Geological and Geomorphological Characterization of the Anthropogenic Landslide of Pie de la Cuesta in the Vitor Valley, Arequipa, Peru
Abstract
:1. Introduction
1.1. The Vitor Valley
1.2. Geology of the Vitor Valley
1.3. Landslides in the Vitor Valley
2. Methods
2.1. Historical Aerial Photos
2.2. Satellite Imagery
2.3. Field Mapping
2.4. Geophysical Survey Information
3. Results
3.1. Stratigraphy
3.1.1. Lower Moquegua Information (Sotillo)
3.1.2. Upper Moquegua Formation
3.1.3. Millo Formation
3.1.4. Quaternary Deposits/Eolian Deposits/Farming and Irrigation
3.2. Geomorphology/Structures
3.3. Groundwater
4. Deformation History and Interpretation of Structures
5. Discussion
6. Conclusions
- The Pie de la Cuesta landslide was first identified in 1975, following an earthquake, and underwent a significant acceleration episode in 2016.
- Currently, the landslide covers approximately 61.5 hectares. The advance of the earth flows has buried approximately 22.7 ha of the valley floor, burying agricultural fields and infrastructure.
- The Pie de la Cuesta landslide is triggered by the presence of groundwater levels due to infiltrated water originating from La Joya Antigua irrigation system.
- The poor cementation of the conglomerates of the Millo and Upper Moquegua formations are key conditioning factors in the landslide failure and movement.
- The landslide is characterized by three deformation domains: an extensional domain defined by a horst–graben structure near the top of the valley slope; a translational domain defined by toppling, normal faulting and earth flows; and a compressional domain defined by lobed thrust fault ridges overtopping the valley bottom.
- It is a complex landslide as it exhibits different types of movements, including falls, topples, translational slides and earth flows.
- From the collected hydrogeological information, two main levels of infiltration water discharge are distinguished. The first occurs on the main scarp in the conglomerates of the Upper Moquegua Formation, approximately near the contact between the Millo and Moquegua Formations. The second level is at the contact between the Upper and Lower Moquegua Formations. It is noteworthy that mapped emergence points at different levels than those mentioned before lead to the conclusion that water also infiltrates through the sliding plane, thereby accelerating its progression. Due to the development of groundwater levels, the slope of the valley is 25 to 30 degrees, influenced by geological conditions such as the poor cementation and permeability of the formations on the upper part of the slope.
- The main failure plain develops at the contact between the Upper Moquegua Formation (conglomerates) and the Lower Moquegua Formation where the low-permeability mudstones of the Lower Moquegua Formation identify the main failure and sliding plane.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hungr, O.; Leroueil, S.; Picarelli, L. The Varnes classification of landslide types, an update. Landslides 2014, 11, 167–194. [Google Scholar] [CrossRef]
- Gaidzik, K.; Żaba, J.; Ciesielczuk, J. Tectonic control on slow-moving Andean landslides in the Colca Valley, Peru. J. Mt. Sci. 2020, 17, 1807–1825. [Google Scholar] [CrossRef]
- Segoni, S.; Barbadori, F.; Gatto, A.; Casagli, N. Application of Empirical Approaches for Fast Landslide Hazard Management: The Case Study of Theilly (Italy). Water 2022, 14, 3485. [Google Scholar] [CrossRef]
- Peternel, T.; Janža, M.; Šegina, E.; Bezak, N.; Maček, M. Recognition of Landslide Triggering Mechanisms and Dynamics Using GNSS, UAV Photogrammetry and In Situ Monitoring Data. Remote Sens. 2022, 14, 3277. [Google Scholar] [CrossRef]
- Huayllazo, Y.; Infa, R.; Soto, J.; Lazarte, K.; Huanca, J.; Alvarez, Y.; Teixidó, T. Using Electrical Resistivity Tomography Method to Determine the Inner 3D Geometry and the Main Runoff Directions of the Large Active Landslide of Pie de Cuesta in the Vítor Valley (Peru). Geosciences 2023, 13, 342. [Google Scholar] [CrossRef]
- Alvan, A.; Eynatten, H.V. Sedimentary facies and stratigraphic architecture in coarse-grained deltas: Anatomy of the Cenozoic Camaná Formation, southern Peru (16°25′ S to 17°15′ S). J. South Am. Earth Sci. 2014, 54, 82–108. [Google Scholar] [CrossRef]
- Alvan, A.; Criales, A.; Eynatten, H.V.; Dunkl, I.; Gerdes, A.; Jacay, J. Seismic-stratigraphic architecture of the Oligocene-Pliocene Camaná Formation, southern Peruvian forearc (Province of Arequipa). Andean Geol. 2017, 44, 17–38. [Google Scholar] [CrossRef]
- Decou, A.; Von Eynatten, H.; Mamani, M.; Sempere, T.; Wörner, G. Cenozoic forearc basin sediments in Southern Peru (15–18 S): Stratigraphic and heavy mineral constraints for Eocene to Miocene evolution of the Central Andes. Sediment. Geol. 2011, 237, 55–72. [Google Scholar] [CrossRef]
- Garcia-Chevesich, P.; Wei, X.; Ticona, J.; Martínez, G.; Zea, J.; García, V.; Alejo, F.; Zhang, Y.; Flamme, H.; Graber, A.; et al. The Impact of Agricultural Irrigation on Landslide Triggering: A Review from Chinese, English, and Spanish Literature. Water 2021, 13, 10. [Google Scholar] [CrossRef]
- Araujo, G.; Valderrama, P.; Taipe, E.; Miranda, R. Dinámica y Monitoreo del Deslizamiento de Siguas. Región Arequipa, Provincia Caylloma y Arequipa, Distrito Majes y San Juan de Siguas; Technical, Report; N°, A6748; Región Arequipa, Provincia Arequipa; Instituto Geológico, Minero y Metalúrgico: Arequipa, Perú, 2017; Available online: https://repositorio.ingemmet.gob.pe/handle/20.500.12544/791 (accessed on 10 May 2024).
- Schuster, R.L. Socioeconomic and environmental impacts of landslide. In Landslides Investigation and Mitigation, 1st ed.; Turner, A.K., Schuster, R.L., Eds.; Transportation Research Board: Washington, DC, USA; Citeseer: Princeton, NJ, USA, 1996; Volume 247, pp. 12–35. [Google Scholar]
- Froude, M.J.; Petley, D.N. Global fatal landslide occurrence from 2004 to 2016. Nat. Hazards Earth Syst. Sci. 2018, 18, 2161–2181. [Google Scholar] [CrossRef]
- Butcher, B.; Walton, G.; Kromer, R.; Gonzales, E.; Ticona, J.; Minaya, A. High-Temporal-Resolution Rock Slope Monitoring Us-ing Terrestrial Structure-from-Motion Photogrammetry in an Application with Spatial Resolution Limitations. Remote Sens. 2024, 16, 66. [Google Scholar] [CrossRef]
- Hou, X.; Vanapalli, S.K.; Li, T. Water infiltration characteristics in loess associated with irrigation activities and its influence on the slope stability in Heifangtai loess highland, China. J. Eng. Geol. 2018, 234, 27–37. [Google Scholar] [CrossRef]
- Yang, J.; Shragge, J.; Girard, A.J.; Gonzales, E.; Ticona, J.; Minaya, A.; Krahenbuhl, R. Seismic Characterization of a Land-slide Complex: A Case History from Majes, Peru. Sustainability 2023, 15, 13574. [Google Scholar] [CrossRef]
- Lacroix, P.; Dehecq, A.; Taipe, E. Irrigation-triggered landslides in a Peruvian desert caused by modern intensive farming. Nat. Geosci. 2020, 13, 56–60. [Google Scholar] [CrossRef]
- Cotecchia, F.; Santaloia, F.; Tagarelli, V. Towards A Geo-Hydro-Mechanical Characterization of Landslide Classes: Preliminary Results. Appl. Sci. 2020, 10, 7960. [Google Scholar] [CrossRef]
- Terzaghi, K. Mechanism of landslides. In Application of Geology to Engineering Practice (Berkeley Volume); Geological Society of America: Washington, DC, USA, 1950; pp. 83–123. [Google Scholar]
- Huerta, V. Rehabilitation of the Mocoro Canal—San Luis in the Pie de la Cuesta Section—La Cano Irrigation—Geological and Geotechnical Study. Licentiate Thesis, National University of San Agustín of Arequipa, Arequipa, Peru, 1977. [Google Scholar]
- Huanca, J. Aplicación de la Técnica GNSS-RTK y la Fotogrametría con Drones para la Caracterización y el Monitoreo del Deslizamiento de Tierra Activo de pie de la Cuesta en el Valle de Vitor, Arequipa; Universidad Nacional de San Agustín de Arequipa: Arequipa, Peru, 2022. [Google Scholar]
- Flores, A.; Maggiolo, O. Reconocimiento Geotécnico de la Margen Izquierda del Río Vítor en el Sector Donde se han Presentado Deslizamientos que Afectan el Canal de Riego La Cano y el Poblado Pie de la Cuesta; Preliminary Technical Report No. 001-75-IIA-IG; Department of Agriculture: Arequipa, Peru, 1975. [Google Scholar]
- Ponce, V.A. Impacto Hidrológico y Ambiental de las Irrigaciones de La Joya y San I–idro—La Cano en el Valle de Vítor, Arequipa, Perú. Available online: https://ponce.sdsu.edu/vitor_impacto_hidrologico_01.html (accessed on 24 December 2023).
- Araujo, G.E.; Miranda, R. Evaluación Geológica y Geodinámica de Deslizamientos en el Flanco Izquierdo del Valle de Vitor, Sectores Pie de la Cuesta, Telaya, Gonzales y Socabón. Distritos Vitor y La Joya, Región Arequipa, Provincia Arequipa; INGEMMET: Lima, Perú, 2016; Available online: https://hdl.handle.net/20.500.12544/1165 (accessed on 5 June 2024).
- Griffiths, J. Proving the occurrence and cause of a landslide in a legal context. Bull. Int. Assoc. Eng. Geol. 1999, 58, 75–85. [Google Scholar] [CrossRef]
- INGEMMET. Evolución y Monitoreo Fotogramétrico del Deslizamiento de Punillo Periodo 2020. Región Arequipa, Provincia Arequipa, Distritos La Joya, Vítor. Available online: https://repositorio.ingemmet.gob.pe/handle/20.500.12544/2653 (accessed on 15 March 2024).
- Mansilla, D.; Neyra, M. Análisis de la Relación del Sobre Riego en las Irrigaciones La Joya Antigua y la Joya Nueva, con los Caudales de Retorno y los Deslizamientos Rotacionales en el Valle de Vitor. Licentiate Thesis, Catholic University of Santa Maria, Arequipa, Peru, 2022. [Google Scholar]
- McClay, K.R. Mapping Techniques; Handbook Series—The Mapping of Geological Structures; Geological Society of London: London, UK; John Wiley: Hoboken, NJ, USA, 1987; pp. 17–44. [Google Scholar]
- Marocco, R. Dynamique du remplissage d’un bassin intramontagneux cénozoique andin: Le bassin Moquegua (Sud du Pérou). Cah. ORSTOM. Série Géologie 1984, 14, 123–129. Available online: https://app.ingemmet.gob.pe/biblioteca/pdf/Reg-216.pdf (accessed on 7 May 2024).
- Bellido, E. Geología del Cuadrángulo de Moquegua, Hoja: 35-u (Boletín A 15). INGEMMET 1979. Available online: https://repositorio.ingemmet.gob.pe/bitstream/20.500.12544/132/3/A015-Boletin_Moquegua-35u.PDF (accessed on 10 May 2023).
- Underwood, L.B. Classification and identification of shales. J. Soil. Mech. Found. Div. Proc. Am. Soc. Civil. Eng. 1967, 93, 97–116. [Google Scholar] [CrossRef]
- Sempere, T.; Jacay, J.; García, F. Elementos para una actualización de la estratigrafía del Grupo Moquegua, sur del Perú. Boletín Soc. Geológica Perú 2015, 110, 71–75. [Google Scholar]
- Paquereau-Lebti, P.; Thouret, J.C.; Wörner, G.; Fornari, M. Neogene and Quaternary ignimbrites in the area of Arequipa, Southern Peru: Stratigraphical and petrological correlations. J Volcanol. Geotherm. Res. 2006, 154, 251–275. [Google Scholar] [CrossRef]
- Cruden, D.M.; Varnes, D.J. Landslide types and processes, special report, transportation research board. Nat. Acad. Sci. 1996, 247, 36–71. [Google Scholar]
- Lee, J.-U.; Cho, Y.-C.; Kim, M.; Jang, S.-J.; Lee, J.; Kim, S. The Effects of Different Geological Conditions on Landslide-Triggering Rainfall Conditions in South Korea. Water 2022, 14, 2051. [Google Scholar] [CrossRef]
- Baldys, S., III; Ham, L.K.; Fossum, K.D. Summary Statistics and Trend Analysis of Water-Quality Data at Sites in the Gila River Basin, New Mexico and Arizona; US Department of the Interior, US Geological Survey: Washington, DC, USA, 1995. Available online: https://pubs.usgs.gov/wri/1995/4083/report.pdf (accessed on 15 June 2023).
Landslide | Location Latitude Longitude | Irrigation | Onsets of the Irrigation | Triggering Date | Reference |
---|---|---|---|---|---|
Pie de la Cuesta | 16°27′44.20″S 71°52′33.13″O | La Joya Antigua | 1953 | 1975 | Ponce [22] 2008 |
Punillo | 16°30′55.19″S 71°56′42.17″O | La Cano | 1974 | 1990–2000 | INGEMMET [25] |
La Cano | 16°32′35.50″S 71°57′46.92″O | La Cano | 1974 | 1988–1995 | Lacroix [16] |
Huachipa | 16°33′37.61″S 71°58′28.25″O | La Cano | 1974 | 1988–1995 | Lacroix [16] |
Boyadero | 16°34′40.09″S 71°59′11.08″O | La Cano | 1974 | 1988–1995 | Lacroix [16] |
Number | X Coordinates | Y Coordinates | Description |
---|---|---|---|
1 | 192459.34 | 8177590.25 | Affected constructions |
2 | 192643.02 | 8178075.04 | Affected constructions |
3 | 193326.35 | 8177769.20 | Head of the ravine |
4 | 193448.07 | 8177996.81 | Head of the ravine |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Infa, R.; Chavez, A.; Soto, J.; Huanca, J.; Roberti, G.; Ward, B.; Aguilar, R.; Teixidó, T. Geological and Geomorphological Characterization of the Anthropogenic Landslide of Pie de la Cuesta in the Vitor Valley, Arequipa, Peru. Geosciences 2024, 14, 291. https://doi.org/10.3390/geosciences14110291
Infa R, Chavez A, Soto J, Huanca J, Roberti G, Ward B, Aguilar R, Teixidó T. Geological and Geomorphological Characterization of the Anthropogenic Landslide of Pie de la Cuesta in the Vitor Valley, Arequipa, Peru. Geosciences. 2024; 14(11):291. https://doi.org/10.3390/geosciences14110291
Chicago/Turabian StyleInfa, Rosmery, Antenor Chavez, Jorge Soto, Joseph Huanca, Gioachino Roberti, Brent Ward, Rigoberto Aguilar, and Teresa Teixidó. 2024. "Geological and Geomorphological Characterization of the Anthropogenic Landslide of Pie de la Cuesta in the Vitor Valley, Arequipa, Peru" Geosciences 14, no. 11: 291. https://doi.org/10.3390/geosciences14110291
APA StyleInfa, R., Chavez, A., Soto, J., Huanca, J., Roberti, G., Ward, B., Aguilar, R., & Teixidó, T. (2024). Geological and Geomorphological Characterization of the Anthropogenic Landslide of Pie de la Cuesta in the Vitor Valley, Arequipa, Peru. Geosciences, 14(11), 291. https://doi.org/10.3390/geosciences14110291