, 2533–2550. [Google Scholar] [CrossRef]
- Skorina, T.; Allanore, A. Aqueous Alteration of Potassium-Bearing Aluminosilicate Minerals: From Mechanism to Processing. Green Chem. 2015, 17, 2123–2136. [Google Scholar] [CrossRef]
- Sparks, D.L. Chemical Kinetics and Mass Transfer Processes in Soils and Soil Constituents. In Transport Processes in Porous Media; Bear, J., Corapcioglu, M.Y., Eds.; NATO ASI Series; Springer: Dordrecht, The Netherlands, 1991; pp. 583–637. ISBN 978-94-011-3628-0. [Google Scholar]
- Hem, J.D.; Cropper, W.H. Survey of Ferrous-Ferric Chemical Equilibria and Redox Potentials; Water Supply Paper; Water Supply Paper 1459-A; U.S. Geological Survey: Reston, VA, USA, 1959. [Google Scholar] [CrossRef]
- Schwertmann, U. Solubility and Dissolution of Iron Oxides. Plant Soil 1991, 130, 1–25. [Google Scholar] [CrossRef]
- Liang, L.; Morgan, J.J. Chemical Aspects of Iron Oxide Coagulation in Water: Laboratory Studies and Implications for Natural Systems. Aquat. Sci. 1990, 52, 32–55. [Google Scholar] [CrossRef]
- Davison, W. Iron and Manganese in Lakes. Earth-Sci. Rev. 1993, 34, 119–163. [Google Scholar] [CrossRef]
- Perret, D.; Gaillard, J.-F.; Dominik, J.; Atteia, O. The Diversity of Natural Hydrous Iron Oxides. Environ. Sci. Technol. 2000, 34, 3540–3546. [Google Scholar] [CrossRef]
- Gaffney, J.W.; White, K.N.; Boult, S. Oxidation State and Size of Fe Controlled by Organic Matter in Natural Waters. Environ. Sci. Technol. 2008, 42, 3575–3581. [Google Scholar] [CrossRef]
- Hassellöv, M.; Kammer, F. von der Iron Oxides as Geochemical Nanovectors for Metal Transport in Soil-River Systems. Elements 2008, 4, 401–406. [Google Scholar] [CrossRef]
- Weber, F.-A.; Hofacker, A.F.; Voegelin, A.; Kretzschmar, R. Temperature Dependence and Coupling of Iron and Arsenic Reduction and Release during Flooding of a Contaminated Soil. Environ. Sci. Technol. 2010, 44, 116–122. [Google Scholar] [CrossRef]
- Hatje, V.; Payne, T.E.; Hill, D.M.; McOrist, G.; Birch, G.F.; Szymczak, R. Kinetics of Trace Element Uptake and Release by Particles in Estuarine Waters: Effects of pH, Salinity, and Particle Loading. Environ. Int. 2003, 29, 619–629. [Google Scholar] [CrossRef]
- Possemiers, M.; Huysmans, M.; Anibas, C.; Batelaan, O.; Van Steenwinkel, J. Reactive Transport Modeling of Redox Processes to Assess Fe(OH)3 Precipitation around Aquifer Thermal Energy Storage Wells in Phreatic Aquifers. Environ. Earth Sci. 2016, 75, 648. [Google Scholar] [CrossRef]
- Sun, H.; Chen, M.; Zou, L.; Shu, R.; Ruan, R. Study of the Kinetics of Pyrite Oxidation under Controlled Redox Potential. Hydrometallurgy 2015, 155, 13–19. [Google Scholar] [CrossRef]
- Journet, E.; Desboeufs, K.V.; Caquineau, S.; Colin, J.-L. Mineralogy as a Critical Factor of Dust Iron Solubility. Geophys. Res. Lett. 2008, 35. [Google Scholar] [CrossRef]
- Wang, Z.; Li, R.; Cui, L.; Fu, H.; Lin, J.; Chen, J. Characterization and Acid-Mobilization Study for Typical Iron-Bearing Clay Mineral. J. Environ. Sci. 2018, 71, 222–232. [Google Scholar] [CrossRef]
Element | Warm | Cold | |||||
---|---|---|---|---|---|---|---|
Total | 0.45-µm | 0.2-µm | Total | 0.45-µm | 0.2-µm | ||
As | PC1 | 0.02 | 0.03 | 0.03 | 0.09 | 0.13 | 0.13 |
PC2 | −0.29 | −0.26 | −0.27 | −0.09 | 0.12 | 0.13 | |
Ba | PC1 | −0.13 | −0.13 | −0.13 | −0.12 | −0.13 | −0.13 |
PC2 | 0.09 | 0.09 | 0.09 | 0.14 | 0.14 | 0.14 | |
B | PC1 | 0.11 | 0.14 | 0.14 | 0.09 | 0.14 | 0.14 |
PC2 | −0.05 | 0.01 | 0.01 | 0.06 | −0.05 | −0.05 | |
Ca | PC1 | 0.15 | 0.15 | 0.15 | 0.14 | 0.14 | 0.14 |
PC2 | 0.01 | 0.01 | 0.01 | −0.03 | −0.02 | −0.02 | |
Fe | PC1 | 0.11 | 0.06 | 0.07 | 0.03 | −0.06 | −0.06 |
PC2 | −0.12 | −0.27 | −0.26 | 0.14 | −0.01 | −0.01 | |
Mg | PC1 | 0.14 | 0.14 | 0.14 | 0.14 | 0.14 | 0.14 |
PC2 | 0.07 | 0.07 | 0.07 | 0.05 | 0.05 | 0.05 | |
Mn | PC1 | 0.14 | 0.14 | 0.14 | 0.14 | 0.14 | 0.14 |
PC2 | −0.07 | −0.07 | −0.06 | −0.04 | −0.01 | −0.01 | |
Mo | PC1 | −0.02 | −0.02 | −0.01 | 0.03 | 0.03 | 0.03 |
PC2 | 0.26 | 0.25 | 0.27 | 0.23 | 0.26 | 0.26 | |
Ni | PC1 | 0.14 | 0.14 | 0.14 | 0.14 | 0.14 | 0.14 |
PC2 | 0.04 | 0.05 | 0.05 | 0.07 | 0.08 | 0.08 | |
K | PC1 | 0.14 | 0.14 | 0.14 | 0.14 | 0.14 | 0.14 |
PC2 | 0.04 | 0.05 | 0.05 | 0.03 | 0.03 | 0.03 | |
Zn | PC1 | 0.14 | 0.14 | 0.14 | 0.14 | 0.14 | 0.14 |
PC2 | 0.06 | 0.04 | 0.06 | 0.05 | 0.04 | 0.04 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martin, J.; Langman, J.B. Leachate Experiments to Evaluate Weathering of Waste Rock for Backfill Aquifers in Restored Coal Mine Pits, Powder River Basin, USA. Geosciences 2024, 14, 4. https://doi.org/10.3390/geosciences14010004
Martin J, Langman JB. Leachate Experiments to Evaluate Weathering of Waste Rock for Backfill Aquifers in Restored Coal Mine Pits, Powder River Basin, USA. Geosciences. 2024; 14(1):4. https://doi.org/10.3390/geosciences14010004
Chicago/Turabian StyleMartin, Julianna, and Jeff B. Langman. 2024. "Leachate Experiments to Evaluate Weathering of Waste Rock for Backfill Aquifers in Restored Coal Mine Pits, Powder River Basin, USA" Geosciences 14, no. 1: 4. https://doi.org/10.3390/geosciences14010004
APA StyleMartin, J., & Langman, J. B. (2024). Leachate Experiments to Evaluate Weathering of Waste Rock for Backfill Aquifers in Restored Coal Mine Pits, Powder River Basin, USA. Geosciences, 14(1), 4. https://doi.org/10.3390/geosciences14010004