The Possibility of Estimating the Permafrost’s Porosity In Situ in the Hydrocarbon Industry and Environment
Abstract
:1. Introduction
2. Time of Freeze-Back
3. The Empirical Formula
4. Numerical Modeling: Five Cases
5. Results of Calculations
6. Discussion and Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hjort, J.; Streletskiy, D.; Doré, G.; Wu, Q.; Bjella, K.; Luoto, M. Impacts of permafrost degradation on infrastructure. Nat. Rev. Earth Environ. 2022, 3, 24–38. [Google Scholar] [CrossRef]
- Langer, M.; von Deimling, T.S.; Westermann, S.; Rolph1, R.; Rutte, R.; Antonova, S.; Rachold, V.; Schultz, M.; Oehme, A.; Grosse, G. Thawing permafrost poses environmental threat to thousands of sites with legacy industrial contamination. Nat. Commun. 2023, 14, 1721. [Google Scholar] [CrossRef] [PubMed]
- Eppelbaum, L.V.; Kutasov, I.M. Well drilling in permafrost regions—Dynamics of the thawed zone. Polar Res. 2019, 38, 1–9. [Google Scholar] [CrossRef]
- Creamean, J.M.; Hill, T.C.J.; DeMott, P.J.; Uetake, J.; Kreidenweis, S.; Douglas, T.A. Thawing permafrost: An overlooked source of seeds for Arctic cloud formation. Environ. Res. Lett. 2020, 15, 084022. [Google Scholar] [CrossRef]
- van Huissteden, J. Thawing Permafrost. In Permafrost Carbon in a Warming Arctic; Springer Nature Switzerland AG: Cham, Switzerland, 2020; 520p. [Google Scholar]
- Murton, J.B. Permafrost and climate change. In Climate Change, 3rd ed.; Letcher, T.M., Ed.; Elsevier: Amsterdam, The Netherlands, 2021; pp. 281–326. [Google Scholar] [CrossRef]
- Koven, C.D.; Riley, W.J.; Stern, A. Analysis of permafrost thermal dynamics and response to climate change in the CMIP5 earth system models. J. Clim. 2013, 26, 1877–1900. [Google Scholar] [CrossRef]
- Boike, J.; Chadburn, S.; Martin, J.; Zwieback, S.; Althuizen, I.H.J.; Anselm, N.; Cai, L.; Coulombe, S.; Lee, H.; Liljedahl, A.K.; et al. Standardized monitoring of permafrost thaw: A user-friendly, multiparameter protocol. Arct. Sci. 2021, 8, 153–182. [Google Scholar] [CrossRef]
- Tomaškovičová, S.; Ingeman-Nielsen, T. Coupled thermo-geophysical inversion for permafrost monitoring. Cryosphere 2024, 18, 321–340. [Google Scholar] [CrossRef]
- Majorowicz, J.; Osadetz, K.; Safanda, J. Onset and stability of gas hydrates under permafrost in an environment of surface climatic change—Past and future. In Proceedings of the 6th International Conference on Gas Hydrates (ICGH 2008), Vancouver, BC, Canada, 6–10 July 2008; pp. 1–14. [Google Scholar]
- Liu, L.; Dai, S.; Ning, F.; Caie, J.; Liu, C.; Wu, N. Fractal characteristics of unsaturated sands—Implications to relative permeability in hydrate-bearing sediments. J. Nat. Gas Sci. Eng. 2019, 66, 11–17. [Google Scholar] [CrossRef]
- Liu, L.; Zhang, Z.; Li, C.; Ning, F.; Liu, C.; Wu, N.; Cai, J. Hydrate growth in quartzitic sands and implication of pore fractal characteristics to hydraulic, mechanical, and electrical properties of hydrate-bearing sediments. J. Nat. Gas Sci. Eng. 2020, 75, 103109. [Google Scholar] [CrossRef]
- Tsytovich, N.A. The Mechanics of Frozen Ground; Scripta Book Co.: Washington, DC, USA, 1975; 426p. [Google Scholar]
- Hnatiuk, J.; Randall, A.G. Determination of permafrost thickness in wells in Northern Canada. Canad. J. Earth Sci. 1977, 14, 375–383. [Google Scholar] [CrossRef]
- Dobinski, W. Permafrost. Earth-Sci. Rev. 2011, 108, 158–169. [Google Scholar] [CrossRef]
- Eppelbaum, L.V. VLF-method of geophysical prospecting: A non-conventional system of processing and interpretation (implementation in the Caucasian ore deposits). ANAS Trans. Earth Sci. 2021, 16–38. [Google Scholar] [CrossRef]
- Kutasov, I.M.; Eppelbaum, L.V. Time of refreezing of surrounding the wellbore thawed formations. Int. J. Therm. Sci. 2017, 122, 133–140. [Google Scholar] [CrossRef]
- Kutasov, I.M.; Eppelbaum, L.V. WITHDRAWN: Corrigendum to “Time of refreezing of surrounding the wellbore thawed formations” [Int. J. Thermal Sci. 122 (December 2017) 133–140]. Intern. J. Therm. Sci. 2018, 124, 548. [Google Scholar] [CrossRef]
- Kutasov, I.M. Radius of thawing around an injection well and time of complete freezback. J. Geophys. Eng. 2006, 3, 154–159. [Google Scholar] [CrossRef]
- Kutasov, I.M.; Eppelbaum, L.V. Prediction of formation temperatures in permafrost regions from temperature logs in deep wells—field cases. Permafr. Periglac. Process. 2003, 14, 247–258. [Google Scholar] [CrossRef]
- Bassam, A.; Santoyo, E.; Andaverde, J.; Hernández, J.A.; Espinoza-Ojeda, O.M. Estimation of static formation temperatures in geothermal wells by using an artificial neural network approach. Comput. Geosci. 2010, 36, 1191–1199. [Google Scholar] [CrossRef]
- Liu, C.; Li, K.; Chen, Y.; Jia, L.; Ma, D. Static Formation Temperature Prediction Based on Bottom Hole Temperature. Energies 2016, 9, 646. [Google Scholar] [CrossRef]
- Grossman, S.I. Calculus; Elsevier: Amsterdam, The Netherlands, 2014; 1148p. [Google Scholar]
- Kutasov, I.M. Applied Geothermics for Petroleum Engineers; Elsevier: Amsterdam, The Netherlands, 1999; 346p. [Google Scholar]
- Eppelbaum, L.V.; Kutasov, I.M.; Pilchin, A.N. Applied Geothermics; Springer: Berlin/Heidelberg, Germany, 2014; 751p. [Google Scholar]
- Taylor, A.E. Temperatures and Heat Flow in a System of Cylindrical Symmetry Including a Phase Boundary; Geothermal Series 7; Energy Mines Resources: Ottawa, ON, Canada, 1978; 95p.
- Li, Y.; Liu, L.; Jin, Y.; Wu, N. Characterization and development of natural gas hydrate in marine clayey-silt reservoirs: A review and discussion. Adv. Geo-Energy Res. 2021, 5, 75–86. [Google Scholar] [CrossRef]
- Wan, Y.; Yuan, Y.; Zhou, C.; Liu, L. Multiphysics coupling in exploration and utilization of geo-energy: State-of-the-art and future perspectives. Adv. Geo-Energy Res. 2023, 10, 7–13. [Google Scholar] [CrossRef]
Case 1 | Case 2 | ||
Tw = 10 °C, | Tw = 10 °C, | ||
Tf = −10 °C, | Tf = −10 °C, | ||
tdD = 100 | tdD = 300 | ||
tsD | Ts, °C | tsD | Ts, °C |
20 | 0.00 | 30 | 0.00 |
30 | 0.00 | 60 | −1.19 |
40 | −3.32 | 90 | −4.24 |
50 | −4.52 | 120 | −5.29 |
70 | −5.80 | 150 | −5.96 |
100 | −6.81 | 210 | −6.80 |
200 | −8.18 | 300 | −7.53 |
300 | −8.72 | 400 | −8.02 |
400 | −9.01 | 500 | −8.34 |
500 | −9.19 | 600 | −8.57 |
600 | −9.31 | 700 | −8.74 |
700 | −9.41 | 1700 | −9.47 |
800 | −9.48 | ||
900 | −9.53 |
tsD | Ts, °C | tsD | Ts, °C | tsD | Ts, °C |
Case 3 | Case 4 | Case 5 | |||
Tw = 30 °C, | Tw = 10 °C, | Tw = 30 °C, | |||
Tf = −10 °C, | Tf = −5 °C, | Tf = −5 °C, | |||
tdD = 1000 | tdD = 30 | tdD = 30 | |||
400 | 0.0 | 30 | 0.0 | 60 | 0.0 |
500 | 0.0 | 40 | 0.0 | 70 | 0.0 |
700 | −3.52 | 50 | −1.22 | 170 | −2.58 |
800 | −4.45 | 60 | −2.32 | 270 | −3.66 |
900 | −5.09 | 70 | −2.61 | 370 | −4.05 |
1000 | −5.58 | 170 | −4.15 | 470 | −4.27 |
2000 | −7.93 | 270 | −4.46 | 570 | −4.40 |
3000 | −8.91 | 370 | −4.61 | 670 | −4.49 |
4000 | −9.43 | 470 | −4.69 | 770 | −4.56 |
5000 | −9.70 | 570 | −4.74 | 870 | −4.61 |
970 | −4.65 |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
ts1D | ts2D | ts3D | tepD | B, °C | Tfcal, °C | If | Φ |
Case 1. H = 3.87; Tf = −10°C | |||||||
50 | 70 | 900 | 18.5 | 3.49 | −9.97 | 1.205 | 0.086 |
50 | 70 | 800 | 18.5 | 3.50 | −9.97 | 1.205 | 0.086 |
50 | 70 | 700 | 18.5 | 3.49 | −9.97 | 1.205 | 0.086 |
50 | 70 | 600 | 18.7 | 3.46 | −9.95 | 1.217 | 0.087 |
50 | 70 | 500 | 18.7 | 3.46 | −9.95 | 1.217 | 0.087 |
50 | 70 | 400 | 18.8 | 3.45 | −9.95 | 1.223 | 0.087 |
50 | 70 | 300 | 19.1 | 3.43 | −9.93 | 1.241 | 0.089 |
50 | 70 | 200 | 19.6 | 3.37 | −9.89 | 1.272 | 0.091 |
40 | 70 | 200 | 21.3 | 3.25 | −9.86 | 1.375 | 0.098 |
40 | 70 | 300 | 20.9 | 3.31 | −9.91 | 1.351 | 0.096 |
40 | 70 | 400 | 20.7 | 3.34 | −9.93 | 1.339 | 0.096 |
40 | 70 | 500 | 20.6 | 3.35 | −9.94 | 1.333 | 0.095 |
40 | 70 | 600 | 20.5 | 3.36 | −9.94 | 1.327 | 0.095 |
Case 2. H = 4.80; Tf = −10 °C | |||||||
90 | 120 | 210 | 37.5 | 2.78 | −9.81 | 1.525 | 0.109 |
90 | 120 | 300 | 36.7 | 2.82 | −9.85 | 1.494 | 0.107 |
90 | 120 | 400 | 35.9 | 2.86 | −9.89 | 1.464 | 0.105 |
90 | 120 | 500 | 35.6 | 2.87 | −9.90 | 1.452 | 0.104 |
90 | 120 | 600 | 35.4 | 2.89 | −9.92 | 1.445 | 0.103 |
90 | 120 | 700 | 35.3 | 2.89 | −9.92 | 1.441 | 0.103 |
90 | 120 | 1700 | 33.3 | 3.00 | −10.02 | 1.364 | 0.097 |
120 | 210 | 300 | 32.0 | 2.96 | −9.92 | 1.314 | 0.094 |
120 | 210 | 400 | 30.4 | 3.01 | −9.94 | 1.252 | 0.089 |
120 | 210 | 500 | 30.3 | 3.02 | −9.95 | 1.248 | 0.089 |
120 | 210 | 600 | 29.9 | 3.03 | −9.95 | 1.233 | 0.088 |
120 | 210 | 700 | 30.0 | 3.03 | −9.95 | 1.237 | 0.088 |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |||
ts1D | ts2D | ts3D | tepD | B, °C | Tfcal, °C | If | φ | |||
Case 3. H = 14.99; Tf = −10 °C | ||||||||||
700 | 900 | 2000 | 382.9 | 4.16 | −10.50 | 1.533 | 0.110 | |||
700 | 900 | 3000 | 348.9 | 4.62 | −10.81 | 1.405 | 0.100 | |||
700 | 900 | 4000 | 336.5 | 4.98 | −10.92 | 1.359 | 0.097 | |||
700 | 900 | 5000 | 338.6 | 4.77 | −10.90 | 1.366 | 0.098 | |||
800 | 900 | 2000 | 334.1 | 4.56 | −10.61 | 1.349 | 0.096 | |||
800 | 900 | 3000 | 291.3 | 5.10 | −10.90 | 1.186 | 0.085 | |||
800 | 900 | 4000 | 277.4 | 5.29 | −10.99 | 1.133 | 0.081 | |||
800 | 900 | 5000 | 282.9 | 5.22 | −10.96 | 1.154 | 0.082 | |||
700 | 1000 | 5000 | 311.8 | 5.02 | −10.94 | 1.265 | 0.090 | |||
Case 4. H = 3.94; Tf = −5 °C | ||||||||||
60 170 | 570 | 45.8 | 1.11 | −5.01 | 2.704 | 0.096 | ||||
60 270 | 570 | 46.5 | 1.09 | −5.01 | 2.742 | 0.098 | ||||
60 370 | 570 | 48.8 | 1.00 | −4.99 | 2.868 | 0.102 | ||||
Case 5. H = 6.42; Tf = −5 °C | ||||||||||
270 470 | 970 | 118.4 | 1.491 | −4.99 | 2.544 | 0.091 | ||||
270 570 | 970 | 113.7 | 1.550 | −5.00 | 2.451 | 0.088 | ||||
270 670 | 970 | 109.0 | 1.611 | −5.00 | 2.356 | 0.084 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Eppelbaum, L.V. The Possibility of Estimating the Permafrost’s Porosity In Situ in the Hydrocarbon Industry and Environment. Geosciences 2024, 14, 72. https://doi.org/10.3390/geosciences14030072
Eppelbaum LV. The Possibility of Estimating the Permafrost’s Porosity In Situ in the Hydrocarbon Industry and Environment. Geosciences. 2024; 14(3):72. https://doi.org/10.3390/geosciences14030072
Chicago/Turabian StyleEppelbaum, Lev V. 2024. "The Possibility of Estimating the Permafrost’s Porosity In Situ in the Hydrocarbon Industry and Environment" Geosciences 14, no. 3: 72. https://doi.org/10.3390/geosciences14030072
APA StyleEppelbaum, L. V. (2024). The Possibility of Estimating the Permafrost’s Porosity In Situ in the Hydrocarbon Industry and Environment. Geosciences, 14(3), 72. https://doi.org/10.3390/geosciences14030072