Machine Learning Insights into the Last 400 Years of Etna Lateral Eruptions from Historical Volcanological Data
Abstract
:1. Introduction
2. Etna Flank Eruptions
3. Data Analysis
4. Method
5. Results
- Clusters 1 and 3 affect all three Etna sectors, with greater incidence in the E-S and N-E flanks of Etna (Figure 4a,c).
- Cluster 2 includes events that occurred in the E-S sector, except for three episodes (Figure 4b).
- Cluster 4 is characterized by eruptive events that occurred mostly in the E-S sector of Etna, except for one eruption in the N-NE sector and another one in the W sector (Figure 4d).
- Cluster 5 includes events that occurred in the E-S and W sectors (Figure 4e).
- Cluster 6 is characterized by two events located in the E-S sector and one eruption in the N-NE sector (Figure 4f).
6. Discussion
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chester, D.K.; Duncan, A.M.; Dibben, C.; Guest, J.E.; Lister, P.H. Mascali, Mount Etna region Sicily: An example of fascist planning during the 1928 eruption and its continuing legacy. Nat. Hazards 1999, 19, 29–46. [Google Scholar] [CrossRef]
- Branca, S.; Del Carlo, P. Eruptions of Mt Etna during the past 3200 years: A revised compilation integrating the Historical and stratigraphic records. In Mt. Etna: Volcano Laboratory; American Geophysical Union: Washington, DC, USA, 2004; pp. 1–27. [Google Scholar]
- Bonaccorso, A.; Calvari, S.; Boschi, E. Hazard mitigation and crisis management during major flank eruptions at Etna volcano: Reporting on real experience. Geol. Soc. Lond. Spec. Publ. 2016, 426, 447–461. [Google Scholar] [CrossRef]
- Wadge, G.; Guest, J.E. Steady-state magma discharge at Etna 1971–1981. Nature 1981, 294, 548–550. [Google Scholar] [CrossRef]
- Smethurst, L.; James, M.R.; Pinkerton, H.; Tawn, J.A. A statistical analysis of eruptive activity on Mount Etna, Sicily. Geophys. J. Int. 2009, 179, 655–666. [Google Scholar] [CrossRef]
- Harris, A.; Steffke, A.; Calvari, S.; Spampinato, L. Thirty years of satellite-derived lava discharge rates at Etna: Implications for steady volumetric output. J. Geophys. Res. Solid Earth 2011, 116, B08204. [Google Scholar] [CrossRef]
- Andronico, D.; Lodato, L. Effusive activity at Mount Etna volcano (Italy) during the 20th century: A contribution to volcanic hazard assessment. Nat. Hazards 2005, 36, 407–443. [Google Scholar] [CrossRef]
- Bonaccorso, A.; Calvari, S. Major effusive eruptions and recent lava fountains: Balance between expected and erupted magma volumes at Etna volcano. Geophys. Res. Lett. 2013, 40, 6069–6073. [Google Scholar] [CrossRef]
- Currenti, G.; Del Negro, C.; Lapenna, V.; Telesca, L. Multifractality in local geomagnetic field at Etna volcano, Sicily (southern Italy). Nat. Hazards Earth Syst. Sci. 2005, 5, 555–559. [Google Scholar] [CrossRef]
- Cappello, A.; Neri, M.; Acocella, V.; Gallo, G.; Vicari, A.; Del Negro, C. Spatial vent opening probability map of Etna volcano (Sicily, Italy). Bull. Volcanol. 2012, 74, 2083–2094. [Google Scholar] [CrossRef]
- Cappello, A.; Bilotta, G.; Neri, M.; Negro, C.D. Probabilistic modeling of future volcanic eruptions at Mount Etna. J. Geophys. Res. Solid Earth 2013, 118, 1925–1935. [Google Scholar] [CrossRef]
- Del Negro, C.; Cappello, A.; Neri, M.; Bilotta, G.; Hérault, A.; Ganci, G. Lava flow hazards at Mount Etna: Constraints imposed by eruptive history and numerical simulations. Sci. Rep. 2013, 3, 3493. [Google Scholar] [CrossRef]
- Del Negro, C.; Cappello, A.; Ganci, G. Quantifying lava flow hazards in response to effusive eruption. Bulletin 2016, 128, 752–763. [Google Scholar] [CrossRef]
- Del Negro, C.; Cappello, A.; Bilotta, G.; Ganci, G.; Hérault, A.; Zago, V. Living at the edge of an active volcano: Risk from lava flows on Mt. Etna. Geol. Soc. Am. Bull. 2020, 132, 1615–1625. [Google Scholar] [CrossRef]
- Ebmeier, S.; Biggs, J.; Poland, M.; Pritchard, M.; Zoffoli, S.; Furtney, M.; Reath, K. Satellite geodesy for volcano monitoring in the Sentinel-1 and SAR constellation era. In Proceedings of the IGARSS 2019–2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 28 July–2 August 2019; pp. 5465–5467. [Google Scholar]
- Ramis, R.; Garcia, A.; Marrero, J.; la Cruz-Reyna, D.; Carniel, R.; Vila, J. Volcanic and volcano-tectonic activity forecasting: A review on seismic approaches. Ann. Geophys. 2019, 62. [Google Scholar] [CrossRef]
- Ren, C.X.; Peltier, A.; Ferrazzini, V.; Rouet-Leduc, B.; Johnson, P.A.; Brenguier, F. Machine learning reveals the seismic signature of eruptive behavior at Piton de la Fournaise volcano. Geophys. Res. Lett. 2020, 47, e2019GL085523. [Google Scholar] [CrossRef] [PubMed]
- Carniel, R.; Guzman, S.R. Machine learning in volcanology: A review. In Volcanoes—Updates in Volcanology; IntechOpen: Rijeka, Croatia, 2021. [Google Scholar]
- Amato, E.; Corradino, C.; Torrisi, F.; Del Negro, C. A Deep convolutional neural network for detecting volcanic thermal anomalies from satellite images. Remote Sens. 2023, 15, 3718. [Google Scholar] [CrossRef]
- Ramsey, M.S.; Corradino, C.; Thompson, J.O.; Leggett, T.N. Statistical retrieval of volcanic activity in long time series orbital data: Implications for forecasting future activity. Remote Sens. Environ. 2023, 295, 113704. [Google Scholar] [CrossRef]
- Corradino, C.; Malaguti, A.B.; Ramsey, M.S.; Del Negro, C. Quantitative Assessment of Volcanic Thermal Activity from Space Using an Isolation Forest Machine Learning Algorithm. Remote Sens. 2024, 16, 2001. [Google Scholar] [CrossRef]
- Marzban, P.; Bredemeyer, S.; Walter, T.R.; Kästner, F.; Müller, D.; Chabrillat, S. Hydrothermally altered deposits of 2014 Askja landslide, Iceland, identified by remote sensing imaging. Front. Earth Sci. 2023, 11, 1083043. [Google Scholar] [CrossRef]
- Anzieta, J.C. Application of Data Analysis and Machine Learning Techniques to Improve Baseline Volcano and Mountain Hazards Monitoring. Ph.D. Thesis, Simon Fraser University, Burnaby, BC, Canada, 2024. [Google Scholar]
- Andaru, R.; Rau, J.Y.; Syahbana, D.K.; Prayoga, A.S.; Purnamasari, H.D. The use of UAV remote sensing for observing lava dome emplacement and areas of potential lahar hazards: An example from the 2017–2019 eruption crisis at Mount Agung in Bali. J. Volcanol. Geotherm. Res. 2021, 415, 107255. [Google Scholar] [CrossRef]
- Anantrasirichai, N.; Biggs, J.; Albino, F.; Bull, D. A deep learning approach to detecting volcano deformation from satellite imagery using synthetic datasets. Remote Sens. Environ. 2019, 230, 111179. [Google Scholar] [CrossRef]
- Biggs, J.; Anantrasirichai, N.; Albino, F.; Lazecky, M.; Maghsoudi, Y. Large-scale demonstration of machine learning for the detection of volcanic deformation in Sentinel-1 satellite imagery. Bull. Volcanol. 2022, 84, 100. [Google Scholar] [CrossRef] [PubMed]
- Hajian, A.; Cannavò, F.; Greco, F.; Nunnari, G. Classification of Mt Etna (Italy) volcanic activity by machine learning approaches. Ann. Geophys. 2019, 62, VO231. [Google Scholar] [CrossRef]
- Manley, G.F.; Mather, T.A.; Pyle, D.M.; Clifton, D.A.; Rodgers, M.; Thompson, G.; Londono, J.M. A deep active learning approach to the automatic classification of volcano-seismic events. Front. Earth Sci. 2022, 10, 807926. [Google Scholar] [CrossRef]
- Falcin, A.; Métaxian, J.P.; Mars, J.; Stutzmann, É.; Komorowski, J.C.; Moretti, R.; Malfante, M.; Beauducel, F.; Saurel, J.-M.; Dessert, C.; et al. A machine-learning approach for automatic classification of volcanic seismicity at La Soufrière Volcano, Guadeloupe. J. Volcanol. Geotherm. Res. 2021, 411, 107151. [Google Scholar] [CrossRef]
- Messina, A.; Langer, H. Pattern recognition of volcanic tremor data on Mt. Etna (Italy) with KKAnalysis—A software program for unsupervised classification. Comput. Geosci. 2011, 37, 953–961. [Google Scholar] [CrossRef]
- Witsil, A.J.; Johnson, J.B. Analyzing continuous infrasound from Stromboli volcano, Italy using unsupervised machine learning. Comput. Geosci. 2020, 140, 104494. [Google Scholar] [CrossRef]
- Gaddes, M.E.; Hooper, A.; Bagnardi, M. Using machine learning to automatically detect volcanic unrest in a time series of interferograms. J. Geophys. Res. Solid Earth 2019, 124, 12304–12322. [Google Scholar] [CrossRef]
- Romano, R. Succession of the volcanic activity in the Etnean area. In Memorie della Società Geologica Italiana; Società geologica italiana: Rome, Italy, 1982; Volume 23, pp. 27–48. [Google Scholar]
- Chester, D.K.; Duncan, A.M.; Guest, J.E.; Kilburn, C.R.J. Mount Etna—The Anatomy of a Volcano; Chapman & Hall: London, UK, 1985. [Google Scholar]
- Rittman, A. Mount Etna and the 1971 eruption—Structure and evolution of Mount Etna. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Sci. 1973, 274, 5–16. [Google Scholar]
- Guest, J.E. Styles of eruption and flow morphology on Mt Etna. In Memorie della Società Geologica Italiana; Società Geologica Italiana: Rome, Italy, 1982; Volume 23, pp. 49–73. [Google Scholar]
- Branca, S.; Del Carlo, P. Types of eruptions of Etna volcano AD 1670–2003: Implications for short-term eruptive behaviour. Bull. Volcanol. 2005, 67, 732–742. [Google Scholar] [CrossRef]
- Andronico, D.; Cannata, A.; Di Grazia, G.; Ferrari, F. The 1986–2021 paroxysmal episodes at the summit craters of Mt. Etna: Insights into volcano dynamics and hazard. Earth-Sci. Rev. 2021, 220, 103686. [Google Scholar] [CrossRef]
- Coltelli, M.; Pompilio, M.; Del Carlo, P.; Calvari, S.; Pannucci, S.; Scribano, V. Eruptive activity. Acta Vulcanol. 1998, 10, 141–148. [Google Scholar]
- Coltelli, M.; Del Carlo, P.; Pompilio, M. Eruptive activity. Acta Vulcanol. 2000, 12, 63–67. [Google Scholar]
- Calvari, S.; Neri, M.; Pinkerton, H. Effusion rate estimations during the 1999 summit eruption on Mount Etna, and growth of two distinct lava flow fields. J. Volcanol. Geotherm. Res. 2003, 119, 107–123. [Google Scholar] [CrossRef]
- Alparone, S.; Andronico, D.; Lodato, L.; Sgroi, T. Relationship between tremor and volcanic activity during the Southeast Crater eruption on Mount Etna in early 2000. J. Geophys. Res. Solid Earth 2003, 108, 2241. [Google Scholar] [CrossRef]
- Tanguy, J.C. Les éruptions historiques de l’Etna: Chronologie et localisation. Bull. Volcanol. 1981, 44, 585–640. [Google Scholar] [CrossRef]
- Salvi, F.; Scandone, R.; Palma, C. Statistical analysis of the historical activity of Mount Etna, aimed at the evaluation of volcanic hazard. J. Volcanol. Geotherm. Res. 2006, 154, 159–168. [Google Scholar] [CrossRef]
- Acocella, V.; Neri, M. What makes flank eruptions? The 2001 Etna eruption and its possible triggering mechanisms. Bull. Volcanol. 2003, 65, 517–529. [Google Scholar] [CrossRef]
- Branca, S.; De Beni, E.; Proietti, C. The large and destructive 1669 AD eruption at Etna volcano: Reconstruction of the lava flow field evolution and effusion rate trend. Bull. Volcanol. 2013, 75, 1–16. [Google Scholar] [CrossRef]
- Branca, S.; De Beni, E.; Chester, D.; Duncan, A.; Lotteri, A. The 1928 eruption of Mount Etna (Italy): Reconstructing lava flow evolution and the destruction and recovery of the town of Mascali. J. Volcanol. Geotherm. Res. 2017, 335, 54–70. [Google Scholar] [CrossRef]
- Barberi, F.; Carapezza, M.L.; Valenza, M.; Villari, L. The control of lava flow during the 1991–1992 eruption of Mt. Etna. J. Volcanol. Geotherm. Res. 1993, 56, 1–34. [Google Scholar] [CrossRef]
- Allard, P.; Behncke, B.; d’Amico, S.; Neri, M.; Gambino, S. Mount Etna 1993–2005: Anatomy of an evolving eruptive cycle. Earth-Sci. Rev. 2006, 78, 85–114. [Google Scholar] [CrossRef]
- Coltelli, M.; Marsella, M.; Proietti, C.; Scifoni, S. The case of the 1981 eruption of Mount Etna: An example of very fast moving lava flows. Geochem. Geophys. Geosystems 2012, 13. [Google Scholar] [CrossRef]
- Branca, S.; Privitera, F.; Palio, O.; Turco, M. Prehistoric human presence on Mount Etna (Sicily), in relation to the geological evolution. Ann. Geophys. 2021, 64, VO542. [Google Scholar]
- Acocella, V.; Behncke, B.; Neri, M.; D’Amico, S. Link between major flank slip and 2002–2003 eruption at Mt. Etna (Italy). Geophys. Res. Lett. 2003, 30. [Google Scholar] [CrossRef]
- Behncke, B.; Neri, M. The July–August 2001 eruption of Mt. Etna (Sicily). Bull. Volcanol. 2003, 65, 461–476. [Google Scholar] [CrossRef]
- Clocchiatti, R.; Condomines, M.; Guénot, N.; Tanguy, J.C. Magma changes at Mount Etna: The 2001 and 2002–2003 eruptions. Earth Planet. Sci. Lett. 2004, 226, 397–414. [Google Scholar] [CrossRef]
- Barberi, F.; Brondi, F.; Carapezza, M.L.; Cavarra, L.; Murgia, C. Earthen barriers to control lava flows in the 2001 eruption of Mt. Etna. J. Volcanol. Geotherm. Res. 2003, 123, 231–243. [Google Scholar] [CrossRef]
- Neri, M.; Acocella, V.; Behncke, B.; Maiolino, V.; Ursino, A.; Velardita, R. Contrasting triggering mechanisms of the 2001 and 2002–2003 eruptions of Mount Etna (Italy). J. Volcanol. Geotherm. Res. 2005, 144, 235–255. [Google Scholar] [CrossRef]
- Tanguy, J.C.; Condomines, M.; Le Goff, M.; Chillemi, V.; La Delfa, S.; Patanè, G. Mount Etna eruptions of the last 2750 years: Revised chronology and location through archeomagnetic and 226 Ra-230 Th dating. Bull. Volcanol. 2007, 70, 55–83. [Google Scholar] [CrossRef]
- Branca, S.; Vigliotti, L. Finding of an historical document describing an eruption in the NW flank of Etna in July 1643 AD: Timing, location and volcanic products. Bull. Volcanol. 2015, 77, 95. [Google Scholar] [CrossRef]
- Branca, S.; Abate, T. Current knowledge of Etna’s flank eruptions (Italy) occurring over the past 2500 years. From the iconographies of the XVII century to modern geological cartography. J. Volcanol. Geotherm. Res. 2019, 385, 159–178. [Google Scholar] [CrossRef]
- De Beni, E.; Cantarero, M.; Neri, M.; Messina, A. Lava flows of Mt Etna, Italy: The 2019 eruption within the context of the last two decades (1999–2019). J. Maps 2021, 17, 65–76. [Google Scholar] [CrossRef]
- Tarquini, S.; Nannipieri, L. The 10 m-resolution TINITALY DEM as a trans-disciplinary basis for the analysis of the Italian territory: Current trends and new perspectives. Geomorphology 2017, 281, 108–115. [Google Scholar] [CrossRef]
- Proietti, C.; De Beni, E.; Coltelli, M.; Branca, S. The flank eruption history of Etna (1610–2006) as a constraint on lava flow hazard. Ann. Geophys. 2011, 54, 480–490. [Google Scholar] [CrossRef]
- Corradino, C.; Amato, E.; Torrisi, F.; Calvari, S.; Del Negro, C. Classifying major explosions and paroxysms at Stromboli volcano (Italy) from space. Remote Sens. 2021, 13, 4080. [Google Scholar] [CrossRef]
- Anzieta, J.C.; Ortiz, H.D.; Arias, G.L.; Ruiz, M.C. Finding possible precursors for the 2015 Cotopaxi volcano eruption using unsupervised machine learning techniques. Int. J. Geophys. 2019, 2019, 6526898. [Google Scholar] [CrossRef]
- Syakur, M.A.; Khotimah, B.K.; Rochman, E.M.S.; Satoto, B.D. Integration k-means clustering method and elbow method for identification of the best customer profile cluster. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2018; Volume 336, p. 012017. [Google Scholar]
- El-Mandouh, A.M.; Abd-Elmegid, L.A.; Mahmoud, H.A.; Haggag, M.H. Optimized K-means clustering model based on gap statistic. Int. J. Adv. Comput. Sci. Appl. 2019, 10. [Google Scholar] [CrossRef]
- Hasibuan, A.; Kembuan, D.R.; Manoppo, C.T.M.; Tinambunan, M.H. Optimization of K-Means algorithm in grouping data using the statistical gap method. J. Intell. Decis. Support Syst. 2023, 6, 112–120. [Google Scholar]
- Kaufman, L.; Rousseeuw, P.J. Finding Groups in Data: An Introduction to Cluster Analysis; John Wiley & Sons: Hoboken, NJ, USA, 2009. [Google Scholar]
- Mato, F.; Toulkeridis, T. An unsupervised K-means based clustering method for geophysical post-earthquake diagnosis. In Proceedings of the 2017 IEEE Symposium Series on Computational Intelligence (SSCI), Honolulu, HI, USA, 27 November–1 December 2017; pp. 1–8. [Google Scholar]
- Azzaro, R.; Branca, S.; Gwinner, K.; Coltelli, M. The volcano-tectonic map of Etna volcano, 1:100,000 scale: An integrated approach based on a morphotectonic analysis from high-resolution DEM constrained by geologic, active faulting and seismotectonic data. Ital. J. Geosci. 2012, 131, 153–170. [Google Scholar]
- Duncan, A.M.; Chester, D.K.; Guest, J.E. Mount Etna volcano: Environmental impact and problems of volcanic prediction. Geogr. J. 1981, 147, 164–178. [Google Scholar] [CrossRef]
- Armienti, P.; Innocenti, F.; Petrini, R.; Pompilio, M.; Villari, L. Sub-aphiric alkali basalts from Mt. Etna: Inferences on the depth and composition of the source magma. Rend. Soc. Ital. Mineral. Petrol. 1988, 43, 877–891. [Google Scholar]
- Corsaro, R.A.; Pompilio, M. Dynamics of magmas at Mount Etna. Geophys. Monogr.-Am. Geophys. Union 2004, 143, 91–110. [Google Scholar]
- Lormand, C.; Harris, A.J.; Chevrel, M.O.; Calvari, S.; Gurioli, L.; Favalli, M.; Fornaciai, A.; Nannipieri, L. The 1974 west flank eruption of Mount Etna: A data-driven model for a low elevation effusive event. Front. Earth Sci. 2020, 8, 590411. [Google Scholar] [CrossRef]
- Corsaro, R.A.; Branca, S.; De Beni, E.; Tanguy, J.C. Tales from Three 18th Century Eruptions to Understand Past and Present Behaviour of Etna. Front. Earth Sci. 2021, 9, 774361. [Google Scholar] [CrossRef]
- Silvestri, O. XVI. The eruption of etna on the 29th of August 1875. Lond. Edinb. Dublin Philos. Mag. J. Sci. 1874, 49, 126–134. [Google Scholar] [CrossRef]
- Bruce, P.M.; Huppert, H.E. Solidification and melting along dykes by the laminar flow of basaltic magma. In Magma Transport and Storage; John Wiley & Sons: Hoboken, NJ, USA, 1990; pp. 87–101. [Google Scholar]
- Wadge, G. The variation of magma discharge during basaltic eruptions. J. Volcanol. Geotherm. Res. 1981, 11, 139–168. [Google Scholar] [CrossRef]
Starting Year | Duration (Days) | Volume (Mm3) | MOR (Mm3/day) |
---|---|---|---|
30 May 2019 | 8 | 4.4 | 0.55 |
24 December 2018 | 2 | 4.25 | 2.12 |
4 September 2008 | 419 | 77 | 0.18 |
7 September 2004 | 182 | 40 | 0.21 |
27 October 2002 | 93 | 30 | 0.32 |
27 October 2002 | 8 | 10 | 1.25 |
17 July 2001 | 23 | 20 | 0.86 |
14 December 1991 | 473 | 235 | 0.49 |
27 October 1989 | 10 | 26 | 2.6 |
30 October 1986 | 122 | 60 | 0.49 |
25 December 1985 | 3 | 0.8 | 0.26 |
12 March 1985 | 125 | 30 | 0.24 |
28 March 1983 | 131 | 79 | 0.60 |
17 March 1981 | 6 | 22 | 3.66 |
3 August 1979 | 6 | 7.5 | 1.25 |
18 November 1978 | 12 | 11 | 0.91 |
24 August 1978 | 6 | 4 | 0.66 |
29 April 1978 | 37 | 27 | 0.72 |
24 February 1975 | 187 | 6 | 0.03 |
11 March 1974 | 18 | 2.1 | 0.11 |
30 January 1974 | 17 | 2.4 | 0.14 |
5 April 1971 | 69 | 45 | 0.65 |
7 January 1968 | 117 | 1 | 0.008 |
25 November 1950 | 372 | 151 | 0.40 |
2 December 1949 | 3 | 12 | 4 |
30 June 1942 | 1 | 1.6 | 1.6 |
2 November 1928 | 18 | 52 | 2.88 |
17 June 1923 | 31 | 78 | 2.51 |
30 November 1918 | 2 | 1.2 | 0.6 |
10 September 1911 | 13 | 55 | 4.23 |
23 March 1910 | 26 | 65 | 2.5 |
29 April 1908 | 1 | 2 | 2 |
9 July 1892 | 173 | 121 | 0.69 |
19 May 1886 | 20 | 38 | 1.9 |
22 March 1883 | 3 | 0.2 | 0.06 |
26 May 1879 | 12 | 22 | 1.83 |
29 August 1874 | 2 | 1.5 | 0.75 |
30 January 1865 | 150 | 30 | 0.2 |
20 August 1852 | 280 | 87 | 0.31 |
17 November 1843 | 11 | 52 | 4.72 |
31 October 1832 | 23 | 50 | 2.17 |
25 May 1819 | 70 | 47 | 0.67 |
27 October 1811 | 182 | 51 | 0.28 |
27 March 1809 | 14 | 36 | 2.57 |
15 November 1802 | 3 | 10 | 3.33 |
26 May 1792 | 380 | 90 | 0.23 |
18 May 1780 | 10 | 29 | 2.9 |
27 April 1766 | 194 | 135 | 0.69 |
18 June 1763 | 84 | 100 | 1.19 |
6 February 1763 | 32 | 19 | 0.59 |
9 March 1755 | 6 | 4.7 | 0.78 |
8 March 1702 | 60 | 17 | 0.28 |
11 March 1669 | 122 | 600 | 4.91 |
14 March 1689 | 30 | 20 | 0.66 |
18 July 1643 | 10 | 4 | 0.4 |
January 1651–December 1654 | 1095 | 475 | 0.43 |
20 November 1646–1647 | 58 | 153 | 2.63 |
19 December 1634–June 1636 | 530 | 203 | 0.38 |
1 June 1614–1624 | 3650 | 1070 | 0.29 |
3 May 1610-July 1610 | 90 | 120 | 1.33 |
Clusters | Duration | Volume | MOR |
---|---|---|---|
K1 | 15.3 | 41.5 | 2.8 |
K2 | 197.3 | 48.4 | 0.3 |
K3 | 22.6 | 12.85 | 0.5 |
K4 | 926.7 | 341.4 | 0.5 |
K5 | 98.7 | 273.3 | 2.5 |
K6 | 5 | 6.4 | 1.4 |
Starting Year | Clusters | Starting Year | Clusters |
---|---|---|---|
24 December 2018 | 1 | 17 July 2001 | 3 |
27 October 1989 | 1 | 25 December 1985 | 3 |
17 March 1981 | 1 | 18 November 1978 | 3 |
2 December 1949 | 1 | 24 August 1978 | 3 |
2 November 1928 | 1 | 29 April 1978 | 3 |
17 June 1923 | 1 | 11 March 1974 | 3 |
10 September 1911 | 1 | 30 January 1974 | 3 |
23 March 1910 | 1 | 5 April 1971 | 3 |
29 April 1908 | 1 | 30 November 1918 | 3 |
19 May 1886 | 1 | 22 March 1883 | 3 |
26 May 1879 | 1 | 29 August 1874 | 3 |
17 November 1843 | 1 | 25 May 1819 | 3 |
31 October 1832 | 1 | 6 February 1763 | 3 |
27 March 1809 | 1 | 9 March 1755 | 3 |
15 November 1802 | 1 | 8 March 1702 | 3 |
18 May 1780 | 1 | 14 March 1689 | 3 |
20 November 1646–1647 | 1 | 18 July 1643 | 3 |
4 September 2008 | 2 | 14 December 1991 | 4 |
7 September 2004 | 2 | 25 November 1950 | 4 |
27 October 2002 | 2 | 9 July 1892 | 4 |
30 October 1986 | 2 | 27 April 1766 | 4 |
12 March 1985 | 2 | January 1651–December 1654 | 4 |
28 March 1983 | 2 | 19 December 1634–June 1636 | 4 |
24 February 1975 | 2 | 1 June 1614–1624 | 4 |
7 January 1968 | 2 | 18 June 1763 | 5 |
30 January 1865 | 2 | 11 March 1669 | 5 |
20 August 1852 | 2 | 3 May 1610-July | 5 |
27 October 1811 | 2 | 27 October 2002 | 6 |
26 May 1792 | 2 | 3 August 1979 | 6 |
30 May 2019 | 3 | 30 June 1942 | 6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Malaguti, A.B.; Corradino, C.; La Spina, A.; Branca, S.; Del Negro, C. Machine Learning Insights into the Last 400 Years of Etna Lateral Eruptions from Historical Volcanological Data. Geosciences 2024, 14, 295. https://doi.org/10.3390/geosciences14110295
Malaguti AB, Corradino C, La Spina A, Branca S, Del Negro C. Machine Learning Insights into the Last 400 Years of Etna Lateral Eruptions from Historical Volcanological Data. Geosciences. 2024; 14(11):295. https://doi.org/10.3390/geosciences14110295
Chicago/Turabian StyleMalaguti, Arianna Beatrice, Claudia Corradino, Alessandro La Spina, Stefano Branca, and Ciro Del Negro. 2024. "Machine Learning Insights into the Last 400 Years of Etna Lateral Eruptions from Historical Volcanological Data" Geosciences 14, no. 11: 295. https://doi.org/10.3390/geosciences14110295
APA StyleMalaguti, A. B., Corradino, C., La Spina, A., Branca, S., & Del Negro, C. (2024). Machine Learning Insights into the Last 400 Years of Etna Lateral Eruptions from Historical Volcanological Data. Geosciences, 14(11), 295. https://doi.org/10.3390/geosciences14110295