A Comparative Study of Susceptibility and Hazard for Mass Movements Applying Quantitative Machine Learning Techniques—Case Study: Northern Lima Commonwealth, Peru
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Mass Movement Inventory (MMI)
2.3. Data
2.4. Methods
2.4.1. Step 1: Input Datasets
2.4.2. Step 2: Exploratory Variable Methods
Pearson Correlation
Multicollinearity
Principal Component Analysis (PCA)
2.4.3. Step 3: Mass Movement Susceptibility Modelling
Weights of Evidence (WoE)
Logistic Regression (LR)
Multilayer Perceptron (MLP)
Support Vector Machine (SVM)
Random Forest (RF)
Naive Bayes (NB)
Machine Learning Hyperparameters
2.4.4. Step 4: Model Accuracy Evaluation
Curve ROC y AUC
F-1 Score
Accuracy (ACC)
Cross-Validation (CV)
2.4.5. Step 5: Hazard Mass Movement
3. Results
3.1. Exploration of Variables
3.2. Mass Movement Susceptibility (MMS) Modelling
3.3. Model Validation
3.4. MM Hazard Scenarios
4. Discussion
4.1. Limitations
4.2. Perspectives
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- El Comercio. Vivir en Las Alturas. 2016. Available online: https://elcomercio.pe/eldominical/actualidad/vivir-alturas-392960-noticia/ (accessed on 27 March 2024).
- Tavera, H. Escenario de Sismo y Tsunami en el Borde Occidental de la Región Central del Perú. Lima, Perú, 2014. Available online: https://repositorio.igp.gob.pe/handle/20.500.12816/779 (accessed on 9 June 2024).
- INDECI. Escenario Sísmico para Lima Metropolitana y Callao: Sismo 8.8Mw. 2017. Available online: https://portal.indeci.gob.pe/wp-content/uploads/2019/01/201711231521471-1.pdf (accessed on 9 June 2024).
- INDECI. Compendio Estadístico del INDECI 2017. 2017. Available online: https://www.indeci.gob.pe/wp-content/uploads/2019/01/201802271714541.pdf (accessed on 9 June 2024).
- INDECI. Dashboard de Control—Reporte de Emergencias. 2024. Available online: https://app.powerbi.com/view?r=eyJrIjoiNTFkOWRhYWQtYmMwMS00OWNmLTg4ZTctNjZjYTc1OTIyN2M0IiwidCI6IjNlZWNkMjZlLTlhNTUtNDg4MC04ODEyLWEzMGZjZGU3OGEyZCJ9&pageName=ReportSectioncd99edcca07a5ff10551 (accessed on 30 January 2022).
- Chang, L.; Xing, G.; Yin, H.; Fan, L.; Zhang, R.; Zhao, N.; Huang, F.; Ma, J. Landslide susceptibility evaluation and interpretability analysis of typical loess areas based on deep learning. Nat. Hazards Res. 2023, 3, 155–169. [Google Scholar] [CrossRef]
- Van Westen, C.J.; van Asch, T.W.J.; Soeters, R. Landslide hazard and risk zonation—Why is it still so difficult? Bull. Eng. Geol. Environ. 2006, 65, 167–184. [Google Scholar] [CrossRef]
- Huang, F.; Cao, Z.; Guo, J.; Jiang, S.-H.; Li, S.; Guo, Z. Comparisons of heuristic, general statistical and machine learning models for landslide susceptibility prediction and mapping. CATENA 2020, 191, 104580. [Google Scholar] [CrossRef]
- Panchal, S.; Shrivastava, A.K. Landslide hazard assessment using analytic hierarchy process (AHP): A case study of National Highway 5 in India. Ain Shams Eng. J. 2022, 13, 101626. [Google Scholar] [CrossRef]
- Sun, X.; Chen, J.; Bao, Y.; Han, X.; Zhan, J.; Peng, W. Landslide susceptibility mapping using logistic regression analysis along the Jinsha river and its tributaries close to Derong and Deqin County, southwestern China. ISPRS Int. J. Geo-Inf. 2018, 7, 438. [Google Scholar] [CrossRef]
- Pourghasemi, H.R.; Moradi, H.R.; Aghda, S.M.F. Landslide susceptibility mapping by binary logistic regression, analytical hierarchy process, and statistical index models and assessment of their performances. Nat. Hazards 2013, 69, 749–779. [Google Scholar] [CrossRef]
- Pourghasemi, H.R.; Pradhan, B.; Gokceoglu, C. Application of fuzzy logic and analytical hierarchy process (AHP) to landslide susceptibility mapping at Haraz watershed, Iran. Nat. Hazards 2012, 63, 965–996. [Google Scholar] [CrossRef]
- Hu, X.; Zhang, H.; Mei, H.; Xiao, D.; Li, Y.; Li, M. Landslide Susceptibility Mapping Using the Stacking Ensemble Machine Learning Method in Lushui, Southwest China. Appl. Sci. 2020, 10, 4016. [Google Scholar] [CrossRef]
- Mao, Y.; Li, Y.; Teng, F.; Sabonchi, A.K.S.; Azarafza, M.; Zhang, M. Utilizing Hybrid Machine Learning and Soft Computing Techniques for Landslide Susceptibility Mapping in a Drainage Basin. Water 2024, 16, 380. [Google Scholar] [CrossRef]
- Yu, H.; Pei, W.; Zhang, J.; Chen, G. Landslide Susceptibility Mapping and Driving Mechanisms in a Vulnerable Region Based on Multiple Machine Learning Models. Remote Sens. 2023, 15, 1886. [Google Scholar] [CrossRef]
- Boussouf, S.; Fernández, T.; Hart, A.B. Landslide susceptibility mapping using maximum entropy (MaxEnt) and geographically weighted logistic regression (GWLR) models in the Río Aguas catchment (Almería, SE Spain). Nat. Hazards 2023, 117, 207–235. [Google Scholar] [CrossRef]
- Achu, A.; Aju, C.; Di Napoli, M.; Prakash, P.; Gopinath, G.; Shaji, E.; Chandra, V. Machine-learning based landslide susceptibility modelling with emphasis on uncertainty analysis. Geosci. Front. 2023, 14, 101657. [Google Scholar] [CrossRef]
- Goyes-Peñafiel, P.; Hernandez-Rojas, A. Double landslide susceptibility assessment based on artificial neural networks and weights of evidence. Boletin Geol. 2021, 43, 173–191. [Google Scholar] [CrossRef]
- Sabokbar, H.A.F.; Roodposhti, M.S.; Tazik, E. Landslide susceptibility mapping using geographically-weighted principal component analysis. Geomorphology 2014, 226, 15–24. [Google Scholar] [CrossRef]
- He, W.; Chen, G.; Zhao, J.; Lin, Y.; Qin, B.; Yao, W.; Cao, Q. Landslide Susceptibility Evaluation of Machine Learning Based on Information Volume and Frequency Ratio: A Case Study of Weixin County, China. Sensors 2023, 23, 2549. [Google Scholar] [CrossRef]
- Yan, H.; Chen, W. Landslide susceptibility modeling based on GIS and ensemble techniques. Arab. J. Geosci. 2022, 15, 762. [Google Scholar] [CrossRef]
- Di Napoli, M.; Carotenuto, F.; Cevasco, A.; Confuorto, P.; di Martire, D.; Firpo, M.; Pepe, G.; Raso, E.; Calcaterra, D. Machine learning ensemble modelling as a tool to improve landslide susceptibility mapping reliability. Landslides 2020, 17, 1897–1914. [Google Scholar] [CrossRef]
- Tehrany, M.S.; Pradhan, B.; Jebur, M.N. Flood susceptibility mapping using a novel ensemble weights-of-evidence and support vector machine models in GIS. J. Hydrol. 2014, 512, 332–343. [Google Scholar] [CrossRef]
- Anagnostopoulos, G.G.; Fatichi, S.; Burlando, P. An advanced process-based distributed model for the investigation of rainfall-induced landslides: The effect of process representation and boundary conditions. Water Resour. Res. 2015, 51, 7501–7523. [Google Scholar] [CrossRef]
- Alvioli, M.; Baum, R.L. Parallelization of the TRIGRS model for rainfall-induced landslides using the message passing interface. Environ. Model. Softw. 2016, 81, 122–135. [Google Scholar] [CrossRef]
- Van Westen, C.J.; Terlien, M.T.J. An approach towards deterministic landslide hazard analysis in GIS. A case study from Manizales (Colombia). Earth Surf. Process. Landf. 1996, 21, 853–868. [Google Scholar] [CrossRef]
- Büechi, E. Modelling of Landslide Susceptibilities in the Cordillera Blanca (Peru). Master’s Thesis, Geographisches Institut der Universität Zürich, Zurich, Switzerland, 2018. [Google Scholar]
- INGEMMET. Mapa de Susceptibilidad por Movimientos en Masa en Lima Metropolitana. SIGRID, 2015. Available online: https://sigrid.cenepred.gob.pe/sigridv3/documento/3653 (accessed on 27 March 2024).
- CAF. El Fenomeno el Niño 1997–1998. Lima, Perú, 1998. Available online: http://scioteca.caf.com/bitstream/handle/123456789/675/Las_lecciones_de_El_Niño._Ecua-dor.pdf?sequence=1&isAllowed=y (accessed on 9 June 2024).
- SENAMHI. El Fenómeno EL NIÑO en el Perú. Lima, Perú, 2014. Available online: https://www.minam.gob.pe/wp-content/uploads/2014/07/Dossier-El-Niño-Final_web.pdf (accessed on 9 June 2024).
- Villacorta, S.; Nuñez, S.; Obregón, C.; Tatard, L. Modelos de Susceptibilidad por Movimientos en Masa en Lima Metropolitana y El Callao. 2014. Available online: https://repositorio.ingemmet.gob.pe/bitstream/20.500.12544/2724/1/Villacorta-Susceptibilidad_movimientos_en_masa_Lima_Metropolitana-Callao.pdf (accessed on 9 June 2024).
- Chambi, S.P.V.; Juárez, S.N.; Pari, W.; Smoll, L.F. Peligros Geológicos en el Área de Lima Metropolitana y la Región Callao—[Boletín C 59]. Lima, Perú, 2015. Available online: https://hdl.handle.net/20.500.12544/309 (accessed on 9 June 2024).
- Achour, Y.; Boumezbeur, A.; Hadji, R.; Chouabbi, A.; Cavaleiro, V.; Bendaoud, E.A. Landslide susceptibility mapping using analytic hierarchy process and information value methods along a highway road section in Constantine, Algeria. Arab. J. Geosci. 2017, 10, 194. [Google Scholar] [CrossRef]
- Gómez, H.; Kavzoglu, T. Assessment of shallow landslide susceptibility using artificial neural networks in Jabonosa River Basin, Venezuela. Eng. Geol. 2005, 78, 11–27. [Google Scholar] [CrossRef]
- Khabiri, S.; Crawford, M.M.; Koch, H.J.; Haneberg, W.C.; Zhu, Y. An Assessment of Negative Samples and Model Structures in Landslide Susceptibility Characterization Based on Bayesian Network Models. Remote Sens. 2023, 15, 3200. [Google Scholar] [CrossRef]
- Hu, Q.; Zhou, Y.; Wang, S.; Wang, F. Machine learning and fractal theory models for landslide susceptibility mapping: Case study from the Jinsha River Basin. Geomorphology 2020, 351, 106975. [Google Scholar] [CrossRef]
- Field, A. Discovering Statistics Using SPSS (and Sex and Drugs and Rock “n” Roll), 3rd ed.; SAGE Publications: Thousand Oaks, CA, USA, 2009. [Google Scholar]
- Chan, J.Y.-L.; Leow, S.M.H.; Bea, K.T.; Cheng, W.K.; Phoong, S.W.; Hong, Z.-W.; Chen, Y.-L. Mitigating the Multicollinearity Problem and Its Machine Learning Approach: A Review. Mathematics 2022, 10, 1283. [Google Scholar] [CrossRef]
- Menard, S. Applied Logistic Regression Analysis; SAGE Publications: Thousand Oaks, CA, USA, 2002. [Google Scholar]
- Alibuhtto, M.C.; Peiris, T.S.G. Principal component regression for solving multicollinearity problem. In Proceedings of the 5th International Symposium, Oluvil, Sri Lanka, 7–8 December 2015; pp. 231–238. [Google Scholar]
- Kelkar, K.A. Mass Movement Phenomena in the Western San Juan Mountains, Colorado. Master’s Thesis, Texas A&M University, College Station, TX, USA, 2017. [Google Scholar]
- Aristizábal-Giraldo, E.; Guarin, M.V.; Ruíz, D. Métodos estadísticos para la evaluación de la susceptibilidad por movimientos en masa. TecnoLógicas 2019, 22, 39–60. [Google Scholar] [CrossRef]
- Cao, B.; Li, Q.; Zhu, Y. Comparison of Effects between Different Weight Calculation Methods for Improving Regional Landslide Susceptibility—A Case Study from Xingshan County of China. Sustainability 2022, 14, 11092. [Google Scholar] [CrossRef]
- Wang, Q.; Kong, Y.; Zhang, W.; Chen, J.; Xu, P.; Li, H.; Xue, Y.; Yuan, X.; Zhan, J.; Zhu, Y. Regional debris flow susceptibility analysis based on principal component analysis and self-organizing map: A case study in Southwest China. Arab. J. Geosci. 2016, 9, 718. [Google Scholar] [CrossRef]
- Tang, Y.; Feng, F.; Guo, Z.; Feng, W.; Li, Z.; Wang, J.; Sun, Q.; Ma, H.; Li, Y. Integrating principal component analysis with statistically-based models for analysis of causal factors and landslide susceptibility mapping: A comparative study from the loess plateau area in Shanxi (China). J. Clean. Prod. 2020, 277, 124159. [Google Scholar] [CrossRef]
- Basu, T.; Das, A.; Pal, S. Application of geographically weighted principal component analysis and fuzzy approach for unsupervised landslide susceptibility mapping on Gish River Basin, India. Geocarto Int. 2022, 37, 1294–1317. [Google Scholar] [CrossRef]
- Goyes-Peñafiel, P.; Hernandez-Rojas, A. Landslide susceptibility index based on the integration of logistic regression and weights of evidence: A case study in Popayan, Colombia. Eng. Geol. 2021, 280, 105958. [Google Scholar] [CrossRef]
- Bonham-Carter, G. Geographic Information Systems for Geoscientists: Modelling with GIS; Pergamon: Oxford, UK, 1995; Volume 21. [Google Scholar]
- Van Westen, C.J. Use of Weights of Evidence Modeling for Landslide Susceptibility Mapping; International Institute for Geoinformation Science and Earth Observation: Enschede, The Netherlands, 2002. [Google Scholar]
- Servicio Geológico Colombiano. Guía Metodológica para Estudios de Amenaza, Vulnerabilidad y Riesgo por Movimientos en Masa Escala 1:25,000; Servicio Geológico Colombiano: Bogotá, Colombia, 2017. [Google Scholar]
- Feby, B.; Achu, A.; Jimnisha, K.; Ayisha, V.; Reghunath, R. Landslide susceptibility modelling using integrated evidential belief function based logistic regression method: A study from Southern Western Ghats, India. Remote Sens. Appl. Soc. Environ. 2020, 20, 100411. [Google Scholar] [CrossRef]
- Umar, Z.; Pradhan, B.; Ahmad, A.; Jebur, M.N.; Tehrany, M.S. Earthquake induced landslide susceptibility mapping using an integrated ensemble frequency ratio and logistic regression models in West Sumatera Province, Indonesia. Catena 2014, 118, 124–135. [Google Scholar] [CrossRef]
- Yilmaz, I. Landslide susceptibility mapping using frequency ratio, logistic regression, artificial neural networks and their comparison: A case study from Kat landslides (Tokat—Turkey). Comput. Geosci. 2009, 35, 1125–1138. [Google Scholar] [CrossRef]
- Huang, J.; Zhou, Q.; Wang, F. Mapping the landslide susceptibility in Lantau Island, Hong Kong, by frequency ratio and logistic regression model. Ann. GIS 2015, 21, 191–208. [Google Scholar] [CrossRef]
- Biçer, T.; Ercanoglu, M. A semi-quantitative landslide risk assessment of central Kahramanmaraş City in the Eastern Mediterranean region of Turkey. Arab. J. Geosci. 2020, 13, 732. [Google Scholar] [CrossRef]
- Vakhshoori, V.; Pourghasemi, H.R.; Zare, M.; Blaschke, T. Landslide Susceptibility Mapping Using GIS-Based Data Mining Algorithms. Water 2019, 11, 2292. [Google Scholar] [CrossRef]
- Pham, B.T.; Tien Bui, D.; Prakash, I.; Dholakia, M.B. Hybrid integration of Multilayer Perceptron Neural Networks and machine learning ensembles for landslide susceptibility assessment at Himalayan area (India) using GIS. Catena 2017, 149, 52–63. [Google Scholar] [CrossRef]
- Nguyen, V.V.; Pham, B.T.; Vu, B.T.; Prakash, I.; Jha, S.; Shahabi, H.; Shirzadi, A.; Ba, D.N.; Kumar, R.; Chatterjee, J.M.; et al. Hybrid machine learning approaches for landslide susceptibility modeling. Forests 2019, 10, 157. [Google Scholar] [CrossRef]
- Cortes, C.; Vapnik, V. Support-Vector Networks. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
- Liu, S.; Wang, L.; Zhang, W.; He, Y.; Pijush, S. A comprehensive review of machine learning-based methods in landslide susceptibility mapping. Geol. J. 2023, 58, 2283–2301. [Google Scholar] [CrossRef]
- Li, M.; Li, L.; Lai, Y.; He, L.; He, Z.; Wang, Z. Geological Hazard Susceptibility Analysis Based on RF, SVM, and NB Models, Using the Puge Section of the Zemu River Valley as an Example. Sustainability 2023, 15, 11228. [Google Scholar] [CrossRef]
- Merghadi, A.; Yunus, A.P.; Dou, J.; Whiteley, J.; ThaiPham, B.; Bui, D.T.; Avtar, R.; Abderrahmane, B. Machine learning methods for landslide susceptibility studies: A comparative overview of algorithm performance. Earth Sci. Rev. 2020, 207, 103225. [Google Scholar] [CrossRef]
- Pham, B.T.; Pradhan, B.; Bui, D.T.; Prakash, I.; Dholakia, M.B. A comparative study of different machine learning methods for landslide susceptibility assessment: A case study of Uttarakhand area (India). Environ. Model. Softw. 2016, 84, 240–250. [Google Scholar] [CrossRef]
- Sajadi, P.; Sang, Y.-F.; Gholamnia, M.; Bonafoni, S.; Mukherjee, S. Evaluation of the landslide susceptibility and its spatial difference in the whole Qinghai-Tibetan Plateau region by five learning algorithms. Geosci. Lett. 2022, 9, 9. [Google Scholar] [CrossRef]
- Zhang, W.; Zhang, Y.; Gu, X.; Wu, C.; Han, L. Application of Soft Computing, Machine Learning, Deep Learning and Optimizations in Geoengineering and Geoscience; Springer: Berlin/Heidelberg, Germany, 2021. [Google Scholar]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Wu, X.; Song, Y.; Chen, W.; Kang, G.; Qu, R.; Wang, Z.; Wang, J.; Lv, P.; Chen, H. Analysis of Geological Hazard Susceptibility of Landslides in Muli County Based on Random Forest Algorithm. Sustainability 2023, 15, 4328. [Google Scholar] [CrossRef]
- Karakas, G.; Can, R.; Kocaman, S.; Nefeslioglu, H.A.; Gokceoglu, C. Landslide susceptibility mapping with random forest model for ordu, turkey. ISPRS—Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2020, 43, 1229–1236. [Google Scholar] [CrossRef]
- Rodriguez-Galiano, V.F.; Ghimire, B.; Rogan, J.; Chica-Olmo, M.; Rigol-Sanchez, J.P. An assessment of the effectiveness of a random forest classifier for land-cover classification. ISPRS J. Photogramm. Remote Sens. 2012, 67, 93–104. [Google Scholar] [CrossRef]
- Mia, U.; Chowdhury, T.N.; Chakrabortty, R.; Pal, S.C.; Al-Sadoon, M.K.; Costache, R.; Islam, A.R.M.T. Flood Susceptibility Modeling Using an Advanced Deep Learning-Based Iterative Classifier Optimizer. Land 2023, 12, 810. [Google Scholar] [CrossRef]
- Nurwatik, N.; Ummah, M.H.; Cahyono, A.B.; Darminto, M.R.; Hong, J.-H. A Comparison Study of Landslide Susceptibility Spatial Modeling Using Machine Learning. ISPRS Int. J. Geo-Inf. 2022, 11, 602. [Google Scholar] [CrossRef]
- Pradhan, B.; Sameen, M.I.; Al-Najjar, H.A.H.; Sheng, D.; Alamri, A.M.; Park, H.-J. A Meta-Learning Approach of Optimisation for Spatial Prediction of Landslides. Remote Sens. 2021, 13, 4521. [Google Scholar] [CrossRef]
- Friedl, H.; Stampfer, E. Cross-Validation. In Encyclopedia of Environmetrics; El-Shaarawi, A.H., Piegorsch, W.W., Eds.; John Wiley & Sons, Ltd.: Chichester, UK, 2002. [Google Scholar]
- Chung, C.-J.; Fabbri, A.G. Predicting landslides for risk analysis—Spatial models tested by a cross-validation technique. Geomorphology 2008, 94, 438–452. [Google Scholar] [CrossRef]
- SENAMHI. Lluvias Máximas—Escenarios Críticos con Información Climática Durante el Fenómeno el Niño. Lima, Perú, 2023. Available online: https://repositorio.senamhi.gob.pe/handle/20.500.12542/2867 (accessed on 9 June 2024).
- Zhao, Y.; Wang, R.; Jiang, Y.; Liu, H.; Wei, Z. GIS-based logistic regression for rainfall-induced landslide susceptibility mapping under different grid sizes in Yueqing, Southeastern China. Eng. Geol. 2019, 259, 105147. [Google Scholar] [CrossRef]
- Thai Pham, B.T.; Shirzadi, A.; Shahabi, H.; Omidvar, E.; Singh, S.K.; Sahana, M.; Asl, D.T.; Bin Ahmad, B.; Quoc, N.K.; Lee, S. Landslide susceptibility assessment by novel hybrid machine learning algorithms. Sustainability 2019, 11, 4386. [Google Scholar] [CrossRef]
- Achour, Y.; Pourghasemi, H.R. How do machine learning techniques help in increasing accuracy of landslide susceptibility maps? Geosci. Front. 2020, 11, 871–883. [Google Scholar] [CrossRef]
- Aditian, A.; Kubota, T.; Shinohara, Y. Comparison of GIS-based landslide susceptibility models using frequency ratio, logistic regression, and artificial neural network in a tertiary region of Ambon, Indonesia. Geomorphology 2018, 318, 101–111. [Google Scholar] [CrossRef]
- Bijukchhen, S.M.; Kayastha, P.; Dhital, M.R. A comparative evaluation of heuristic and bivariate statistical modelling for landslide susceptibility mappings in Ghurmi–Dhad Khola, east Nepal. Arab. J. Geosci. 2013, 6, 2727–2743. [Google Scholar] [CrossRef]
- Song, Y.; Yang, D.; Wu, W.; Zhang, X.; Zhou, J.; Tian, Z.; Wang, C.; Song, Y. Evaluating Landslide Susceptibility Using Sampling Methodology and Multiple Machine Learning Models. ISPRS Int. J. Geo-Inf. 2023, 12, 197. [Google Scholar] [CrossRef]
Type | Description | Type | Scale or Spatial Resolution | Year | Source | Link |
---|---|---|---|---|---|---|
Vectorial | Lithology | Categorical | 1/100,000 | - | INGEMMET | https://geocatmin.ingemmet.gob.pe/geocatmin/ (last access 2 February 2024) |
Geomorphology | Categorical | 1/100,000 | - | INGEMMET | https://geocatmin.ingemmet.gob.pe/geocatmin/ (last access 2 February 2024) | |
Hydrogeology | Categorical | 1/100,000 | INGEMMET | https://geocatmin.ingemmet.gob.pe/geocatmin/ (last access 2 February 2024) | ||
Mass movements inventory | Categorical | 1/50,000 | 2021 | INGEMMET | https://geocatmin.ingemmet.gob.pe/geocatmin/ (last access 2 February 2024) | |
Raster | Vegetation cover | Categorical | 1/100,000 | INGEMMET | https://www.datosabiertos.gob.pe/dataset/cobertura-vegetal-ministerio-del-ambiente (last access 2 February 2024) | |
Digital elevation model (DEM) | Continuous | 12.5 m | 2010 | USGS | https://earthexplorer.usgs.gov/ (last access 2 February 2024) | |
Seismic microzonation | Categorical | - | - | IGP/CISMID | https://www.igp.gob.pe/servicios/infraestructura-de-datos-espaciales/componentes/webservice (last access 2 February 2024) | |
Precipitation anomalies in El Niño phenomenon | Continuous | 100 m | 2021 | SENAMHI | https://idesep.senamhi.gob.pe/portalidesep/ (last access 2 February 2024) |
Class | Name | Variable | PCA | Type of Variable |
---|---|---|---|---|
Conditioning factor | ||||
Geological and environmental | Lithology | U1 | - | Categorical |
Geomorphology | U2 | - | Categorical | |
Hydrology | U3 | - | Categorical | |
Vegetation cover | U4 | - | Categorical | |
Topographical | Slope | T1 | PCA-1 PCA-2 PCA-3 | Continuous |
Aspect | T2 | Continuous | ||
Topographic Wetness Index (TWI) | T3 | |||
Terrain Roughness Index (TRI) | T4 | Continuous | ||
Flow direction | T5 | Continuous | ||
Profile curvature | T6 | Continuous | ||
General curvature | T7 | Continuous | ||
Triggering factors | ||||
Seismic 8.8 Mw (seismic microzonation) Precipitation anomalies in El Niño phenomenon | D1 | - | Categorical | |
D2 | - | Continuous |
Model | Hyperparameters |
---|---|
LR | method = “bfgs”, |
MLP | lr = 0.1, architecture [1, 4, 4, 4], epochs = 1000, activation “relu” |
SVM | Kernel = “linear” |
RF | n_estimators = 360, max_depth = 11, criterion = “gini”, min_samples_split = 5, min_samples_leaf = 1 |
NB | priors = None, var_smoothing = 1 × 10−9 |
Name | Variable | VIF |
---|---|---|
Intercept | - | 10.1 |
Slope | T1 | 67.3 |
Aspect | T2 | 1.5 |
Topographic Wetness Index (TWI) | T3 | - |
Terrain Roughness Index (TRI) | T4 | 67.3 |
Flow direction | T5 | 1.4 |
Profile curvature | T6 | 3 |
General curvature | T7 | 3 |
PCA | Weights | T1 | T2 | T3 | T4 | T5 | T6 | T7 |
---|---|---|---|---|---|---|---|---|
PCA-1 | 0.377 | 0.565 | −0.102 | −0.502 | 0.566 | −0.038 | 0.237 | 0.203 |
PCA-2 | 0.250 | 0.240 | 0.104 | −0.065 | 0.238 | 0.087 | −0.648 | −0.667 |
PCA-3 | 0.218 | −0.019 | −0.689 | 0.035 | −0.034 | −0.705 | −0.112 | −0.114 |
Models | VL (km2) | L (km2) | M (km2) | H (km2) | VH (km2) |
---|---|---|---|---|---|
WoE | 92.352 | 257.426 | 180.316 | 145.113 | 116.071 |
LR | 157.959 | 162.505 | 157.243 | 153.230 | 162.130 |
MLP | 128.209 | 192.514 | 170.778 | 152.981 | 146.793 |
SVM | 158.280 | 162.000 | 156.579 | 155.760 | 160.448 |
RF | 122.548 | 194.783 | 158.764 | 154.008 | 162.963 |
NB | 145.511 | 174.507 | 156.579 | 155.573 | 160.895 |
Heuristic * | 137.610 | 203.527 | 205.480 | 168.482 | 77.181 |
Model | AUC-Train | AUC-Test | AUC-CV | F-1 Score | F-1 Score-CV | ACC | ACC-CV |
---|---|---|---|---|---|---|---|
LR | 0.986 | 1.000 | 0.981 ± 0.027 | 0.957 | 0.946 ± 0.021 | 0.952 | 0.946 ± 0.036 |
MLP | 0.986 | 0.998 | 0.980 ± 0.021 | 0.963 | 0.947 ± 0.022 | 0.958 | 0.944 ± 0.039 |
SVM | 0.994 | 1.000 | 0.979 ± 0.039 | 0.951 | 0.943 ± 0.057 | 0.947 | 0.937 ± 0.064 |
RF | 1.000 | 0.996 | 0.981 ± 0.029 | 0.991 | 0.959 ± 0.024 | 0.989 | 0.947 ± 0.038 |
NB | 0.981 | 1.000 | 0.980 ± 0.034 | 0.961 | 0.955 ± 0.042 | 0.958 | 0.945 ± 0.043 |
District | El Niño Phenomenon—Hazard Level (km2) | Seismic—Hazard Level (km2) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
VL | L | M | H | VH | VL | L | M | H | VH | |
Ancon | 38.711 | 73.605 | 80.316 | 47.446 | 69.538 | 1.356 | 5.573 | 2.152 | 6.112 | 0.043 |
Carabayllo | 41.491 | 50.580 | 50.618 | 81.983 | 86.703 | 35.802 | 1.854 | 2.355 | 11.626 | 25.039 |
Comas | 15.012 | 9.032 | 6.663 | 8.591 | 9.473 | 21.883 | 0.588 | 0.998 | 4.292 | 9.004 |
Independencia | 5.441 | 0.678 | 3.817 | 5.087 | 0.987 | 4.220 | 0.332 | 0.333 | 2.095 | 3.174 |
Los Olivos | 12.621 | 3.600 | 1.325 | 0.678 | 0.000 | 15.772 | 0.239 | 0.442 | 0.729 | 0.000 |
Puente Piedra | 20.155 | 14.179 | 12.097 | 3.849 | 0.026 | 16.493 | 5.144 | 2.882 | 8.553 | 6.946 |
San Martin de Porres | 26.692 | 6.196 | 2.599 | 0.477 | 0.000 | 26.636 | 1.572 | 2.499 | 2.948 | 0.109 |
Sum | 160.122 | 157.868 | 157.435 | 148.114 | 166.725 | 122.163 | 15.302 | 11.661 | 36.355 | 44.316 |
% | 20.3 | 20.0 | 19.9 | 18.7 | 21.1 | 53.2 | 6.7 | 5.1 | 15.8 | 19.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Badillo-Rivera, E.; Olcese, M.; Santiago, R.; Poma, T.; Muñoz, N.; Rojas-León, C.; Chávez, T.; Eyzaguirre, L.; Rodríguez, C.; Oyanguren, F. A Comparative Study of Susceptibility and Hazard for Mass Movements Applying Quantitative Machine Learning Techniques—Case Study: Northern Lima Commonwealth, Peru. Geosciences 2024, 14, 168. https://doi.org/10.3390/geosciences14060168
Badillo-Rivera E, Olcese M, Santiago R, Poma T, Muñoz N, Rojas-León C, Chávez T, Eyzaguirre L, Rodríguez C, Oyanguren F. A Comparative Study of Susceptibility and Hazard for Mass Movements Applying Quantitative Machine Learning Techniques—Case Study: Northern Lima Commonwealth, Peru. Geosciences. 2024; 14(6):168. https://doi.org/10.3390/geosciences14060168
Chicago/Turabian StyleBadillo-Rivera, Edwin, Manuel Olcese, Ramiro Santiago, Teófilo Poma, Neftalí Muñoz, Carlos Rojas-León, Teodosio Chávez, Luz Eyzaguirre, César Rodríguez, and Fernando Oyanguren. 2024. "A Comparative Study of Susceptibility and Hazard for Mass Movements Applying Quantitative Machine Learning Techniques—Case Study: Northern Lima Commonwealth, Peru" Geosciences 14, no. 6: 168. https://doi.org/10.3390/geosciences14060168
APA StyleBadillo-Rivera, E., Olcese, M., Santiago, R., Poma, T., Muñoz, N., Rojas-León, C., Chávez, T., Eyzaguirre, L., Rodríguez, C., & Oyanguren, F. (2024). A Comparative Study of Susceptibility and Hazard for Mass Movements Applying Quantitative Machine Learning Techniques—Case Study: Northern Lima Commonwealth, Peru. Geosciences, 14(6), 168. https://doi.org/10.3390/geosciences14060168