The Coefficient of Earth Pressure at Rest K0 of Sands up to Very High Stresses
Abstract
:1. Introduction
- For normal consolidated soils:
- For over-consolidated soils:
- For slightly over-consolidated soils (OCR < 5):
- For heavily over-consolidated soils (OCR > 5):
- For heavily over-consolidated soils that have been subjected to preshearing processes:
- For over-consolidated soils of recent deposition and that have not been subjected to aging, preshearing and vibrations:
2. Definitions of K0
3. Characteristics of the Sands Used and Samples Preparation Method
4. The Special Oedometer
5. Typical Results
6. Discussion
6.1. Variation of K0 with the Stress Level
6.2. Normal Consolidated Sands
6.3. Over-Consolidated Sands
7. Conclusions
- For normally consolidated sands (valid for σ′v up to 120 MPa):
- For over-consolidated sands valid for OCR up to 120 and σ′v up to 120 MPa: .
Funding
Data Availability Statement
Conflicts of Interest
References
- Jardine, R.J.; Symes, M.J.; Burland, J.B. The measurement of soil stiffness in the triaxial apparatus. Géotechnique 1984, 3, 323–340. [Google Scholar] [CrossRef]
- Jardine, R.J.; Potts, D.M.; Fourie, A.B.; Burland, J.B. Studies on the influence of non-linear stress-strain characteristics in soil-structure interaction. Géotechnique 1986, 36, 377–396. [Google Scholar] [CrossRef]
- Atkinson, J.H. Non-linear soil stiffness in routine design. Géotechnique 2000, 50, 487–508. [Google Scholar] [CrossRef]
- Wang, L.; Shi, W.; Zhou, Y. Adaptive-passive tuned mass damper for structural aseismic protection including soil–structure interaction. Soil. Dyn. Earthq. Eng. 2022, 158, 107298. [Google Scholar] [CrossRef]
- Xu, H.; Cai, X.; Wang, H.; Li, S.; Huang, X.; Zhang, S. Analysis of the working response mechanism of wrapped face reinforced soil retaining wall under strong vibration. Sustainability 2022, 14, 9741. [Google Scholar] [CrossRef]
- Brooker, E.W.; Ireland, H.O. Earth Pressures at rest related to stress history. Can. Geotech. J. 1965, 2, 1–15. [Google Scholar] [CrossRef]
- Mitchell, J.K.; Soga, K. Fundamentals of Soil Behavior, 3rd ed.; John Wiley & Sons: New York, NY, USA, 2005; ISBN 978-0-471-46302-3. [Google Scholar]
- Wroth, C.P. General theories of earth pressures and deformations. Proc. Eur. Conf. Soil Mech. 1972, 2, 33–52. [Google Scholar]
- Wroth, C.P. In situ measurement of initial stresses and deformation characteristics. In Conference on In Situ Measurement of Soil Properties; ASCE: New York, NY, USA, 1975; Volume 2, pp. 181–227. [Google Scholar]
- Mayne, P.W.; Kulhawy, F.H. K0-OCR relationship in soil. ASCE J. Geotech. Eng. Div. 1982, 108, 851–872. [Google Scholar] [CrossRef]
- Jefferies, M.G.; Crooks, J.H.A.; Becker, D.E.; Hill, P.R. Independence of geostatic stress from overconsolidation in some Beaufort Sea clays. Can. Geotech. J. 1987, 24, 342–356. [Google Scholar] [CrossRef]
- Amadei, B.; Stephansson, O. Rock Stress and Its Measurement; Chapmann & Hall: London, UK, 1997; ISBN 978-94-010-6247-3. [Google Scholar]
- Schnaid, F.; Odebrecht, E.; Sosnoski, J.; Robertson, P.K. Effects of test procedure on flat dilatometer test (DMT) results in intermediate soils. Can. Geotec. J. 2016, 53, 1270–1280. [Google Scholar] [CrossRef]
- Chen, C.L.; Jia, Y.J.; Jin, J.; Zhang, D.F.; Sun, Y.R.; Li, F.L. Influences of water content and stress on coefficient of lateral pressure at rest of undisturbed loess. Chin. J. Rock Mech. Eng. 2017, 36, 3535–3542. [Google Scholar] [CrossRef]
- Jaky, J. A Magyar Mérnök-és épitész-Egylet Közlönye; 1944; Volume 78, pp. 355–358. Available online: https://repozitorium.omikk.bme.hu/items/ee5fd5fe-48a3-49da-a6a5-573e267ed01d (accessed on 15 September 2024).
- Jaky, J. Pressure in silos. In Proceedings of the Second International Conference on Soil Mechanics and Foundation Engineering, Rotterdam, The Netherlands, 21–30 June 1948; University of London Northampton Square: London, UK, 1948; Volume 1, pp. 103–107. [Google Scholar]
- Hendron, A.J. The Behavior of Sand in One-Dimensional Compression. Ph.D. Thesis, University of Illinois at Urbana, Champaign, IL, USA, 1963. [Google Scholar]
- Mesri, G.J.; Hayat, T.M. The coefficient of earth pressure at rest. Can. Geotech. J. 1993, 30, 647–666. [Google Scholar] [CrossRef]
- Federico, A.; Elia, G.; Germano, V. A short note on the earth pressure and mobilized angle of internal friction in one-dimensional compression of soils. J. Geoeng. 2008, 3, 41–46. [Google Scholar] [CrossRef]
- Schmidt, B. Earth pressure at rest related to stress history: Discussion. Can. Geotech. J. 1966, 3, 239–242. [Google Scholar] [CrossRef]
- Schmidt, B. Lateral Stresses in Uniaxial Strain. In Geoteknisk Institute; Bulletin; The Danish Geotechnical Institute: Copenhagen, Denmark, 1967; pp. 5–12. [Google Scholar]
- Alpan, I. The empirical evaluation of the coefficient K0 and K0R. Soil Found 1967, 7, 31–40. [Google Scholar] [CrossRef]
- Daramola, O. On estimating K0 for overconsolidated granular soils. Géotechnique 1980, 30, 310–313. [Google Scholar] [CrossRef]
- Terzaghi, K.; Peck, R.B.; Mesri, G. Soil Mechanics in Engineering Practice, 2nd ed.; John Wiley: New York, NY, USA, 1996; ISBN 0471086584. [Google Scholar]
- Parry, R.H.G. Mohr Circles, Stress Paths and Geotechnics, 2nd ed.; CRC Press: Boca Raton, FL, USA; Taylor & Francis Group: London, UK, 2004; ISBN 9780367871253. [Google Scholar]
- Tai, T.L. Strength and Deformation Characteristics of Cohesionless Materials at High Pressures. Ph.D. Dissertation, Department of Civil & Environmental Engineering, Durham, NC, USA, 1970. [Google Scholar]
- Yamamuro, J.A. Instability and Behaviour of Granular Materials at High Pressures. Ph.D. Dissertation, UCLA Civil and Environmental Engineering, Los Angeles, CA, USA, 1993. [Google Scholar]
- Bopp, P.A. Effect of Initial Relative Density on Instability and Behaviour of Granular Materials at High Pressures. Ph.D. Dissertation, UC Berkeley Civil and Environmental Engineering, Los Angeles, CA, USA, 1994. [Google Scholar]
- Hamouche, K.K.; Leroueil, S.; Roy, M.; Lutenegger, A.J. In situ evaluation of K0 in eastern Canada clays. Can. Geotech. J. 1995, 32, 677–688. [Google Scholar] [CrossRef]
- Yamamuro, J.A.; Bopp, P.A.; Lade, P.V. One-dimensional compression of sands at high pressures. J. Geotech. Eng. 1996, 1228, 147–154. [Google Scholar] [CrossRef]
- Gaudin, C.; Schnaid, F.; Garnier, J. Sand characterization by combined centrifuge and laboratory tests. Int. J. Phys. Model Geotech. 2005, 5, 42–56. [Google Scholar] [CrossRef]
- Michalowski, R.L. Coefficient of Earth Pressure at Rest. J. Geotech. Geoenv. Eng. 2005, 131, 1429–1433. [Google Scholar] [CrossRef]
- Northcutt, S.; Wijewickreme, D. Effect of particle fabric on the coefficient of lateral earth pressure observed during one-dimensional compression of sand. Can. Geotech. J. 2013, 50, 457–466. [Google Scholar] [CrossRef]
- Cai, Z.Y.; Dai, Z.Y.; Xu, G.M.; Ren, G.F. Effect of particle size and compaction on K0 value of sand by centrifugal model test. Rock Soil Mech. 2020, 41, 3882–3888. [Google Scholar]
- Chen, S.F.; Kong, L.W.; Luo, T. Lateral stress release characteristics of over-consolidated silty clay and calculation method for lateral earth pressure coefficient at rest. Rock Soil Mech. 2022, 43, 160–168. [Google Scholar] [CrossRef]
- Lee, K.; Kim, J.; Woo, S.I. Analysis of horizontal earth pressure acting on box culverts through centrifuge model test. Appl. Sci. 2022, 12, 1993. [Google Scholar] [CrossRef]
- Li, L.; Dai, Z.; Liu, R.; Jian, F. Experimental study on the coefficient of earth pressure at rest for sand. Buildings 2023, 13, 1276. [Google Scholar] [CrossRef]
- Murphy, D.J. Stress, degradation, and shear strength of granular material. In Geotechnical Modeling and Applications; Sayed, S.M., Ed.; Gulf Publishing Co.: Houston, TX, USA, 1987; pp. 181–211. [Google Scholar]
- Terzaghi, K. Old earth pressure theories and new test results. Eng. News Rec. 1920, 85, 632–637. [Google Scholar]
- Huntington, W.C. Earth Pressures and Retaining Walls; John Wiley & Sons: New York, NY, USA, 1957. [Google Scholar]
- Bishop, A.W.; Henkel, D.J. The Measurement of Soil Properties in the Triaxial Test, 2nd ed.; E. Arnold & Sons: London, UK, 1962. [Google Scholar]
- Bishop, A.W.; Webb, D.L.; Skinner, A.E. Triaxial Tests on Soil at Elevated Cell Pressures. In Proceedings of the 6th International Conference on Soil Mechanics and Foundation Engineering, Montreal, QC, Canada, 8–15 September 1965; University of London: London, UK, 1965; Volume 1, pp. 170–174. [Google Scholar]
- Andrawes, K.Z.; El-Sohby, M.A. Factors affecting coefficient of earth pressure K0. J. Soil Mech. Found Div. 1973, 99, 527–539. [Google Scholar] [CrossRef]
- Lambe, T.W.; Whitman, R.V. Soil Mechanics; John Wiley: New York, NY, USA, 1979; ISBN 0-471-02261-6. [Google Scholar]
- Castellanza, R.; Nova, R. Oedometric tests on artificially weathered carbonatic soft rocks. J. Geotech. Geoenv. Eng. 2004, 130, 728–739. [Google Scholar] [CrossRef]
- Hetényi, M. Beams on Elastic Foundation; The Univ of Michigan Press: Ann Arbor, MI, USA, 1946. [Google Scholar]
- Timoshenko, S.P.; Woinowsky-Krieger, S. Theory of Plates and Shells, 2nd ed.; McGraw-Hill: New York, NY, USA, 1959. [Google Scholar]
- Muskhelishvili, N.I. Some Basic Problems of the Mathematical Theory of Elasticity; Noordhoff Ltd.: Groninghen, The Netherlands, 1963. [Google Scholar]
- Timoshenko, S.P.; Godier, J.N. Theory of Elasticity, 3rd ed.; McGraw-Hill: New York, NY, USA, 1970. [Google Scholar]
- Ziccarelli, M. Comportamento Meccanico di Sabbie Carbonatiche Bioclastiche in stato di Deformazione Monodimensionale. Ph.D. Thesis, Dottorato di Ricerca in Ingegneria Geotecnica—Consorzio tra le Università di Catania e di Palermo, Catania, Italy, 1999. (In Italian). [Google Scholar]
- Terzaghi, K. Large Retaining-Wall Test. In Engineering News Record; McGraw-Hill: New York, NY, USA, 1 February 1934; Incorporated Volume 102, N. 20, pp. 136–140 . ISSN 0891-9526. [Google Scholar]
- Rowe, P.W. General Report on Papers in Section, I. Proc. Bruss. Conf. Earth Press. Probl. 1958, 3, 25–30. [Google Scholar]
- Okochi, K.; Tatsuoka, F. Some factors affecting K0-value of sand measured in triaxial cell. Soils Found. 1984, 24, 52–68. [Google Scholar] [CrossRef]
- Lade, P.V.; Yamamuro, J.A.; Bopp, P.A. Significance of Particle Crushing in Granular Materials. J. Geotech. Eng. 1996, 122, 309–316. [Google Scholar] [CrossRef]
- Chu, J.; Gan, C.L. Effect of void ratio on K0 of loose sand. Géotechnique 2004, 54, 285–288. [Google Scholar] [CrossRef]
- Wanatowski, D.; Chu, J. K0 of sand measured by a plane-strain apparatus. Can. Geotech. J. 2007, 44, 1006–1012. [Google Scholar] [CrossRef]
- Lo, S.-C.R.; Chu, J. The measurement of K0 by triaxial strain path testing. Soils Found. 1991, 31, 181–187. [Google Scholar] [CrossRef] [PubMed]
- Cardona, A.; Bhandari, A.R.; Heidari, M.; Flemings, P.B. The viscoplastic behavior of natural hydrate-bearing sandy-silts under uniaxial strain compression (K0 loading). J. Geophys. Res. Solid Earth 2023, 128, e2023JB026976. [Google Scholar] [CrossRef]
- Park, J.; Santamarina, J.C. Sands Subjected to Repetitive Loading Cycles and Associated Granular Degradation. J. Geotech. Geoenv. Eng. 2023, 149, 04023111. [Google Scholar] [CrossRef]
- Lirer, S.; Flora, A.; Nicotera, M.V. Some remarks on the coefficient of earth pressure at rest. Acta Geotech. 2011, 6, 1–12. [Google Scholar] [CrossRef]
- Dusseault, M.B.; Morgenstern, N.R. Shear strength of Athabasca Oil Sands. Can. Geotech. J. 1978, 15, 216–238. [Google Scholar] [CrossRef]
- Dusseault, M.B.; Morgenstern, N.R. Locked sands. Q. J. Eng. Geol. 1979, 12, 117–131. [Google Scholar] [CrossRef]
- Celauro, C.; Ziccarelli, M.; Parla, G.; Valore, C. An automated procedure for computing the packing properties of dense and locked sands by image analysis of thin sections. Granul. Matter 2014, 16, 867–880. [Google Scholar] [CrossRef]
- Oda, M. Co-ordination number and its relation to shear strength of granular material. Soils Found. 1977, 17, 29–42. [Google Scholar] [CrossRef] [PubMed]
- Ziccarelli, M.; Valore, C. Hydraulic conductivity and strength of pervious concrete for deep trench drains. Geomech. Energy Environ. 2019, 18, 41–55. [Google Scholar] [CrossRef]
- Wanatowski, D.; Chu, J.; Gan, C.L. Compressibility of Changi sand in K0 consolidation. Geomech. Eng. 2009, 1, 241–257. [Google Scholar] [CrossRef]
- Terzaghi, K.; Peck, R.B. Soil Mechanics in Engineering Practice, 1st ed.; John Wiley and Sons: New York, NY, USA, 1948; pp. 57–61. [Google Scholar]
- Broms, B.; Ingelson, I. Earth pressures against abutments of a rigid frame bridge. Géotechnique 1971, 21, 15–28. [Google Scholar] [CrossRef]
- Duncan, J.M.; Seed, R.B. Compaction-Induced Earth Pressures Under K0-Conditions. J. Geotech. Eng. 1986, 112, 1–22. [Google Scholar] [CrossRef]
- Duncan, J.M.; Williams, G.W.; Sehn, A.L.; Seed, R.B. Estimation earth pressures due to compaction. J. Geotech. Eng. 1991, 117, 1833–1847. [Google Scholar] [CrossRef]
- Hayashi, H.; Yamazoe, N.; Mitachi, T.; Tanaka, H.; Nishimoto, S. Coefficient of earth pressure at rest for normally and overconsolidated peat ground in Hokkaido area. Soils Found. 2012, 52, 299–311. [Google Scholar] [CrossRef]
- Coop, M.; Lee, I.K. The behaviour of granular soils at elevated stresses. In Predictive Soil Mechanics; Houlsby and Schofield—Thomas Telford: London, UK, 1993; pp. 186–198. [Google Scholar]
- Ziccarelli, M.; Valore, C.; Muscolino, S.R.; Fioravante, V. Centrifuge tests on strip footings on sand with a weak layer. Geotech. Res. 2017, 4, 47–64. [Google Scholar] [CrossRef]
- De Beer, E.E. The scale effect in the transposition of the results of deep-sounding tests on the ultimate bearing capacity of piles and caisson foundations. Géotechnique 1963, 13, 39–75. [Google Scholar] [CrossRef]
- Hirschfeld, R.C.; Poulos, S.J. High-Pressure Triaxial Tests on a Compacted Sand and an Undisturbed Silt. In Laboratory Shear Testing of Soils; ASTM International: West Conshohocken, PA, USA, 1963; STP 361; pp. 329–340. [Google Scholar] [CrossRef]
- Vesic, A.S.; Barksdale, R.D. On Shear Strength of Sand at Very High Pressures. In Laboratory Shear Testing of Soils; ASTM Special Technical Publication: West Conshohocken, PA, USA, 1963; Volume 361, pp. 301–305. [Google Scholar]
- Bishop, A.W. Test requirements for measuring the coefficient of earth pressure at rest. Proc. Bruss. Conf. Earth Press. Probl. 1958, 1, 2–14. [Google Scholar]
- Vesic, A.S.; Clough, G.W. Behavior of Granular Granular Material Under High Stress. J. Soil Mech Found Div. 1968, 94, 661–668. [Google Scholar] [CrossRef]
- Colliat-Dangus, J.L.; Desrues, J.; Foray, P. Triaxial Testing of Granular Soil Under Elevated Cell Pressure. In Advanced Triaxial Testing of Soil and Rock; ASTM International: West Conshohocken, PA, USA, 1988; pp. 290–310. [Google Scholar]
- Sture, S.; Costes, N.C.; Batiste, S.N.; Lankton, M.R.; AlShibli, K.A.; Jeremic, B.; Swanson, R.A.; Frank, M. Mechanics of granular materials at very low effective stresses. J. Aerosp. Eng. 1998, 11, 67–72. [Google Scholar] [CrossRef]
- Lade, P.V.; Bopp, P.A. Relative density effects on drained sand behavior at high pressures. Soils Found. 2005, 45, 1–13. [Google Scholar] [CrossRef]
- Heim, A. Bergsturz und Menschenleben; Fretz Wasmuth Verlag: Zurich, Switzerland, 1932; p. 227. [Google Scholar]
Test | Sand | Initial Composition d (mm) | σ′v,max (MPa) | e0 | ρmax (mm) | εa,max (×10−2) | εr,max (×10−5) | εr,max/εa,max (×10−3) | ν′ | K0(1) | K0(2) | K0(*) | a | b | m | β | ξ | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | C | 0.30 < d < 0.42 | 80 | 0.64 | 4.80 | 24 | 29.7 | 1.16 | 0.253 | 0.82 | 0.74 | 0.52 | 0.51 | 0.48 | 0.60 | 1.24 | 0.494 | 0.339 |
2 | C | 0.30 < d < 0.42 | 80 | 0.77 | 4.84 | 24.2 | 29.7 | 1.16 | 0.275 | 0.83 | 0.76 | 0.62 | 0.54 | 0.49 | 0.58 | 1.34 | 0.450 | 0.379 |
3 | C | 0.30 < d < 0.42 | 80 | 0.91 | 5.60 | 28 | 18.7 | 0.58 | 0.250 | 0.95 | 0.64 | 0.51 | 0.50 | 0.47 | 0.60 | 1.25 | 0.495 | 0.334 |
4 | C | 0.42 < d < 0.60 | 80 | 0.66 | 4.89 | 24.3 | 30.9 | 1.13 | 0.262 | 0.64 | 0.60 | 0.54 | 0.54 | 0.49 | 0.59 | 1.30 | 0.477 | 0.354 |
5 | C | 0.42 < d < 0.60 | 80 | 0.89 | 5.87 | 29.35 | 28.9 | 0.85 | 0.266 | 0.88 | 0.56 | 0.56 | 0.52 | 0.51 | 0.59 | 1.23 | 0.468 | 0.362 |
6 | C | 0.42 < d < 0.60 | 80 | 0.77 | 5.18 | 25.9 | 28.0 | 0.94 | 0.254 | 0.65 | 0.60 | 0.51 | 0.50 | 0.46 | 0.59 | 1.26 | 0.493 | 0.340 |
7 | C | 0.60 < d < 0.84 | 80 | 1.12 | 6.98 | 34.9 | 27.7 | 0.79 | 0.277 | 0.77 | 0.63 | 0.53 | 0.53 | 0.48 | 0.52 | 1.45 | 0.466 | 0.383 |
8 | C | 0.60 < d < 0.84 | 80 | 0.85 | 6.72 | 33.6 | 27.4 | 0.78 | 0.267 | 0.91 | 0.82 | 0.53 | 0.50 | 0.49 | 0.57 | 1.30 | 0.465 | 0.365 |
9 | C | 0.18 < d < 0.25 | 80 | 0.64 | 5.59 | 27.95 | 29.0 | 0.94 | 0.259 | 0.79 | 0.62 | 0.54 | 0.50 | 0.44 | 0.69 | 1.12 | 0.483 | 0.349 |
10 | C | 0.18 < d < 0.25 | 80 | 0.88 | 5.47 | 27.35 | 27.4 | 0.89 | 0.248 | 0.69 | 0.59 | 0.51 | 0.51 | 0.46 | 0.46 | 1.20 | 0.504 | 0.330 |
” | ” | ” | 80 | ” | 5.50 | 28.15 | 27.5 | 0.98 | 0.239 | / | / | 0.49 | 0.42 | 0.44 | 0.62 | 1.21 | 0.523 | 0.313 |
11 | C | 0.18 < d < 0.25 | 80 | 0.71 | 5.03 | 25.15 | 26.5 | 1.05 | 0.248 | 0.50 | 0.45 | 0.52 | 0.52 | 0.46 | 0.60 | 1.19 | 0.491 | 0.329 |
” | ” | ” | 100 | ” | 5.37 | 26.85 | 26.6 | 1.06 | 0.248 | / | / | 0.50 | 0.55 | 0.49 | 0.60 | 1.14 | 0.493 | 0.330 |
12 | C | 0.30 < d < 0.42 | 8.3 | 0.77 | 1.09 | 5.45 | 3.3 | 0.61 | 0.27 | 0.48 | 0.44 | 0.45 | 0.52 | 0.47 | 0.46 | 1.34 | 0.460 | 0.370 |
” | ” | ” | 20.1 | ” | 2.38 | 11.9 | 8.5 | 0.71 | 0.242 | / | / | 0.52 | 0.60 | 0.52 | 0.50 | 1.38 | 0.468 | 0.319 |
” | ” | ” | 80.3 | ” | 5.63 | 28.15 | 25.5 | 0.91 | 0.276 | / | / | 0.47 | 0.49 | 0.43 | 0.63 | 1.22 | 0.618 | 0.382 |
” | ” | ” | 100.4 | ” | 6.15 | 30.75 | 30.4 | 0.99 | 0.240 | / | / | 0.54 | 0.56 | 0.49 | 0.60 | 1.21 | 0.461 | 0.316 |
13 | Q | 0.42 < d < 0.60 | 83.2 | 0.77 | 5.00 | 25 | 27.6 | 1.11 | 0.254 | 0.68 | 0.40 | 0.54 | 0.53 | 0.54 | 0.53 | 1.43 | 0.517 | 0.341 |
” | ” | ” | 100.4 | ” | 5.56 | 27.8 | 30.3 | 1.09 | 0.245 | / | / | 0.51 | 0.54 | 0.48 | 0.52 | 1.43 | 0.511 | 0.324 |
14 | C | 0.075 < d < 0.106 | 80 | 0.71 | 4.51 | 22.55 | 23.9 | 1.06 | 0.332 | 0.46 | 0.46 | 0.51 | 0.46 | 0.44 | 0.59 | 1.06 | 0.44 | 0.389 |
” | ” | ” | ” | ” | 4.58 | 22.90 | 24.7 | 1.08 | 0.235 | / | / | 0.44 | 0.40 | 0.43 | 0.59 | 1.05 | 0.530 | 0.307 |
15 | Q | 0.30 < d < 0.42 | 80 | 0.71 | 5.38 | 26.9 | 29.8 | 1.11 | 0.289 | 0.59 | 0.40 | 0.57 | 0.55 | 0.55 | 0.48 | 1.46 | 0.427 | 0.402 |
” | ” | ” | ” | ” | 5.62 | 28.1 | 30.1 | 1.07 | 0.267 | / | / | 0.51 | 0.46 | 0.49 | 0.49 | 1.48 | 0.466 | 0.334 |
16 | Q | 0.42 < d < 0.60 | 80 | 0.66 | 4.94 | 24.7 | 27.1 | 1.10 | 0.282 | 0.80 | 0.60 | 0.58 | 0.55 | 0.55 | 0.54 | 1.25 | 0.436 | 0.393 |
” | ” | ” | ” | ” | 5.02 | 25.1 | 27.5 | 1.09 | 0.265 | / | / | 0.52 | 0.43 | 0.49 | 0.56 | 1.31 | 0.471 | 0.360 |
” | ” | ” | ” | ” | 5.18 | 25.9 | 28.3 | 1.09 | 0.251 | / | / | 0.50 | 0.41 | 0.47 | 0.57 | 1.31 | 0.500 | 0.333 |
17 | C | 0.30 < d < 0.42 | 40 | 0.77 | 3.71 | 18.55 | 16.3 | 0.88 | 0.262 | 0.83 | 0.61 | 0.54 | 0.50 | 0.50 | 0.57 | 1.13 | 0.470 | 0.355 |
” | ” | ” | ” | ” | 3.85 | 19.25 | 16.4 | 0.85 | 0.249 | ” | ” | 0.51 | 0.42 | 0.47 | 0.59 | 1.07 | 0.501 | 0.332 |
” | ” | ” | ” | ” | 3.93 | 19.65 | 16.5 | 0.84 | 0.241 | ” | ” | 0.50 | 0.39 | 0.47 | 0.58 | 1.07 | 0.517 | 0.318 |
18 | Q | 0.42 < d < 0.60 | 40 | 0.66 | 2.80 | 14 | 15 | 1.07 | 0.236 | 0.71 | 0.62 | 0.57 | 0.63 | 0.57 | 0.51 | 1.38 | 0.446 | 0.383 |
” | ” | ” | ” | ” | 3.02 | 15.1 | 15.5 | 1.03 | 0.233 | ” | ” | 0.52 | 0.45 | 0.52 | 0.53 | 1.32 | 0.489 | 0.343 |
” | ” | ” | ” | ” | 3.20 | 16 | 16.1 | 1.01 | 0.277 | ” | ” | 0.50 | 0.42 | 0.50 | 0.53 | 1.32 | 0.503 | 0.331 |
19 | C | 0.30 < d < 0.42 | 8.6 | 0.77 | 0.95 | 4.75 | 3.8 | 0.80 | 0.230 | 0.90 | 0.63 | 0.52 | 0.54 | 0.53 | 0.58 | 1.05 | 0.540 | 0.229 |
” | ” | ” | 20.1 | ” | 2.05 | 10.25 | 8.8 | 0.86 | 0.245 | ” | ” | 0.55 | 0.56 | 0.53 | 0.57 | 1.20 | 0.510 | 0.325 |
” | ” | ” | 80 | ” | 5.00 | 25 | 25.7 | 1.03 | 0.244 | ” | ” | 0.49 | 0.47 | 0.45 | 0.59 | 1.21 | 0.513 | 0.322 |
20 | C | 0.30 < d < 0.42 | 80 | 0.77 | 5.69 | 28.45 | 30 | 1.05 | 0.292 | 0.91 | 0.76 | 0.59 | 0.54 | 0.53 | 0.57 | 1.39 | 0.415 | 0.413 |
21 | C | 0.30 < d < 0.42 | 120 | 0.59 | 5.88 | 28.75 | 45 | 1.56 | 0.294 | 0.69 | 0.55 | 0.57 | 0.54 | 0.47 | 0.68 | 1.11 | 0.411 | 0.417 |
22 | C | 0.18 < d < 0.25 | 120 | 0.61 | 5.50 | 27.5 | 43 | 1.56 | 0.266 | 0.64 | 0.45 | 0.52 | 0.50 | 0.44 | 0.66 | 1.13 | 0.469 | 0.361 |
23 | C | Mix f (Figure 4) | 80 | 0.58 | 4.66 | 23.3 | 32 | 1.37 | 0.237 | 0.60 | 0.53 | 0.56 | 0.53 | 0.50 | 0.62 | 1.23 | 0.525 | 0.311 |
24 | C | Mix f (Figure 4) | 81 | 0.77 | 6.25 | 31.25 | 31 | 0.99 | 0.319 | 0.75 | 0.74 | 0.61 | 0.57 | 0.52 | 0.58 | 1.21 | 0.374 | 0.456 |
25 | C | Mix f (Figure 4) | 80 | 0.69 | 5.90 | 29.5 | 30 | 1.02 | 0.282 | 0.65 | 0.61 | 0.57 | 0.54 | 0.50 | 0.62 | 1.30 | 0.437 | 0.392 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ziccarelli, M. The Coefficient of Earth Pressure at Rest K0 of Sands up to Very High Stresses. Geosciences 2024, 14, 264. https://doi.org/10.3390/geosciences14100264
Ziccarelli M. The Coefficient of Earth Pressure at Rest K0 of Sands up to Very High Stresses. Geosciences. 2024; 14(10):264. https://doi.org/10.3390/geosciences14100264
Chicago/Turabian StyleZiccarelli, Maurizio. 2024. "The Coefficient of Earth Pressure at Rest K0 of Sands up to Very High Stresses" Geosciences 14, no. 10: 264. https://doi.org/10.3390/geosciences14100264
APA StyleZiccarelli, M. (2024). The Coefficient of Earth Pressure at Rest K0 of Sands up to Very High Stresses. Geosciences, 14(10), 264. https://doi.org/10.3390/geosciences14100264