Augmenting Seafloor Characterization via Grain Size Analysis with Low-Cost Imagery: Minimizing Sediment Sampler Biases and Increasing Habitat Classification Accuracy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Benthic Grab Sampling
2.3. Sediment Processing
2.4. Benthic Imagery
2.5. Vessel-Based Acoustic Surveys
2.6. CMECS Geoform Component
2.7. CMECS Substrate Component
2.8. CMECS Biotic Component
2.9. Biotopes
3. Results
3.1. Benthic Imagery
3.2. Acoustic Surveys and CMECS Geoform Component
3.3. Sediment Characterization and the CMECS Substrate Component
3.4. Benthic Invertebrate Sampling and the CMECS Biotic Component
3.5. Biotopes
4. Discussion
4.1. CMECS Substrate Classification
4.2. CMECS Biotic Classification
4.3. Biotopes
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Harris, P.T.; Baker, E.K. GeoHab atlas of seafloor geomorphic features and benthic habitats: Synthesis and lessons learned. In Seafloor Geomorphology as Benthic Habitat; Harris, P.T., Baker, E.K., Eds.; Elsevier: Amsterdam, The Netherlands, 2012; pp. 871–890. [Google Scholar]
- Federal Geographic Data Committee, United States. National Ocean Service. Coastal and Marine Ecological Classification Standard. National Oceanic and Atmospheric Administration. 2012. Available online: https://repository.library.noaa.gov/view/noaa/27552 (accessed on 21 August 2024).
- Sebens, K.P. Habitat structure and community dynamics in marine benthic systems. In Habitat Structure; Susan, S., Bell, E.D.M., Mushinsky, H.R., Eds.; Springer: Dordrecth, The Netherlands, 1991; pp. 211–234. [Google Scholar]
- Diaz, R.; Solan, M.; Valente, R. A review of approaches for classifying benthic habitat and evaluating habitat quality. J. Environ. Manag. 2004, 73, 165–181. [Google Scholar] [CrossRef] [PubMed]
- ICES. Report of the Working Group on Marine Habitat Mapping (WGMHM); ICES: Galway, Ireland, 2006. [Google Scholar]
- Griffiths, J.R.; Kadin, M.; Nascimento, F.J.A.; Tamelander, T.; Törnroos, A.; Bonaglia, S.; Bonsdorff, E.; Brüchert, V.; Gårdmark, A.; Järnström, M.; et al. The importance of benthic–pelagic coupling for marine ecosystem functioning in a changing world. Glob. Chang. Biol. 2017, 23, 2179–2196. [Google Scholar] [CrossRef] [PubMed]
- Brown, C.J.; Smith, S.J.; Lawton, P.; Anderson, J.T. Benthic habitat mapping: A review of progress towards improved understanding of the spatial ecology of the seafloor using acoustic techniques. Estuar. Coast. Shelf Sci. 2011, 92, 502–520. [Google Scholar] [CrossRef]
- McDougall, P.T.; Janowicz, M.; Franks Taylor, R. Habitat Classification in the Gulf of Maine: A Review of Schemes and a Discussion; Gulf of Maine Council on the Marine Environment: Ogunquit, ME, USA, 2007; 15p. [Google Scholar]
- Solan, M.; Germano, J.D.; Rhoads, D.C.; Smith, C.; Michaud, E.; Parry, D.; Wenzhoefer, F.; Kennedy, B.; Henriques, C.; Battle, E.; et al. Towards a greater understanding of pattern, scale and process in marine benthic systems: A picture is worth a thousand worms. J. Exp. Mar. Biol. Ecol. 2003, 285–286, 313–338. [Google Scholar] [CrossRef]
- Beisiegel, K.; Darr, A.; Mayya Gogina, M.; Zettler, M.L. Benefits and shortcomings of non-destructive benthic imagery for monitoring hard-bottom habitats. Mar. Pollut. Bull. 2017, 121, 5–15. [Google Scholar] [CrossRef] [PubMed]
- Guarinello, M.L.; Carey, D.A. Multi-modal Approach for Benthic Impact Assessments in Moraine Habitats: A Case Study at the Block Island Wind Farm. Estuaries Coasts 2020, 45, 1107–1122. [Google Scholar] [CrossRef]
- Jimenez, C.; Hadjioannou, L.; Petrou, A.; Andreou, V.; Georgiou, A. Fouling communities of two accidental artificial reefs (modern shipwrecks) in Cyprus (levantine sea). Water 2017, 9, 22. [Google Scholar] [CrossRef]
- Neal, B.P.; Lin, T.-H.; Winter, R.N.; Treibitz, T.; Beijbom, O.; Kriegman, D.; Kline, D.I.; Mitchell, B.G. Methods and measurement variance for field estimations of coral colony planar area using underwater photographs and semi-automated image segmentation. Environ. Monit. Assess. 2015, 187, 496. [Google Scholar] [CrossRef] [PubMed]
- Hatcher, G.A.; Warrick, J.A.; Ritchie, A.C.; Dailey, E.T.; Zawada, D.G.; Kranenburg, C.; Yates, K.K. Accurate Bathymetric Maps From Underwater Digital Imagery Without Ground Control. Front. Mar. Sci. 2020, 7, 525. [Google Scholar] [CrossRef]
- Smith, J.; O’Brien, P.E.; Stark, J.S.; Johnstone, G.J.; Riddle, M.J. Integrating multibeam sonar and underwater video data to map benthic habitats in an East Antarctic nearshore environment. Estuar. Coast. Shelf Sci. 2015, 164, 520–536. [Google Scholar] [CrossRef]
- Mohamed, H.; Nadaoka, K.; Nakamura, T. Towards Benthic Habitat 3D Mapping Using Machine Learning Algorithms and Structures from Motion Photogrammetry. Remote Sens. Environ. 2020, 12, 127. [Google Scholar] [CrossRef]
- Stokesbury, K.; Bethoney, N.D. How many sea scallops are there and why does it matter? Front. Ecol. Environ. 2020, 18, 513–519. [Google Scholar] [CrossRef]
- Bethoney, N.D.; Stokesbury, K. Methods for image-based surveys of benthic macroinvertebrates and their habitat exemplified by the drop camera survey for the atlantic sea scallop. J. Vis. Exp. 2018, 137, 57493. [Google Scholar] [CrossRef]
- Hubbard, W.; Elliot, M.J.; Veale, F., Jr. Benthic studies in Buzzards Bay, MA—Final Report from the Massachusetts Maritime Academy and Coastal America Foundation; Coastal America Foundation: Bellingham, MA, USA, 2018. [Google Scholar]
- Zajac, R.N.; Stefaniak, L.M.; Babb, I.; Conroy, C.W.; Penna, S.; Chadi, D.; Auster, P.J. An integrated seafloor habitat map to inform marine spatial planning and management: A case study from Long Island Sound (Northwest Atlantic). In Seafloor Geomorphology as Benthic Habitat, 2nd ed.; Harris, P., Baker, E., Eds.; Elsevier Science: Amsterdam, The Netherlands, 2020; pp. 199–217. [Google Scholar]
- Stolt, M.; Bradley, M.; Turenne, J.; Payne, M.; Scherer, E.; Cicchetti, G.; Shumchenia, E.; Guarinello, M.; King, J.; Boothroyd, J.; et al. Mapping Shallow Coastal Ecosystems: A Case Study of a Rhode Island Lagoon. J. Coast. Res. 2011, 27, 1–15. [Google Scholar] [CrossRef]
- Ackerman, S.; Pappal, A.; Huntley, E.; Blackwood, D.; Schwab, W. Geological Sampling Data and Benthic Biota Classification: Buzzards Bay and Vineyard Sound, Massachusetts. USGS 2015; USGS: Woods Hole, MA, USA, 2015.
- Bassett, R.D.; Finkbeiner, M.; Etnoyer, P.J. Application of the Coastal and Marine Ecological Classification Standard (CMECS) to Deep-Sea Benthic Surveys in the Northeast Pacific: Lessons from Field Tests in 2015; NOAA, Coral Reef Conservation Program: Charleston, SC, USA, 2017.
- Etnoyer, P.J.; Malik, M.; Sowers, D.; Ruby, C.; Bassett, R.; Dijkstra, J.; Pawlenko, N.; Gottfried, S.; Mello, K.; Finkbeiner, M.; et al. Working with Video to Improve Deep-Sea Habitat Characterization. Oceanography 2018, 31, 64–67. [Google Scholar]
- Kingon, K. Applying the coastal and marine ecological classification standard (CMECS) to nearshore habitats in the northeastern Gulf of Mexico. Geosciences 2018, 8, 22. [Google Scholar] [CrossRef]
- Mittermayr, A.; Legare, B.; Borrelli, M. Applications of the Coastal and Marine Ecological Classification Standard (CMECS) in a Partially Restored New England Salt Marsh Lagoon. Estuaries Coasts 2020, 45, 1095–1106. [Google Scholar] [CrossRef]
- Borrelli, M.; Mittermayr, A.; Legare, B.; McCormack, B.; Nichols, O.C.; Terrill, S.; Oakley, B.A.; Castagno, K.; dos Santos, P.P.G.M. Coastal Ecosystem Evolution Along Cape Cod National Seashore from Long Point to Race Point: Multi-Tiered, Science-Based Management of Natural Resources and Infrastructure; US NPS, In Press.
- EPA, U.S. National Coastal Assessment: Field Operations Manual; US EPA: Washington, DC, USA, 2001. [Google Scholar]
- Borrelli, M.; Fox, S.E.; Shumchenia, E.J.; Kennedy, C.G.; Oakley, B.A.; Hubeny, J.B.; Love, H.; Smith, T.L.; Legare, B.; Mittermayr, A.; et al. Submerged Marine Habitat Mapping at Cape Cod National Seashore: A Post-Hurricane Sandy Study; Natural Resource Report NPS/NCBN/NRR—2019/1877; National Park Service: Fort Collins, CO, USA, 2019. [Google Scholar]
- Souza, G.B.G.; Barros, F. Analysis of sampling methods of estuarine benthic macrofaunal assemblages: Sampling gear, mesh size, and taxonomic resolution. Hydrobiologia 2015, 743, 157–174. [Google Scholar] [CrossRef]
- Clarke, K.R.; Gorley, R.N. PRIMER v7: User Manual/Tutorial; Primer-E Ltd.: Plymouth, UK, 2015. [Google Scholar]
- Clarke, K.R.; Warwick, R.M. Change in Marine Communities: An Approach to Statistical Analysis and Interpretation, 2nd ed.; PRIMER-E: Plymouth, UK, 2001. [Google Scholar]
- Smith, R. Keys to Marine Invertebrates if the Woods Hole Region; Marine Biological Laboratory; Marine Biological Laboratory: Woods Hole, MA, USA, 1964. [Google Scholar]
- Fauchald, K.; Jumars, P.A. The Diet of Worms: A Study of Polychaete Feeding Guilds. Oceanogr. Mar. Biol. Ann. Rev. 1979, 17, 193–584. [Google Scholar]
- Pollack, L.W. A Practical Guide to the Marine Animals of Northeastern North America; Rutgers University Press: New Brunswick, NJ, USA, 1998. [Google Scholar]
- Hayward, P.J.; Ryland, J.S. Handbook of the Marine Fauna of North-West Europe; Oxford University Press: Oxford, UK, 2017. [Google Scholar]
- Bartholomew, A. Polychaete Key for Chesapeake Bay and Coastal Virginia; Virginia Institute of Marine Science: Gloucester Point, VA, USA, 2001. [Google Scholar]
- Heiri, O.; Lotter, A.F.; Lemcke, G. Loss on ignition as a method for estimating organic and carbonate content in sediments: Reproducibility and comparability of results. J. Paleolimnol. 2001, 25, 101–110. [Google Scholar] [CrossRef]
- Blott, S.J.; Pye, K. GRADISTAT: A grain size distribution and statistics package for the analysis of unconsolidated sediments. Earth Surf. Process. Landf. 2001, 26, 1237–1248. [Google Scholar] [CrossRef]
- Wentworth, C.K. A scale of grade and class terms for clastic sediments. J. Geol. 1922, 30, 377–392. [Google Scholar] [CrossRef]
- Folk, R.L. Petrology of Sedimentary Rocks; Hemphill Publishing Company: Austin, TX, USA, 1974. [Google Scholar]
- Kohler, K.E.; Gill, S.M. Coral Point Count with Excel extensions (CPCe): A Visual Basic program for the determination of coral and substrate coverage using random point count methodology. Comput. Geosci. 2006, 32, 1259–1269. [Google Scholar] [CrossRef]
- Larsen, R.J.; Marx, M.L. Introduction to Mathematical Statistics and Its Applications; Emory University: Atlanta, GA, USA, 2006. [Google Scholar]
- McCormack, B.; Borrelli, M. Shallow Water Object Detection, Classification, and Localization via Phase-Measured, Bathymetry-Mode Backscatter. Remote Sens. 2023, 15, 1685. [Google Scholar] [CrossRef]
- Borrelli, M.; Legare, B.; McCormack, B.; dos Santos, P.P.G.M.; Solazzo, D. Absolute Localization of Targets Using a Phase-Measuring Sidescan Sonar in Very Shallow Waters. Remote Sens. 2023, 15, 1626. [Google Scholar] [CrossRef]
- TSS (International) Ltd. DMS Series Dynamic Motion Sensors User’s Manual, 106; TSS (International) Ltd.: Hertfordshire, UK, 2006. [Google Scholar]
- Borrelli, M.; Smith, T.L.; Mague, S.T. Vessel-based, shallow water mapping with a phase-measuring sidescan sonar. Estuaries Coasts 2022, 45, 961–979. [Google Scholar] [CrossRef]
- Walbridge, S.; Slocum, N.; Pobuda, M.; Wright, D.J. Unified geomorphological analysis workflows with benthic terrain modeler. Geosciences 2018, 8, 24. [Google Scholar] [CrossRef]
- Mittermayr, A.; Legare, B.; Kennedy, C.G.; Fox, S.E.; Borrelli, M. Using CMECS to Create Benthic Habitat Maps for Pleasant Bay, Cape Cod, Massachusetts. Northeast. Nat. 2020, 27, 22–47. [Google Scholar] [CrossRef]
- Gallagher, E.D.; Grassle, J.F. Virginian Province Macrofaunal Community Structure: PCA-H Analyses and an Assessment of Pollution Degradation Indices; US EPA: Narragansett, RI, USA, 1997. [Google Scholar]
- Giere, O. Meiobenthology: The Microscopic Motile Fauna of Aquatic Sediments; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Clarke, K.R.; Gorley, R.N.; Sommerfield, P.J.; Warwick, R.M. Change in Marine Communities: An Approach to Statistical Analysis and Interpretation, 3rd ed.; PRIMER-E Ltd.: Plymouth, UK, 2014. [Google Scholar]
- McArdle, B.H.; Anderson, M.J. Fitting multivariate models to community data: A comment on distance-based redundancy analysis. Ecology 2001, 82, 290–297. [Google Scholar] [CrossRef]
- Anderson, M.J.; Gorley, R.N.; Clarke, K.R. PERMANOVA+ for PRIMER: Guide to Software and Statistical Methods; PRIMER-E: Plymouth, UK, 2008. [Google Scholar]
- Burnham, K.P.; Anderson, D.R. Model Selection and Multi-Modal Inference: A Practical Information-Theoretic Approach; Springer: Berlin/Heidelberg, Germany, 2002. [Google Scholar]
- Bolker, B.M. Likelihood And All That. In Ecological Models and Data in R; Princeton University Press: Princeton, NJ, USA, 2006; pp. 169–221. [Google Scholar]
- Cogan, C.B.; Todd, B.J.; Lawton, P.; Noji, T.T. The role of marine habitat mapping in ecosystem-based management. ICES J. Mar. Sci. 2009, 66, 2033–2042. [Google Scholar] [CrossRef]
- Cloern, J. Our evolving conceptual model of the coastal eutrophication problem. Mar. Ecol. Prog. Ser. 2001, 210, 223–253. [Google Scholar] [CrossRef]
- Lefcheck, J.S.; Hughes, B.B.; Johnson, A.J.; Pfirrmann, B.W.; Rasher, D.B.; Smyth, A.R.; Williams, B.L.; Beck, M.W.; Orth, R.J. Are coastal habitats important nurseries? A meta-analysis. Conserv. Lett. 2019, 12, e12645. [Google Scholar] [CrossRef]
- Liversage, K.; Kotta, J. Unveiling commonalities in understudied habitats of boulder-reefs: Life-history traits of the widespread invertebrate and algal inhabitants. Mar. Biol. Res. 2018, 14, 655–671. [Google Scholar] [CrossRef]
- von Rönn, G.A.; Krämer, K.; Franz, M.; Schwarzer, K.; Reimers, H.-C.; Winter, C. Dynamics of Stone Habitats in Coastal Waters of the Southwestern Baltic Sea (Hohwacht Bay). Geosciences 2021, 11, 171. [Google Scholar] [CrossRef]
- Ringvold, H.; Arvid Grytnes, J.; Van Der Meeren, G.I. Diver-operated suction sampling in norwegian cobble grounds: Technique and associated fauna. Crustaceana 2015, 88, 184–202. [Google Scholar] [CrossRef]
- Gallucci, F.; Christofoletti, R.A.; Fonseca, G.; Dias, G.M. The effects of habitat heterogeneity at distinct spatial scales on hard-bottom-associated communities. Diversity 2020, 12, 39. [Google Scholar] [CrossRef]
Margin of Error (%) | Number of Points Necessary to Achieve | Number of Points | Resulting Margin of Error |
---|---|---|---|
1 | 9604 | 5 | 43.8 |
5 | 384 | 25 | 19.6 |
10 | 96 | 50 | 13.9 |
15 | 43 | 75 | 11.3 |
100 | 9.8 |
Model 1 Biotope | Stations | BMA Cover (%) | CMECS Biotope Description |
---|---|---|---|
A | 4, 11, 21 | 0 | Small Surface-Burrowing Fauna with co-occurring element Clam Bed found in predominantly sandy substrate with 0% SAV |
B | 2, 3, 5, 6, 7, 17, 22 | 1–2 | Small Surface-Burrowing Fauna with co-occurring element Clam Bed found in predominantly sandy substrate with 1–2% cover of SAV |
C | 8, 19, 20, 24 | 3–10 | Small Surface-Burrowing Fauna with co-occurring element Holothurian Bed in predominantly sandy substrate with 3–10% cover of SAV |
D | 1, 9, 12, 15, 18 | 11–30 | Small Surface-Burrowing Fauna with co-occurring element Larger Deep-Burrowing Fauna found in mixed substrate with 12–30% cover of SAV |
E | 10, 13, 14, 16, 23 | >31 | Mobile Molluscs on Hard or Mixed Substrates with co-occurring elements Larger Deep-Burrowing Fauna and Mobile Crustaceans on Hard or Mixed Substrates found in coarse substrates with little sand and >30% cover of SAV |
Model 2 Biotope | Stations | % Organic Matter | CMECS Biotope Description |
---|---|---|---|
A | 3, 4, 5, 11, 17, 20 | <0.43 | Small Surface-Burrowing Fauna with co-occurring element Clam Bed found in substrate with <0.43% organic matter |
B | 1, 2, 7, 18 | 0.44–0.47 | Small Surface-Burrowing Fauna with co-occurring element Clam Bed found in substrate with 0.44–0.47% organic matter |
C | 6, 8, 21 | 0.51–0.52 | Small Surface-Burrowing Fauna found in substrate with 0.51–0.52% organic matter |
D | 9, 10, 12, 13, 14, 15, 16, 19, 22, 23, 24 | >0.56 | Larger Deep-Burrowing Fauna with co-occurring elements Mobile Molluscs on Hard or Mixed Substrates and Small Surface-Burrowing Fauna in substrate with >0.56% organic matter. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Terrill, S.; Mittermayr, A.; Legare, B.; Borrelli, M. Augmenting Seafloor Characterization via Grain Size Analysis with Low-Cost Imagery: Minimizing Sediment Sampler Biases and Increasing Habitat Classification Accuracy. Geosciences 2024, 14, 313. https://doi.org/10.3390/geosciences14110313
Terrill S, Mittermayr A, Legare B, Borrelli M. Augmenting Seafloor Characterization via Grain Size Analysis with Low-Cost Imagery: Minimizing Sediment Sampler Biases and Increasing Habitat Classification Accuracy. Geosciences. 2024; 14(11):313. https://doi.org/10.3390/geosciences14110313
Chicago/Turabian StyleTerrill, Sean, Agnes Mittermayr, Bryan Legare, and Mark Borrelli. 2024. "Augmenting Seafloor Characterization via Grain Size Analysis with Low-Cost Imagery: Minimizing Sediment Sampler Biases and Increasing Habitat Classification Accuracy" Geosciences 14, no. 11: 313. https://doi.org/10.3390/geosciences14110313
APA StyleTerrill, S., Mittermayr, A., Legare, B., & Borrelli, M. (2024). Augmenting Seafloor Characterization via Grain Size Analysis with Low-Cost Imagery: Minimizing Sediment Sampler Biases and Increasing Habitat Classification Accuracy. Geosciences, 14(11), 313. https://doi.org/10.3390/geosciences14110313