Earthquake Environmental Effects: The Case of Late Classical-Hellenistic Helike, Gulf of Corinth, Greece
Abstract
:1. Introduction
2. Materials and Methods
3. Geological and Tectonic Settings
3.1. Historical Earthquakes Discovered in the Helike Area
3.1.1. The Early Helladic (EH) Helike Earthquake
3.1.2. The Geometric Helike Earthquake
3.1.3. The 373 BC Earthquake
3.1.4. The Hellenistic Helike Earthquake
3.1.5. The Roman Helike Earthquake
4. The Post 373 BC Helike Settlement
4.1. The Settlement Site: The Specialized Helike Dyeworks
4.2. Geology and Archaeology of the Dyeworks Site
4.3. Geological Events and Earthquakes Identified by Soil Micromorphology
5. Discussion
6. Conclusions
- Summing up, the post-Classical settlement of Helike was seriously damaged by a strong earthquake ca. 90/80 BC, which caused a 0.6 m thick horizon of soil deformation underneath its foundations and probably co-seismic lateral spreading of the dyeworks tank unit. Based on the soil deformation, the shaking intensity at the site was of an order over the 5.5 or 6.0 magnitude. The site was afterwards abandoned and silted over.
- Archaeological evidence from the excavations conducted at the site shows that a stream, following a course parallel to the architectural remains unearthed, including the well preserved installations of a dyeing workshop, flowed through this area for a time interval longer than two centuries, maintaining a depth of about 2 m. Its presence at this location proved advantageous with regard to the activities taking place here, inasmuch as the stream channel was the main provider of water, an element indispensable for all processes carried out at the dyeworks including preparation stages and after dyeing activities in addition to dyeing itself. The stream channel was filled with destruction debris from the site after the Hellenistic earthquake and its abandonment.
- However, one of the most important earthquake effects on the site also concerns the consequent environmental changes. For the first time in the Gulf of Corinth, we have evidence that the liquefaction, manifested in the area during this earthquake, was strong enough to modify the gradient of an area in the scale of a drainage basin. Specifically, a tributary draining through the lowland plain of Hellenistic Helike changed its gradient and the sedimentation from fine-grained to coarse-grained. This change caused post-seismic siltation of the ravine alongside the dyeworks complex at a rate of 10 mm/yr. Our data suggest that this ravine was filled with coarse-grain sediments both west and east of the dyeworks for at least 0.3 km.
- Since the Katourlas River to the south seems to be the feeder of the ravine at the dyeworks site, and the river crosses at a high angle the trace of the Helike Fault, it appears that part of the Katourlas drainage basin uplifted and another part subsided. Such morphological changes suggest that the Helike Fault hosted the Hellenistic Helike earthquake.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Katsonopoulou, D. The earthquake of 373 BC. Literary and archaeological evidence. In Helike III, Archaeological Sites in Geologically Active Regions; Katsonopoulou, D., Soter, S., Koukouvelas, I., Eds.; The Helike Society: Athens, Greece, 2005; pp. 15–32. [Google Scholar]
- Soter, S.; Katsonopoulou, D. Occupation horizons found in the search for the ancient Greek city of Helike. Geoarchaeology 1999, 14, 531–563. [Google Scholar] [CrossRef]
- Soter, S.; Katsonopoulou, D. Submergence and uplift of settlements in the area of Helike, from the Early Bronze Age to Late Antiquity. Geoarchaeology 2011, 26, 584–610. [Google Scholar] [CrossRef]
- Katsonopoulou, D. Helike and her Territory in the Light of New Discoveries. In Gli Achei e l’ Identita Etnica Degli Achei d’ Occidente, International Conference, Tekmeria 3; Greco, E., Ed.; Fondazione Paestum: Paestum, Atene, 2002; pp. 205–216. [Google Scholar]
- Katsonopoulou, D.; Katsarou, S. Mainland cosmopolitanism and the rise of personal prestige: New evidence from the coastal Early Helladic town of Helike, northwest Peloponnese. BSA 2017, 112, 1–32. [Google Scholar] [CrossRef]
- Katsonopoulou, D.; Partida, E. Filling a Gap in the History of an Achaean Leader City: Post-373 B.C. Helike. NAC 2023, 52, 169–199. [Google Scholar]
- Katsonopoulou, D. An Unknown Earthquake Revealed in Roman Helike. In HELIKE VI, Helike After 373 BC—An Interdisciplinary Approach; Katsonopoulou, D., Ed.; The Helike Society: Athens, Greece, 2024; pp. 349–364. [Google Scholar]
- Koukouvelas, I.K.; Stamatopoulos, L.; Katsonopoulou, D.; Pavlides, S. A paleoseismological and geoarchaeological investigation of the Eliki fault, Gulf of Corinth, Greece. J. Struct. Geol. 2001, 23, 531–543. [Google Scholar] [CrossRef]
- Koukouvelas, I.K.; Piper, D.J.W.; Katsonopoulou, D.; Kontopoulos, N.; Verroios, S.; Nikolakopoulos, K.; Zygouri, V. Earthquake-triggered landslides and mudflows: Was this the wave that engulfed Ancient Helike? Holocene 2020, 30, 1653–1668. [Google Scholar] [CrossRef]
- Gaggioli, A. The geoarchaeology of seismically triggered soft sediment deformation structures (SSDS). J. Archaeol. Sci. 2024, 165, 105961. [Google Scholar] [CrossRef]
- Quigley, M.; Duffy, B. Effects of Earthquakes on Flood Hazards: A Case Study From Christchurch, New Zealand. Geosciences 2020, 10, 114. [Google Scholar] [CrossRef]
- Schmidt, J. Studien über Erdbeben; Alwin Georgi Edition: Leibzig, Germany, 1879. [Google Scholar]
- Curzi, M.; Aldega, L.; Billi, A.; Boschi, C.; Carminati, E.; Vignaroli, G.; Viola, G.S.; Bernasconi, M. Fossil chemical-physical (dis)equilibria between paleofluids and host rocks and their relationship to the seismic cycle and earthquakes. Earth-Sci. Rev. 2024, 254, 104801. [Google Scholar] [CrossRef]
- Gali, P.; Galadini, F.; Pantosti, D. Twenty years of paleoseismology in Italy. Earth-Sci. Rev. 2008, 88, 89–117. [Google Scholar] [CrossRef]
- Triantafyllou, I.; Papadopoulos, G.A.; Kijko, A. Probabilistic Tsunami Risk Assessment from Incomplete and Uncertain Historical Impact Records: Mediterranean and Connected Seas. Pure Appl. Geophys. 2023, 180, 1785–1809. [Google Scholar] [CrossRef]
- Bawden, G.; Reycraft, R.M. Environmental disaster and the archaeology of human response. In Maxwell Museum of Anthropology; University of New Mexico: Albuquerque, NM, USA, 2000; p. 228. [Google Scholar]
- Birkmann, J.; Buckle, P.; Jaeger, J.; Pelling, M.; Setiadi, N.; Garschagen, M.; Fernando, N.; Kropp, J. Extreme events and disasters: A window of opportunity for change? Analysis of organizational, institutional and political changes, formal and informal responses after mega-disasters. Nat. Hazards 2010, 55, 637–655. [Google Scholar] [CrossRef]
- Guttmann-Bond, E. Sustainability out of the past: How archaeology can save the planet. World Archaeol. 2010, 42, 355–366. [Google Scholar] [CrossRef]
- Cooper, J.; Sheets, P. Surviving Sudden Environmental Change: Understanding Hazards, Mitigating Impacts, Avoiding Disasters; University Press of Colorado: Niwot, CO, USA, 2012; p. 281. [Google Scholar]
- Martin, S.C. Past eruptions and future predictions: Analyzing ancient responses to Mount Vesuvius for use in modern risk management. J. Volcanol. Geotherm. Res. 2020, 396, 106851. [Google Scholar] [CrossRef]
- van Bavel, B.; Curtis, D.; Dijkman, J.; Hannaford, M.; De Keyzer, M.; Van Onacker, E.; Soens, T. Disasters and History: The Vulnerability and Resilience of Past Societies; Cambridge University Press: Cambridge, UK, 2020; p. 244. [Google Scholar]
- Koutsios, A. Middle to Late Holocene Paleogeography of Helike Delta Plain. Application in Archaeological Research. Ph.D. Thesis, University of Patras, Patras, Greece, 2009. [Google Scholar]
- Maniatis, Y.; Facorelis, Y.; Soter, S.; Katsonopoulou, D.; Kromer, B. Locating archaeological horizons with 14C sediment dating. The case of the lost city of Helike. Radiocarbon 1995, 37, 931–941. [Google Scholar] [CrossRef]
- Obermeier, S.F.; Pond, E.C.; Olson, S.M.; Green, R.A. Paleoliquefaction studies in continental settings. In Ancient Seismites; Special Paper 359; Ettensohn, F.R., Rast, N., Brett, C.E., Eds.; Geological Society of America: Boulder, CO, USA, 2002; pp. 13–27. [Google Scholar] [CrossRef]
- Obermeier, S.F.; Olson, S.M.; Green, R.A. Field occurrences of liquefaction induced features: A primer for engineering geologic analysis of paleoseismic shaking. Eng. Geol. 2005, 76, 209–234. [Google Scholar] [CrossRef]
- Kuribayashi, E.; Tatsuoka, F. Brief review of liquefaction during earthquakes in Japan. Soils Found. 1975, 15, 81–92. [Google Scholar] [CrossRef]
- Ambraseys, N.N. Engineering seismology: Earthquake engineering and structural dynamics. Earthq. Eng. Struct. Dynam. 1988, 17, 1–105. [Google Scholar] [CrossRef]
- McCalpin, J.P.; Nelson, A.R. Introduction to paleoseismology. In Paleoseismology; McCalpin, J.P., Ed.; Academic Press: Cambridge, MA, USA, 2009; pp. 1–27. [Google Scholar]
- Obermeier, S.F. Using liquefaction-induced and other soft-sediment features for paleoseismic analysis. In International Geophysics, Paleoseismology; McCalpin, J.P., Ed.; Academic Press: Cambridge, MA, USA, 2009; pp. 497–564. [Google Scholar] [CrossRef]
- Carter, D.P.; Seed, H.B. Liquefaction Potential of Sand Deposits Under Low Levels of Excitation: Report No. UCB/EERC-81/11; College of Engineering, University of California: Berkeley, CA, USA, 1988; p. 119. [Google Scholar]
- Ford, M.; Rohais, S.; Williams, E.A.; Bourlange, S.; Jousselin, D.; Backert, N.; Malartre, F. Tectono-sedimentary evolution of the western Corinth Rift (Central Greece). Basin Res. 2013, 25, 3–25. [Google Scholar] [CrossRef]
- Ford, M.; Hemelsdaël, R.; Mancini, M.; Palyvos, N. Rift Migration and Lateral Propagation: Evolution of Normal Faults and Sediment-Routing Systems of the Western Corinth Rift (Greece). Geol. Soc. Spec. Publ. 2017, 493, 131–168. [Google Scholar] [CrossRef]
- Doutsos, T.; Poulimenos, G. Geometry and kinematics of active faults and their seismotectonic significance in the western Corinth–Patras rift (Greece). J. Struct. Geol. 1992, 14, 689–699. [Google Scholar] [CrossRef]
- Zygouri, V.; Verroios, S.; Kokkalas, S.; Xypolias, P.; Koukouvelas, I.K. Scaling properties within the Gulf of Corinth, Greece; comparison between offshore and onshore active faults. Tectonophysics 2008, 453, 193–210. [Google Scholar] [CrossRef]
- Nixon, C.W.; McNeill, L.C.; Bull, J.M.; Bell, R.E.; Gawthorpe, R.L.; Henstock, T.J.; Christodoulou, D.; Ford, M.; Taylor, B.; Sakellariou, D.; et al. Rapid spatiotemporal variations in rift structure during development of the Corinth Rift, central Greece. Tectonics 2016, 35, 1225–1248. [Google Scholar] [CrossRef]
- Doutsos, T.; Kontopoulos, N.; Poulimenos, G. The Corinth-Patras Rift as the initial stage of continental fragmentation behind an active island arc (Greece). Basin Res. 1988, 1, 177–190. [Google Scholar] [CrossRef]
- Collier, R.E.L.; Dart, C.J. Neogene to Quaternary rifting, sedimentation and uplift in the Corinth Basin, Greece. J. Geol. Soc. London 1991, 148, 1049–1065. [Google Scholar] [CrossRef]
- Hemelsdaël, R.; Malartre, F.; Gawthorpe, R.; Ford, M. Interaction of an antecedent fluvial system with early normal fault growth: Implications for syn-rift stratigraphy, western Corinth rift (Greece). Sedimentology 2017, 64, 1957–1997. [Google Scholar] [CrossRef]
- Ori, G.G. Geologic history of the extensional basin of the Gulf of Corinth (? Miocene-Pleistocene), Greece. Geology 1989, 17, 918–921. [Google Scholar] [CrossRef]
- Rohais, S.; Eschard, R.; Ford, M.; Guillocheau, F.; Moretti, I. Stratigraphic architecture of the plio-pleistocene infill of the Corinth rift: Implications for its structural evolution. Tectonophysics 2007, 440, 5–28. [Google Scholar] [CrossRef]
- Gawthorpe, R.L.; Fabregas, N.; Pechlivanidou, S.; Ford, M.; Collier, R.E.L.; Carter, G.D.O.; McNeill, L.C.; Shillington, D.J. Late Quaternary mud-dominated, basin-floor sedimentation of the Gulf of Corinth, Greece: Implications for deep-water depositional processes and controls on syn-rift sedimentation. Basin Res. 2022, 34, 1567–1600. [Google Scholar] [CrossRef]
- Doutsos, T.; Piper, D.J.W. Listric Faulting, Sedimentation, and Morphological Evolution of the Quaternary Eastern Corinth Rift, Greece: First Stages of Continental Rifting. Bull. Geol. Soc. Am. 1990, 102, 812–829. [Google Scholar] [CrossRef]
- Verroios, S.; Zygouri, V. Geomorphological Analysis of Xilokastro Fault, Central Gulf of Corinth, Greece. Geosciences 2021, 11, 516. [Google Scholar] [CrossRef]
- Albini, P.; Rovida, A.; Scotti, O.; Lyon-Caen, H. Large Eighteenth–Nineteenth Century Earthquakes in Western Gulf of Corinth with Reappraised Size and Location. B. Seismol. Soc. Am. 2017, 107, 1663–1687. [Google Scholar] [CrossRef]
- Kaviris, G.; Elias, P.; Kapetanidis, V.; Serpetsidaki, A.; Karakonstantis, A.; Plicka, V.; De Barros, L.; Sokos, E.; Kassaras, I.; Sakkas, V.; et al. The Western Gulf of Corinth (Greece) 2020–2021 Seismic Crisis and Cascading Events: First Results from the Corinth Rift Laboratory Network. Seism. Rec. 2021, 1, 85–95. [Google Scholar] [CrossRef]
- Moretti, I.; Sakellariou, D.; Lykousis, V.; Micarelli, L. The Gulf of Corinth: An active half graben? J. Geodyn. 2003, 36, 323–340. [Google Scholar] [CrossRef]
- McNeill, L.C.; Collier, R.; Pantosti, D.; Marco de Martini, P.; D’Addezio, G. Recent history of the Eastern Helike Fault: Geomorphology, paleoseismology and impact on paleoenviornments. In Helike III, Archaeological Sites in Geologically Active Regions; Katsonopoulou, D., Soter, S., Koukouvelas, I., Eds.; The Helike Society: Athens, Greece, 2005; pp. 243–265. [Google Scholar]
- Bell, R.E.; McNeill, L.C.; Bull, J.M.; Henstock, T.J.; Collier, R.E.L.; Leeder, M.R. Fault architecture, basin structure and evolution of the Gulf of Corinth Rift, central Greece. Basin Res. 2009, 21, 824–855. [Google Scholar] [CrossRef]
- Bell, R.E.; Duclaux, G.; Nixon, C.W.; Gawthorpe, R.L.; McNeill, L.C. High-angle, not low-angle, normal faults dominate early rift extension in the Corinth Rift, central Greece. Geology 2018, 46, 115–118. [Google Scholar] [CrossRef]
- Taylor, B.; Weiss, J.R.; Goodliffe, A.M.; Sachpazi, M.; Laigle, M.; Hirn, A. The structures, stratigraphy and evolution of the Gulf of Corinth Rift, Greece. Geophys. J. Int. 2011, 185, 1189–1219. [Google Scholar] [CrossRef]
- Charalampakis, M.; Lykousis, V.; Sakellariou, D.; Papatheodorou, G.; Ferentinos, G. The Tectono-Sedimentary Evolution of the Lechaion Gulf, the South Eastern Branch of the Corinth Graben, Greece. Mar. Geol. 2014, 351, 58–75. [Google Scholar] [CrossRef]
- Nixon, C.W.; McNeill, L.C.; Gawthorpe, R.L.; Shillington, D.J.; Michas, G.; Bell, R.E.; Moyle, A.; Ford, M.; Zakharova, N.V.; Bull, J.M.; et al. Increasing fault slip rates within the Corinth Rift, Greece: A rapidly localising active rift fault network. Earth Planet. Sci. Lett. 2024, 636, 118716. [Google Scholar] [CrossRef]
- Koukouvelas, I.K.; Nikolakopoulos, K.G.; Kyriou, A. Landslide monitoring: Recent technologies and new perspectives. Proc. of SPIE 2024, in press. [Google Scholar]
- Palyvos, N.; Pantosti, D.; DeMartini, P.M.; Lemeille, F.; Sorel, D.; Pavlopoulos, K. The Aigion-Neos Erineos normal fault system (Western Corinth Gulf Rift, Greece): Geomorphological signature, recent earthquake history and evolution. J. Geophys. Res. 2005, 110, B09302. [Google Scholar] [CrossRef]
- Katsarou-Tzeveleki, S. Morphology and Distribution of Pottery at the Early Helladic Settlement of Helike. In Helike IV, Protohelladika—The Southern and Central Greek Mainland; Katsonopoulou, D., Ed.; The Helike Society: Athens, Greece, 2011; pp. 89–126. [Google Scholar]
- Katsonopoulou, D. The Hellenistic dye-works at Helike, Achaea, Greece. In Vestes III, Textiles y tintes en la ciudad Antigua, Purpureae; Alfaro, C., Brun, J.P., Borgard, P.H., Pierobon Benoit, R., Eds.; Centre Jean Bérard, University of Valencia: València-Naples, Spain, 2011; pp. 237–242. [Google Scholar]
- Tsampiri, L. ‘Megarian’ bowls from Ancient Helike: A preliminary Report. In HELIKE VI, Helike after 373 BC—An Interdisciplinary Approach; Katsonopoulou, D., Ed.; The Helike Society: Athens, Greece, 2024; pp. 159–173. [Google Scholar]
- Fragou, G. Amphorae and lagynoi from Ancient Helike: A preliminary presentation. In HELIKE VI, Helike after 373 BC—An Interdisciplinary Approach; Katsonopoulou, D., Ed.; The Helike Society: Athens, Greece, 2024; pp. 137–157. [Google Scholar]
- Weir, R. Coins Including Sikyonian and Corinthian Issues Found at the Excavations of the Helike Project in Helike of Achaia. In ΦΙΛΕΛΛHΝ, Essays Presented to Stephen G. Miller; The Helike Society: Athens, Greece, 2016; pp. 37–65. [Google Scholar]
- Koutsios, A.; Kontopoulos, N.; Kalisperi, D.; Soupios, P.; Avramidis, P. Sedimentological and Geophysical observations in the delta plain of Selinous River, Ancient Helike, northern Peloponnesus Greece. Bull. Geol. Soc. Greece 2010, XLIII, 654–662. [Google Scholar] [CrossRef]
- Tsokas, G.N.; Tsourlos, P.I.; Stampolidis, A.; Katsonopoulou, D.; Soter, S. Tracing a Major Roman Road in the Area of Ancient Helike by Resistivity Tomography. Archaeol. Prospect. 2009, 16, 251–266. [Google Scholar] [CrossRef]
- Keefer, D.K. Landslides caused by earthquakes. GSA Bull. 1984, 95, 406–421. [Google Scholar] [CrossRef]
- Mouyaris, N.; Papastamatiou, D.; Vita-Finzi, C. The Helice fault? Terra Nova 1992, 4, 124–129. [Google Scholar] [CrossRef]
- Papazachos, B.; Papazachou, C. The Earthquakes of Greece; Ziti Publications: Thessaloniki, Greece, 2003; p. 304. [Google Scholar]
- Papadopoulos, G.A.; Lefkopoulos, G. Magnitude-distance relations for liquefaction in soil from earthquakes. B. Seismol. Soc. Am. 1993, 83, 925–938. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Katsonopoulou, D.; Koukouvelas, I. Earthquake Environmental Effects: The Case of Late Classical-Hellenistic Helike, Gulf of Corinth, Greece. Geosciences 2024, 14, 311. https://doi.org/10.3390/geosciences14110311
Katsonopoulou D, Koukouvelas I. Earthquake Environmental Effects: The Case of Late Classical-Hellenistic Helike, Gulf of Corinth, Greece. Geosciences. 2024; 14(11):311. https://doi.org/10.3390/geosciences14110311
Chicago/Turabian StyleKatsonopoulou, Dora, and Ioannis Koukouvelas. 2024. "Earthquake Environmental Effects: The Case of Late Classical-Hellenistic Helike, Gulf of Corinth, Greece" Geosciences 14, no. 11: 311. https://doi.org/10.3390/geosciences14110311
APA StyleKatsonopoulou, D., & Koukouvelas, I. (2024). Earthquake Environmental Effects: The Case of Late Classical-Hellenistic Helike, Gulf of Corinth, Greece. Geosciences, 14(11), 311. https://doi.org/10.3390/geosciences14110311