Rugose Coral Biogeography of the Western Palaeotethys During the Mississippian
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sub-Provinces
2.2. Database
2.3. Taxonomic Units
2.4. Clusters
3. Results
3.1. Clusters
3.2. Maps
4. Discussion
4.1. Tournaisian
4.2. Early Visean
4.3. Late Visean
4.4. Serpukhovian
4.5. Final Considerations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Stampfli, G.M.; Von Raumer, J.; Borel, G. The Paleozoic evolution of pre-Variscan terranes.; from Gondwana to the Variscan collision. In Variscan–Appalachian Dynamics: The Building of the Late Paleozoic Basement; Martinez Catalan, J.R., Hatcher, R.D., Arenas, R., Diaz Garcia, F., Eds.; Geological Society of America: Boulder, CO, USA, 2002; Volume 364, pp. 263–280. [Google Scholar]
- Gutiérrez-Alonso, G.; Fernández-Suárez, J.; Weil, A.B.; Sussman, A.J. Orocline triggered lithospheric delamination. Orog. Curv. Integr. Paleomag. Struct. Anal. 2004, 383, 121–130. [Google Scholar]
- Torsvik, T.H.; Domeier, M.; Cocks, L.R.M. Phanerozoic paleogeography and Pangea. In Ancient Supercontinents and the Paleogeography of Earth; Elsevier: Amsterdam, The Netherlands, 2021; pp. 577–603. [Google Scholar]
- Tait, J.; Bachtadse, V.; Soffel, H. New palaeomagnetic constraints on the position of Bohemia during Early Ordovician times. Geophys. J. Int. 1994, 116, 131–140. [Google Scholar] [CrossRef]
- Torsvik, T.H.; Rehnström, E.F. Cambrian palaeomagnetic data from Baltica: Implications for true polar wander and Cambrian palaeogeography. J. Geol. Soc. 2001, 158, 321–329. [Google Scholar] [CrossRef]
- Pastor- Galan, D.; Martín-Merino Corrochano, D. Timing and structural evolution in the limb of an orocline: The Pisuerga-Carrion Unit (southern limb of the Cantabrian Orocline, NW Spain). Tectonophysics 2014, 622, 110–121. [Google Scholar] [CrossRef]
- Rau, A.; Tongiorgi, M. Some problems regarding the Paleozoic paleogeography in Mediterranean western Europe. J. Geol. 1981, 89, 663–673. [Google Scholar] [CrossRef]
- Walkden, G.M. Sedimentary and diagenetic styles of late Dinantian carbonates of Britain. In European Dinantian Environments; Miller, J., Adams, A.E., Wright, V.P., Eds.; Wiley: Chichester, UK, 1987; pp. 131–155. [Google Scholar]
- Golonka, J. Plate-tectonic maps of the Phanerozoic. SEPM Spec. Publ. 2012, 72, 21–75. [Google Scholar]
- Herbig, H.G. Carboniferous Paleogeography of the West-Mediterranean Paleotethys. In Proceedings of the XIe Congres International de Stratigraphie et de Geologie du Carbonifere, Beijing, China, 31 August–4 September 1987; Compte Rendu 4. pp. 186–196. [Google Scholar]
- Debrenne, F.; Maidanskaya, I.D.; Zhuravlev, A.Y. Faunal migrations of archaeocyaths and early Cambrian plate dynamics. Bull. Soc. Géol. Fr. 1999, 170, 189–194. [Google Scholar]
- Webb, G.E. Latest Devonian and Early Carboniferous reefs: Depressed reef building after the middle Paleozoic collapse. Phanerozoic Reef Patterns. SEPM Spec. Publ. 2002, 72, 239–269. [Google Scholar]
- Cao, W.; Zahirovic, S.; Flament, N.; Williams, S.; Golonka, J.; Müller, R.D. Improving global paleogeography since the late Paleozoic using paleobiology. Biogeoscienes 2017, 14, 5425–5439. [Google Scholar] [CrossRef]
- Davidov, V.I.; Cózar, P. The formation of the alleghenian Isthmus triggered the Bashkirian glaciation: Constraints from warm-water benthic foraminifera. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2019, 531, 108403. [Google Scholar] [CrossRef]
- Harper, D.A.T.; Mac Niocaill, C.; Williams, S.H. The palaeogeography of early Ordovician Iapetus terranes: An integration of faunal and palaeomagnetic constraints. Palaeogeogr. Palaeoclimatol. Palaeoecol. 1996, 121, 297–312. [Google Scholar] [CrossRef]
- Torsvik, T.H.; Cocks, L.R.M. Earth geography from 400 to 250 Ma: A palaeomagnetic, faunal and facies review. J. Geol. Soc. 2004, 161, 555–572. [Google Scholar] [CrossRef]
- Paproth, E. Paléogéographie de l’Europe au Carbonifère. Bull. Class. Sci. 2006, 17, 197–206. [Google Scholar] [CrossRef]
- Torsvik, T.H.; Carlos, D.; Mosar, M.; Cocks, L.R.M.; Malme, T. Global reconstructions and North Atlantic paleogeography 440 Ma to Recent. In BATLAS—Mid Norway Plate Reconstruction Atlas with Global and Atlantic Perspectives; Eide, E.A., Ed.; Geological Survey of Norway: Trondheim, Norway, 2002; pp. 18–39. [Google Scholar]
- Cocks, L.R.M.; Torsvik, T.H. European geography in a global context from the Vendian to the end of the Palaeozoic. In European Litosphere Dynamics; Gee, D.G., Stephenson, R.A., Eds.; Geological Society of London: London, UK, 2006; Volume 32, pp. 83–95. [Google Scholar]
- Scotese, C.R. An atlas of Phanerozoic paleogeographic maps: The seas come in and the seas go out. Annu. Rev. Earth Planet Sci. 2021, 49, 679–728. [Google Scholar] [CrossRef]
- Scotese, C.R. Tutorial: PALEOMAP Paleoatlas for GPlates and the PaleoData Plotter Program. Tutor, PALEOMAP Project. 2016. Available online: http://www.earthbyte.org/paleomap-paleoatlas-for-gplates/ (accessed on 2 August 2024).
- Domeier, M.; Torsvik, T.H. Plate Tectonics in the late Paleozoic. Geosci. Front. 2014, 5, 303–350. [Google Scholar] [CrossRef]
- Franke, W. The mid-European segment of the Variscides: Tectonostratigraphic units, terrane boundaries and plate tectonic evolution. J. Geol. Soc. 2000, 179, 35–61. [Google Scholar] [CrossRef]
- Blakey, R.C. Carboniferous-Permian paleogeography of the assembly of Pangea. In Proceedings of the XVth International Congress on Carboniferous and Permian Stratigraphy, Utrecht, The Netherlands, 10–16 August 2003; Wong, T.E., Ed.; Edita—The Publishing House of the Royal: Amsterdam, The Netherlands, 2003; pp. 443–456. [Google Scholar]
- Buggisch, W.; Joachimski, M.M.; Sevastopulo, G.; Morrow, J.R. Mississippian δ13Ccarb and conodont apatite δ18O records—Their relation to the Late Palaeozoic Glaciation. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2008, 268, 273–292. [Google Scholar] [CrossRef]
- Montañez, I.P.; Poulsen, C.J. The Late Paleozoic ice age: An evolving paradigm. Ann. Rev. Earth Planet. Sci. 2013, 41, 629–656. [Google Scholar] [CrossRef]
- Yao, L.; Aretz, M.; Wignall, P.B.; Chen, J.; Vachard, D.; Qi, Y.; Shen, S.; Wang, X. The longest delay: Re-emergence of coral reef ecosystems after the Late Devonian extinctions. Earth-Sci. Rev. 2020, 203, 103060. [Google Scholar] [CrossRef]
- Fielding, C.R.; Frank, T.D.; Isbell, J.L. The late Paleozoic ice age—A review of current understanding and synthesis of global climate patterns. Resolv. Late Paleoz. Ice Age Time Space 2008, 441, 343–354. [Google Scholar]
- Isbell, J.L.; Henry, L.C.; Gulbranson, E.L.; Limarino, C.O.; Fraiser, M.L.; Koch, Z.J.; Ciccioli, P.L.; Dineen, A.A. Glacial paradoxes during the late Paleozoic ice age: Evaluating the equilibrium line altitude as a control on glaciation. Gondwana Res. 2012, 22, 1–19. [Google Scholar] [CrossRef]
- Becker, R.T.; Königshof, P.; Brett, C.E. Devonian climate, sea level and evolutionary events: An introduction. Geol. Soc. Lond. Spec. Publ. 2016, 423, 1–10. [Google Scholar] [CrossRef]
- Fedorowski, J. Bashkirian Rugosa (Anthozoa) from the Donets Basin (Ukraine). Part 12. Concluding considerations. Acta Geol. Pol. 2022, 72, 247–316. [Google Scholar] [CrossRef]
- Rodríguez-Castro, I.; Rodríguez, S. Some facts on the evolution of rugose corals during the Mississippian. J. Iber. Geol. in press.
- Bambach, R.K. Late Palaeozoic provinciality in the marine realm. Geol. Soc. Lond. Mem. 1990, 12, 307–323. [Google Scholar] [CrossRef]
- Fedorowski, J. Distribution, migration routes, refugia and centers of origin of Rugosa (Anthozoa) during the late Viséan-Bashkirian and the Serpukhovian–Bashkirian (Carboniferous) mass extinction. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2023, 626, 111683. [Google Scholar] [CrossRef]
- Somerville, I.D.; Cózar, P.; Said, I.; Vachard, D.; Medina-Varea, P.; Rodríguez, S. Palaeobiogeographical constraints on the distribution of foraminifers and rugose corals in the Carboniferous Tindouf Basin, S. Morocco. J. Palaeogeogr. 2013, 2, 1–18. [Google Scholar] [CrossRef]
- Rodríguez-Castro, I.; Kabon, H.; Rodríguez, S. The palaeobiogeographic significance of the Nötsch area (Austria) during the Middle and Late Mississippian based on rugose corals. Geobios. in press.
- Poty, E. The “Avins event”: A remarkable worldwide spread of corals at the end of the Tournaisian (Lower Carboniferous) Verl. Osterr. Akad. Wissensch. 2007, 17, 231–250. [Google Scholar]
- Hill, D. Lower Carboniferous corals. In Atlas of Palaeobiogeograpgy; Elsevier: Amsterdam, The Netherlands, 1973; Volume 1, pp. 33–142. [Google Scholar]
- Fedorowski, J. Carboniferous corals: Distribution and sequence. Acta Palaeontol. Pol. 1981, 26, 87–160. [Google Scholar]
- Legrand-Blain, M.; Conrad, J.; Coquel, R.; Lejal-Nicol, A.; Lys, M.; Poncet, J.; Semenoff-Tian-Chansky, P. Carboniferous Paleobiogeography of North Africa. In Proceedings of the 11th International Congress Stratigraphy Geology Carboniferous, Beijing, China, 31 August–4 September 1987; 4; pp. 216–230. [Google Scholar]
- Denayer, J. Rugose corals at the Tournaisian–Viséan transition in the Central Taurides (S Turkey)—Palaeobiogeography and palaeoceanography of the Asian Gondwana margin. J. Asian Earth Sci. 2015, 98, 371–398. [Google Scholar] [CrossRef]
- Somerville, I.D. Biostratigraphic zonation and correlation of Mississippian rocks in Western Europe: Some case studies in the late Viséan/Serpukhovian. Geol. J. 2008, 43, 209–240. [Google Scholar] [CrossRef]
- Rodríguez-Castro, I.; Rodríguez, S. Palaeogeographic significance of rugose corals: El Guadiato Area (Southwestern Spain) as a case study. J. Iber. Geol. 2022, 48, 297–308. [Google Scholar] [CrossRef]
- Poty, E. The stratigraphy and paleobiogeography of Belgian Viséan corals. Acta Paleontol. Pol. 1980, 25, 587–595. [Google Scholar]
- Poty, E. A rugose coral biozonation for the Dinantian of Belgium as a basis for a coral biozonation of the Dinantian of Eurasia. In Proceedings of the International Congress on Carboniferous and Permian Stratigraphy, Madrid, Spain, 12–17 September 1985; pp. 29–31. [Google Scholar]
- Aretz, M. Palaeobiogeographical analysis for the late Viséan corals in the Variscan Realm of Western Europe and Northern Africa. In Proceedings of the 11th Symposium on Fossil Cnidaria and Porifera, Liège, Belgium, 19–29 August 2011; Aretz, M., Delculée, S., Denayer, J., Poty, E., Eds.; Kölner Forum für Geologie und Paläontologie. Institut für Geologie und Mineralogie, Universität zu Köln: Cologne, Germany, 2011; Volume 19, pp. 12–13. [Google Scholar]
- Rodríguez-Castro, I.; Rodríguez, S. The palaeogeography of the western Palaeotethys during the late Visean based on rugose corals. J. Palaeogeogr. submitted.
- Rodríguez-Castro, I.; Somerville, I.D.; Rodríguez, S. Origin and evolution of the genera Lonsdaleia and Actinocyathus: Insights for the Mississippian palaeogeography from the western Palaeotethys. J. Palaeogeogr. 2023, 12, 296–310. [Google Scholar] [CrossRef]
- Rodríguez, S.; Somerville, I.D.; Cózar, P.; Coronado, I.; Said, I. Inventory and analysis of distribution of Viséan corals from the Guadiato Area (Córdoba, SW Spain). Span. J. Palaeontol. 2016, 31, 181–220. [Google Scholar] [CrossRef]
- Said, I.; Somerville, I.D.; Rodríguez, S.; Cózar, P. Mississippian coral assemblages from the Khenifra area, Central Morocco: Biostratigraphy, biofacies, palaeoecology and palaeogeography. Gondwana Res. 2012, 23, 367–379. [Google Scholar] [CrossRef]
- Denayer, J.; Poty, E.; Aretz, M. Uppermost Devonian and Dinantian rugose corals from Southern Belgium and surrounding areas. In Field Guides, Proceedings of the 11th International Symposium on Fossil Cnidaria and Porifera, Liège, Belgium, 19–29 August 2011; Kölner Forum für Geologie und Paläontologie; Institut für Geologie und Mineralogie, Universität zu Köln: Cologne, Germany, 2011; Volume 20, pp. 151–201. [Google Scholar]
- Weyer, D. Korallen im Unterkarbon Deutschlands. Abh. Ber. Naturk. Vorgeschich. 2000, 23, 57–91. [Google Scholar]
- Kalvoda, J.; Bábek, O.; Fatka, O.; Leichmann, J.; Melichar, R.; Nehyba, S.; Spacek, P. Brunovistulian terrane (Bohemian Massif, Central Europe) from late Proterozoic to late Paleozoic: A review. Int. J. Earth Sci. 2008, 97, 497–518. [Google Scholar] [CrossRef]
- Kolosvary, G. The Permo-Carboniferous corals of Hungary. Földt. Közl. 1951, 81, 4–56. [Google Scholar]
- Kostic Podgorska, V. La faune des coreaux de calcaires á crinoides dans les environs de Praca (Bosnie). Zb. Rad. Geol. Inst. 1957, 9, 49–91. [Google Scholar]
- Kostic Podgorska, V. Fauna and biostratigraphic relations of the paleozoic formations in the vicinity of Praca. Geol. Glasn. 1958, 4, 1–220. [Google Scholar]
- Hill, D. A monograph on the Carboniferous rugose corals of Scotland 1938–1941, Pt. 1 (1–78). In Monographs of the Palaeontographical Society; The Palaeontographical Society: London, UK, 1938. [Google Scholar]
- Mitchell, M.; Strank, A.R.E.; Thornbury, B.M.; Sevastopulo, G.D. The distribution of platform conodonts, corals and foraminifera from the Black Rock Limestone (late Tournaisian and early Viséan) of Tears Point, Gower, South Wales. Proc. Yorks. Geol. Soc. 1986, 46, 11–14. [Google Scholar] [CrossRef]
- Mitchell, M. Biostratigraphy of Viséan (Dinantian) rugose coral faunas from Britain. Proc. Yorks. Geol. Soc. 1989, 47, 233–247. [Google Scholar] [CrossRef]
- Poty, E.; Hannay, D. Stratigraphy of rugose corals in the Dinantian of the Boulonnais (France). Mém. Inst. Géol. Univ. Cathol. Louvain 1994, 35, 51–82. [Google Scholar]
- Vuillemin, C. Les Tétracoralliaires (rugosa) du Carbonifère Inférieur du Massif Armoricain (France). Cah. Paléontol. 1990, 20, 1–171. [Google Scholar]
- Jones, G.L.; Somerville, I.D. Irish Dinantian biostratigraphy: Practical applications. Geo. Soc. Lond. Spec. Publ. 1996, 107, 371–385. [Google Scholar] [CrossRef]
- Somerville, I.D. Rugose coral faunas from Upper Visean (Asbian-Brigantian) buildups and adjacent platform limestones, Kingscourt, Ireland. Bol. R. Soc. Esp. Hist. Nat. Geol. 1997, 92, 35–47. [Google Scholar]
- Fedorowski, J. Upper Visean Tetracoralla from some borings in the Lublin Coal mesures (Poland). Acta Palaeontol. Pol. 1968, 13, 203–217. [Google Scholar]
- Fedorowski, J. Some Upper Viséan columnate tetracorals from the Holy Cross Mountains (Poland). Acta Palaeontol. Pol. 1970, 15, 549–613. [Google Scholar]
- Fedorowski, J. Aulophyllidae from the Upper Viséan of Sudetes and Holy Cross Mountains. Palaeontol. Pol. 1971, 24, 5–136. [Google Scholar]
- Fedorowski, J. Lower Carboniferous tetracoral fauna in Poland. Drevnie Cnidaria 1975, 2, 170–178. [Google Scholar]
- Khoa, N.D. Carboniferous rugosa and heterocorallia from boreholes in the Lublin region (Poland). Acta Palaeontol. Pol. 1977, 22, 301–404. [Google Scholar]
- Chwieduk, E. Late Devonian and early Carboniferous Rugosa from Western Pomerania, northern Poland. Acta Geol. Pol. 2005, 55, 393–443. [Google Scholar]
- Dobrolyubova, T.A. Lower Carboniferous tetracorals from the Russian Platform. Tr. Paleontolog. Inst. 1958, 70, 1–224. (In Russian) [Google Scholar]
- Vassiljuk, N. Nizhnekamennougol’nye koraly Donetskogo Basseina. Tr. Inst. Geolog. Nauk. Ser. Stratigr. Paleontol. 1960, 13, 1–179. [Google Scholar]
- Hecker, M. Evolution, ecology and variability of Actinocyathus d’Orbigny, 1849 (Rugosa) in the Moscow Basin during the latest Viséan and Serpukhovian. Bol. R. Soc. Esp. Hist. Nat. Geol. 1997, 92, 107–115. [Google Scholar]
- Hecker, M. Lower Carboniferous (Dinantian and Serpukhovian) rugose coral zonation of the East European Platform and Urals, and correlation with Western Europe. Bull. Tohoku Univ. Mus. 2002, 1, 298–310. [Google Scholar]
- Ohar, V. New Rugose corals and refinements of the Tournaisian biostratigraphy of the Donets Basin (Ukraine). Geol. Belg. 2016, 19, 21–28. [Google Scholar] [CrossRef]
- Ohar, V. 2020 Tournaisian (Carboniferous) rugose corals of the Donets Basin, Ukraine. Boll. Soc. Paleontol. Ital. 2020, 59, 205–224. [Google Scholar] [CrossRef]
- Ohar, V.; Denayer, J. Lower Viséan (Lower Carboniferous) rugose corals from the Donets Basin (Ukraine). Rev. Bras. Paleontol. 2021, 24, 281–310. [Google Scholar] [CrossRef]
- Berkhli, M.; Rodríguez, S.; Said, I. Preliminary data on the coral distribution in the Upper Visean (Mississippian) succession from Adarouch area (NE Central Marocco). In Proceedings of the 9th Internaltional Symposium on Fossil Cnidaria and Porifera, Graz, Austria, 3–7 August 2003; Hubmann, B., Piller, W., Eds.; Verlag der Österreichischen Akademie der Wissenschaften: Wien, Austria, 2007; pp. 353–364. [Google Scholar]
- Aretz, M. Rugose corals from the upper Viséan (Carboniferous) of the Jerada Massif (NE Morocco): Taxonomy, biostratigraphy, facies and palaeobiogeography. Palaeontol. Z. 2010, 84, 323–344. [Google Scholar] [CrossRef]
- Rodríguez, S.; Said, I.; Somerville, I.D.; Cózar, P.; Coronado, I. Description of the Serpukhovian rugose and tabulate corals from Idmarrach and tirhela Formations (Adarouch, Morocco). Bol. R. Soc. Esp. Hist. Nat. Sec. Geol. 2016, 109, 71–101. [Google Scholar]
- Rodríguez, S.; Somerville, I.D.; Cózar, P.; Sanz-López, J.; Coronado, I.; González, F.; Said, I.; El Houicha, M. A new early Viséan coral assemblage from Azrou-Khenifra Basin, Central Morocco and palaeobiogeographic implications. J. Palaeogeogr. 2020, 9, 1–20. [Google Scholar] [CrossRef]
- Semenoff-Tian-Chansky, P.; Ovtracht, A. Madreporaires du Carbonifère des Hautes-Corbières. Bull. Soc. Géol. Fr. 1965, 7, 722–732. [Google Scholar] [CrossRef]
- Perret, M.F.; Semenoff-Tian-Chansky, P. Coralliaires des calcaires carbonifères d’Ardengost (Hautes Pyrénées). Trav. Lab. Géol.-Pétrol. Fac. Sci. Toul. 1971, 107, 568–604. [Google Scholar]
- Rodríguez, S. Corales Rugosos del Carbonífero del Este de Asturias. Ph.D. Thesis, Complutense University of Madrid, Madrid, Spain, 1984. Volume 109; pp. 1–528. [Google Scholar]
- Herbig, H.G. Rugosa and Heterocorallia aus Obervisé-Geröllen der Marbella-Formation (Betische Kordillere, Südspanien). Paläontolog. Z. 1986, 60, 189–225. [Google Scholar] [CrossRef]
- Aretz, M.; Herbig, H.G. Contribution of rugose corals to late Visean and Serpukhovian bioconstructions in the Montagne Noire (Southern France). In Permo-Carboniferous Carbonate Platforms and reefs: SEPM Special Publication No. 78; AAPG Memoir 83; EPM Society for Sedimentary Geology; The American Association of Petroleum Geologists (AAPG): Tulsa, OK, USA, 2003; pp. 119–132. [Google Scholar]
- Semenoff-Tian-Chansky, P. Recherches sur les Tétracoralliaires du Carbonifére du Sahara Occidental; Serie 6; Science de la Terre; Editions du Centre Nationale de la Recherche Scientifique: Paris, France, 1974; Volume 30, pp. 1–316. [Google Scholar]
- Semenoff-Tian-Chansky, P. Corals. The Carboniferous of the World, II, Australia, Indian subcontinent, South Africa, South America and North Africa; Wagner, R.H., Winkler-Prins, C.F., Granados, L.F., Eds.; IUGS Publications: Paris, France, 1985; Volume 20, pp. 374–381. [Google Scholar]
- Aretz, M. Corals from the Carboniferous of the central Sahara (Algeria): The collection “Marie Legrand-Blain”. Geodiversitas 2011, 33, 581–624. [Google Scholar] [CrossRef]
- Rodríguez, S.; Somerville, I.D.; Said, I.; Cózar, P. An upper Viséan (Asbian-Brigantian) and Serpukhovian coral succession at Djebel Ouarkziz (Northern Tindouf Basin, Southern Morocco). Riv. Ital. Paleontol. Stratigr. 2013, 119, 3–17. [Google Scholar]
- Hammer, O.; Harper, D.A.T.; Ryan, P.D. PAST: Paleontological statistics software package for education and data analysis. Palaeontol. Electron. 2001, 4, 1–9. [Google Scholar]
- Hammer, O.; Harper, D.A.T. Paleontological Data Analysis. Blackwell Publishing: London, UK, 2006; pp. 1–388. [Google Scholar]
- Baselga, A. Partitioning the turnover and nestedness components of beta diversity. Glob. Ecol. Biogeogr. 2010, 19, 134–143. [Google Scholar] [CrossRef]
- Ramsbottom, W.H.C. Transgressions and regressions in the Dinantian: A new synthesis of British Dinantian stratigraphy. Proc. Yorks. Geol. Soc. 1973, 39, 567–607. [Google Scholar] [CrossRef]
- Ross, C.A.; Ross, J.R. Late Paleozoic depositional sequences are synchronous and worldwide. Geology 1985, 13, 194–197. [Google Scholar] [CrossRef]
- Herbig, H.G.; Lobova, D.; Seekamp, V. Sea-level history during the birth of a foreland basin: The Famennian–Visean of “Velbert 4”, Westernmost Rhenish Massif, Germany. In Proceedings of the STRATI 2013: First International Congress on Stratigraphy at the Cutting Edge of Stratigraphy, Lisbon, Portugal, 1–7 July 2013; Springer International Publishing: Cham, Switzerland, 2014; pp. 397–402. [Google Scholar]
- Fernández, R.D.; Arenas, R.; Pereira, M.F.; Sánchez-Martínez, S.; Albert, R.; Parra, L.M.M.; Rubio-Pascual, F.J.; Matas, J. Tectonic evolution of Variscan Iberia: Gondwana–Laurussia collision revisited. Earth-Sci. Rev. 2016, 162, 269–292. [Google Scholar] [CrossRef]
- Franke, W. Topography of the Variscan orogen in Europe: Failed–not collapsed. Inter. J. Earth Sci. 2014, 103, 1471–1499. [Google Scholar] [CrossRef]
- Aretz, M. Habitats of colonial rugose coral: The Mississippian of western Europe as example for a general classification. Lethaia 2010, 43, 558–572. [Google Scholar] [CrossRef]
- Kullman, J. Rugose corals in non-reef environments—The case of the “Cyathaxonia fauna”. Bol. R. Soc. Esp. Hist. Nat. Secc. Geol. 1997, 92, 187–195. [Google Scholar]
- Somerville, I.D.; Rodríguez, S. Rugose coral associations from the late Visean (Carboniferous) of Ireland, Britain and SW Spain. In Fossil Corals and Sponges, Proceedings of the 9th International Symposium on Fossil Cnidaria and Porifera, Graz, Austria, 2003; Hubmann, B., Piller, W.E., Eds.; Verlag der Österreichischen Akademie der Wissenschaften: Wien, Austria, 2007; Volume 17, pp. 329–351. [Google Scholar]
- Gabaldón, V.; Garrote, A.; Quesada, C. El Carbonifero inferior del norte de la zona de Ossa Morena, SW de España. In Proceedings of the Congrès International de Stratigraphie et de Géologie du Carbonifère, Madrid, Spain, 12–17 September 1985; Volume 10, pp. 173–185. [Google Scholar]
- Cózar, P.; Vachard, D.; Izart, A.; Said, I.; Somerville, I.D.; Rodríguez, S.; Coronado, I.; El Houicha, M.; Ouarhache, D. Lower-middle Viséan transgressive carbonates in Morocco: Palaeobiogeographic insights. J. Afr. Earth Sci. 2020, 168, 103850. [Google Scholar] [CrossRef]
- Rodríguez, S.; Sando, W.J.; Kullmann, J. Utility of corals for Biostratigraphic and Zoogeographic analyses of the Carboniferous in the Cantabrian Mountains, Northern Spain. Trab. Geol. Univ. Oviedo 1986, 16, 37–60. [Google Scholar]
- Somerville, I.D.; Mitchell, M.; Strank, A.R.E. An Arundian fauna from 1192 the Dyserth area, North Wales and its correlation within the British Isles. Proc. Yorks. Geol. Soc. 1986, 46, 57–75. [Google Scholar] [CrossRef]
- Cózar, P.; Vachard, D.; Somerville, I.D.; Medina-Varea, P.; Rodríguez, S.; Said, I. The Tindouf Basin, a marine refuge during the Serpukhovian (Carboniferous) mass extinction in the northwestern Gondwana platform. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2014, 394, 12–28. [Google Scholar] [CrossRef]
Institution | Checked by |
---|---|
British Natural History Museum, London | IRGC |
British Geological Survey, Keyworth | IRGC |
Institute of Geology, Adam Mickiewicz University, Poznan | IRGC |
Institute for Earth Sciences at the Karl-Franzens-Universität, Graz | SRG |
Vserossiskiy Nauchno-issledovatelskiy Geological Institut, S. Petersburg | SRG |
Museum National d’Histoire Naturelle, Paris | SRG |
Geol.-Palaont. Institut, Eberhard Karls Universität, Tübingen | SRG |
Museum für Naturkunde, Berlin | SRG |
Leiden University, Leiden | SRG |
Geomuseum der Universität Münster, Münster | SRG |
Division of the Geologic Patrimony, Rabat | SRG |
Área de Paleontología, Universidad Complutense, Madrid | IRGC, SRG |
Genera | Atlantic | C. Europe | E. Europe | Sahara |
---|---|---|---|---|
Allotropiophyllum | x | |||
Amplexizaphrentis | x | |||
Amplexocarinia | x | x | ||
Amplexus | x | x | x | |
Amygdalophyllum | x | x | ||
Arctophyllum | x | |||
Aulina | x | |||
Aulokoninckophyllum | x | x | ||
Axophyllum | x | |||
Batybalva | x | |||
Bifossularia | x | x | ||
Calmiussiphyllum | x | x | ||
Campophyllum | x | x | x | |
Caninophyllum | x | x | x | |
Caninia | x | x | x | x |
Carruthersella | x | x | ||
Claviphyllum | x | |||
Clisiophyllum | x | x | ||
Commutia | x | |||
Conilophyllum | x | x | x | |
Corphalia | x | |||
Corwenia | x | |||
Cravenia | x | |||
Cryptophyllum | x | |||
Cyathaxonia | x | x | ||
Cyathyoclisia | x | x | x | |
Delepinella | x | |||
Dorlodotia | x | x | ||
Drewerelasma | x | x | ||
Eostrotion | x | x | ||
Fasciculophyllum | x | |||
Hapsiphyllum | x | x | ||
Hebukophyllum | x | |||
Heterostrotion | x | |||
Howthia | x | |||
Kabakovitchiella | x | |||
Keyserlingophyllum | x | x | x | |
Kizilia | x | |||
Koninckophyllum | x | |||
Laccophyllum | x | |||
Lophophyllidium | x | x | ||
Lophophyllum | x | x | ||
Lublinophyllum | x | |||
Melanophyllum | x | |||
Merlewoodia | x | x | ||
Nominoephyllum | x | |||
Palaeosmilia | x | x | ||
Pentaphyllum | x | x | ||
Proheterolasma | x | x | ||
Rhopalolasma | x | x | ||
Rotiphyllum | x | x | x | |
Rylstonia | x | x | x | |
Saleelasma | x | x | ||
Semenoffia | x | |||
Siphonophyllia | x | x | x | x |
Sochkineophyllum | x | |||
Solenodendron | x | x | ||
Sychnoelasma | x | x | x | x |
Syringaxon | x | x | ||
Thuriantha | x | |||
Ufimia | x | x | ||
Uralinia | x | x | ||
Zaphrentites | x | x | x | |
Zaphriphyllum | x |
Genera | Atlantic | C. Europe | E. Europe | W. Peri-G. | Sahara |
---|---|---|---|---|---|
Allotropiophyllum | x | ||||
Amplexizaphrentis | x | ||||
Amplexocarinia | x | ||||
Amplexus | x | x | x | ||
Amygdalophyllum | x | x | x | x | |
Aulina | x | ||||
Auloclisia | x | x | x | ||
Aulokoninckophyllum | x | x | x | ||
Axoclisia | x | x | x | x | |
Axophyllum | x | x | x | x | |
Bifossularia | x | x | x | x | |
Bradyphyllum | x | ||||
Calmiussiphyllum | x | ||||
Calophyllum | x | ||||
Campophyllum | x | x | x | ||
Caninia | x | x | x | x | |
Caninophyllum | x | x | |||
Carruthersella | x | x | |||
Clinophyllum | x | ||||
Clisiophyllum | x | x | x | ||
Corphalia | x | ||||
Cravenia | x | x | x | ||
Cyathaxonia | x | x | x | x | |
Cyathoclisia | x | x | x | x | |
Dibunophyllum | x | x | |||
Diphyphyllum | x | x | |||
Dorlodotia | x | x | x | ||
Drewerelasma | x | ||||
Eolithiostrotionella | x | ||||
Fasciculophyllum | x | ||||
Haplolasma | x | x | x | ||
Hettonia | x | ||||
Koninckophyllum | x | x | x | x | |
Laccophyllum | x | ||||
Lithostrotion | x | x | x | ||
Merlewoodia | x | x | |||
Palaeosmilia | x | x | x | x | |
Pentaphyllum | x | x | x | ||
Proheterolasma | x | ||||
Pseudouralinia | x | ||||
Richrathina | x | ||||
Rotiphyllum | x | x | |||
Rylstonia | x | x | x | ||
Siphonodendron | x | x | x | x | |
Siphonophyllia | x | x | x | x | x |
Solenodendron | x | x | x | ||
Spirophyllum | x | ||||
Sychnoelasma | x | x | x | x | x |
Syringaxon | x | ||||
Ufimia | x | ||||
Uralinia | x | x | |||
Vassiljukia | x | ||||
Verneuilites | x | ||||
Zaphriphyllum | x | ||||
Zaphrentites | x | x | x | x | |
Zaphrentoides | x | x |
Genera | Atlantic | C. Europe | E. Europe | W. Peri-G. | Saharan | Mediterranean |
---|---|---|---|---|---|---|
Actinocyathus | x | x | x | x | ||
Allotropiophyllum. | x | x | x | |||
Amplexizaphrentis | x | x | x | x | x | x |
Amplexocarinia | x | x | x | x | x | |
Amplexus | x | x | x | x | x | |
Amygdalophyllum | x | x | x | x | x | |
Arachnolasma | x | x | x | x | x | x |
Auloclisia | x | x | x | x | x | |
Aulokoninckophyllum | x | x | x | x | x | |
Aulophyllum | x | x | x | x | x | |
Axoclisia | x | x | x | x | x | |
Axophyllum | x | x | x | x | x | x |
Bifossularia | x | x | x | x | ||
Biphyllum | x | |||||
Bothrophyllum | x | x | x | x | ||
Bradyphyllum | x | x | x | x | ||
Calophyllum | x | |||||
Campophyllum | x | |||||
Caninia | x | x | x | x | x | |
Caninophyllum | x | x | x | x | ||
Carruthersella | x | x | x | |||
Ceriodotia | ||||||
Claviphyllum | x | x | x | x | ||
Clisiophyllum | x | x | x | x | x | x |
Corwenia | x | x | x | |||
Cravenia | x | x | ||||
Cryptophyllum | x | x | ||||
Cyathaxonia | x | x | x | x | x | |
Dibunophyllum | x | x | x | x | x | x |
Diphyphyllum | x | x | x | x | x | x |
Enniskillenia | x | x | x | |||
Espielia | x | x | ||||
Gangamophyllum | x | x | x | x | x | x |
Guadiatia | x | |||||
Haplolasma | x | x | x | x | x | x |
Kizilia | x | x | x | x | x | x |
Koninckinaotum | x | x | ||||
Koninckophyllum | x | x | x | x | x | x |
“Koninckophyllum” (colonial) | x | x | ||||
Lithostrotion | x | x | x | x | x | x |
Lonsdaleia | x | x | x | x | x | |
Lophophyllidium | x | |||||
Lublinophyllum | x | x | ||||
Melanophyllidium | x | |||||
Merlewoodia | x | |||||
Mirka | x | |||||
Morenaphyllum | x | |||||
Neoclisiophyllum | x | x | x | |||
Neokoninckophyllum | x | x | ||||
Nemistium | x | x | x | x | x | |
Nervophyllum | x | x | ||||
Orionastraea | x | x | x | |||
Palaeosmilia | x | x | x | x | x | x |
Palastraea | x | x | x | x | x | |
Pareynia | x | x | x | x | ||
Pentaphyllum | x | x | x | |||
Pseudocaninia | x | |||||
Pseudoclaviphyllum | x | |||||
Pseudozaphrentoides’ | x | x | x | x | x | x |
Rotiphyllum | x | x | x | x | ||
Rozkowskia | x | |||||
Rylstonia | x | x | x | x | x | |
Saharaphrentis | x | |||||
Semenoffia | x | x | ||||
Siphonodendron | x | x | x | x | x | x |
Siphonophyllia | x | x | x | x | x | x |
Slimoniphyllum | x | x | ||||
Solenodendron | x | x | x | x | x | x |
Spirophyllum | x | x | x | x | ||
Tachylasma | x | x | ||||
Tchernowiphyllum | x | |||||
Thysanophyllum | x | x | ||||
Tizraia | x | x | x | |||
Turbinatocaninia | x | x | x | |||
Ufimia | x | x | x | x | ||
Viseaulina | x | |||||
Zakowia | x | |||||
Zaphrentites | x | x | x | x | x | x |
Zaphrufimia | x |
Genera | Atlantic | C. Europe | E. Europe | W. Peri-G. | Saharan | Mediterranean |
---|---|---|---|---|---|---|
Actinocyathus | x | x | x | x | ||
Adamanophyllum | x | |||||
Amplexizaphrentis | x | x | ||||
Amplexocarinia | x | x | ||||
Amplexus | x | x | x | |||
Amygdalophyllum | x | x | ||||
Antiphyllites | x | |||||
Antiphyllum | x | |||||
Arachnolasma | x | x | x | x | ||
Aulina | x | x | x | x | ||
Auloclisia | x | x | ||||
Aulokoninckophyllum | x | x | x | x | ||
Aulophyllum | x | x | x | x | ||
Axophyllum | x | x | x | x | x | x |
Barytichisma | x | |||||
Bothrophyllum | x | x | x | |||
Caninia | x | x | x | x | ||
Caninophyllum | x | x | ||||
Caninostrotion | x | |||||
Carruthersella | x | |||||
Claviphyllum | x | x | ||||
Clisiophyllum | x | x | x | x | x | x |
Corwenia | x | x | ||||
Cyathaxonia | x | x | x | x | ||
Diaschophyllum | x | |||||
Dibunophyllum | x | x | x | x | x | x |
Diphyphyllum | x | x | x | x | x | x |
Effigies | x | |||||
Eostrotion | x | |||||
Fasciculophyllum | x | |||||
Gangamophyllum | x | x | x | x | ||
Guadiatia | x | |||||
Haplolasma | x | x | x | |||
Hapsiphyllum | x | |||||
Kazachiphyllum | x | |||||
Kizilia | x | x | x | x | ||
Koninckophyllum | x | x | x | x | x | |
Lithostrotion | x | x | x | x | x | x |
Lonsdaleia | x | x | x | x | ||
Lophophyllidium | x | |||||
Lublinophyllum | x | x | ||||
Lytvophyllum | x | |||||
Melanophyllidium | x | |||||
Mirka | x | |||||
Morenaphyllum | x | |||||
Neokoninckophyllum | x | x | ||||
Nemistium | x | x | ||||
Nervophyllum | x | x | ||||
Nina | x | |||||
Ostravaia | x | |||||
Palaeosmilia | x | x | x | x | x | x |
Palastraea | x | x | x | x | ||
Pareynia | x | x | ||||
Plerophyllum | x | |||||
Pseudoaulina | x | x | ||||
Pseudozaphrentoides’ | x | x | x | x | ||
Rotiphyllum | x | x | x | |||
Rylstonia | x | |||||
Schoenophyllum | x | |||||
Serraphyllum | x | |||||
Silesamplus | x | |||||
Siphonodendron | x | x | x | x | x | x |
Siphonophyllia | x | x | x | x | x | |
Slimoniphyllum | x | x | ||||
Solenodendron | x | |||||
Spirophyllum | x | |||||
Tachylasma | x | x | ||||
Thysanophyllum | x | |||||
Tizraia | x | x | ||||
Turbinatocaninia | x | x | x | |||
Ufimia | x | x | x | |||
Variaxon | x | |||||
Vojnimitor | x | |||||
Vojnovskytes | x | |||||
Zakowia | x | |||||
Zaphrentites | x | x | x | x | x | |
Zaphriphyllum | x | |||||
Zaphrufimia | x | x | x |
Tournaisian | ||||||
---|---|---|---|---|---|---|
DICE | Atlantic | C. Europe | E. Europe | Sahara | ||
Atlantic | 1 | 0.548 | 0.394 | 0.182 | ||
C. Europe | 0.548 | 1 | 0.32 | 0.154 | ||
E. Europe | 0.394 | 0.32 | 1 | 0.476 | ||
Sahara | 0.182 | 0.154 | 0.476 | 1 | ||
SIMPSON | Atlantic | C. Europe | E. Europe | Sahara | ||
Atlantic | 1 | 0.676 | 0.813 | 1 | ||
C. Europe | 0.676 | 1 | 0.5 | 0.6 | ||
E. Europe | 0.813 | 0.5 | 1 | 1 | ||
Sahara | 1 | 0.6 | 1 | 1 | ||
Early Visean | ||||||
DICE | Atlantic | C. Europe | E. Europe | West Peri-G. | Sahara | |
Atlantic | 1 | 0.476 | 0.426 | 0.278 | 0.372 | |
C. Europe | 0.476 | 1 | 0.417 | 0.162 | 0.409 | |
E. Europe | 0.426 | 0.417 | 1 | 0.190 | 0.357 | |
West Peri-G. | 0.278 | 0.162 | 0.190 | 1 | 0.235 | |
Sahara | 0.372 | 0.409 | 0.357 | 0.235 | 1 | |
SIMPSON | Atlantic | C. Europe | E. Europe | West Peri-G. | Sahara | |
Atlantic | 1 | 0.484 | 0.625 | 1 | 0.667 | |
C. Europe | 0.484 | 1 | 0.625 | 0.6 | 0.75 | |
E. Europe | 0.625 | 0.625 | 1 | 0.4 | 0.417 | |
West Peri-G. | 1 | 0.6 | 0.4 | 1 | 0.4 | |
Sahara | 0.667 | 0.75 | 0.417 | 0.4 | 1 | |
Late Visean | ||||||
DICE | Atlantic | C. Europe | E. Europe | West Peri-G. | Sahara | Mediterran. |
Atlantic | 1 | 0.789 | 0.773 | 0.846 | 0.622 | 0.561 |
C. Europe | 0.789 | 1 | 0.792 | 0.712 | 0.578 | 0.512 |
E. Europe | 0.774 | 0.792 | 1 | 0.792 | 0.683 | 0.514 |
West Peri-G. | 0.846 | 0.712 | 0.792 | 1 | 0.7 | 0.583 |
Sahara | 0.622 | 0.578 | 0.683 | 0.7 | 1 | 0.552 |
Mediterranean | 0.561 | 0.512 | 0.514 | 0.583 | 0.552 | 1 |
SIMPSON | Atlantic | C. Europe | E. Europe | West Peri-G. | Sahara | Mediterran. |
Atlantic | 1 | 0.789 | 0.837 | 0.936 | 0.848 | 0.92 |
C. Europe | 0.789 | 1 | 0.857 | 0.787 | 0.788 | 0.84 |
E. Europe | 0.837 | 0.857 | 1 | 0.809 | 0.848 | 0.76 |
West Peri-G. | 0.936 | 0.787 | 0.809 | 1 | 0.848 | 0.84 |
Sahara | 0.848 | 0.788 | 0.848 | 0.848 | 1 | 0.64 |
Mediterranean | 0.92 | 0.84 | 0.76 | 0.84 | 0.64 | 1 |
Serpukovian | ||||||
DICE | Atlantic | C. Europe | E. Europe | West Peri-G. | Sahara | Mediterran. |
Atlantic | 1 | 0.436 | 0.508 | 0.478 | 0.490 | 0.533 |
C. Europe | 0.436 | 1 | 0.585 | 0.462 | 0.441 | 0.438 |
E. Europe | 0.508 | 0.585 | 1 | 0.466 | 0.474 | 0.417 |
West Peri-G. | 0.478 | 0.462 | 0.466 | 1 | 0.610 | 0.509 |
Sahara | 0.490 | 0.441 | 0.474 | 0.610 | 1 | 0.655 |
Mediterranean | 0.533 | 0.438 | 0.417 | 0.509 | 0.655 | 1 |
SIMPSON | Atlantic | C. Europe | E. Europe | West Peri-G. | Sahara | Mediterran. |
Atlantic | 1 | 0.667 | 0.889 | 0.611 | 0.667 | 0.667 |
C. Europe | 0.667 | 1 | 0.649 | 0.536 | 0.484 | 0.533 |
E. Europe | 0.889 | 0.649 | 1 | 0.607 | 0.581 | 0.533 |
West Peri-G. | 0.611 | 0.536 | 0.607 | 1 | 0.643 | 0.607 |
Sahara | 0.667 | 0.484 | 0.581 | 0.643 | 1 | 0.633 |
Mediterranean | 0.667 | 0.533 | 0.533 | 0.607 | 0.633 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodríguez-Castro, I.; Rodríguez, S. Rugose Coral Biogeography of the Western Palaeotethys During the Mississippian. Geosciences 2024, 14, 282. https://doi.org/10.3390/geosciences14110282
Rodríguez-Castro I, Rodríguez S. Rugose Coral Biogeography of the Western Palaeotethys During the Mississippian. Geosciences. 2024; 14(11):282. https://doi.org/10.3390/geosciences14110282
Chicago/Turabian StyleRodríguez-Castro, Isabel, and Sergio Rodríguez. 2024. "Rugose Coral Biogeography of the Western Palaeotethys During the Mississippian" Geosciences 14, no. 11: 282. https://doi.org/10.3390/geosciences14110282
APA StyleRodríguez-Castro, I., & Rodríguez, S. (2024). Rugose Coral Biogeography of the Western Palaeotethys During the Mississippian. Geosciences, 14(11), 282. https://doi.org/10.3390/geosciences14110282