Geosites and Climate Change—A Review and Conceptual Framework
Abstract
:1. Introduction
2. The Nature of Record of Climate Change—Relevance to Geosites
2.1. Rocks
2.2. Fossils
2.3. Landforms
3. Geosites Evidencing Climates of the Past
3.1. Climate Change Recorded at a Geosite
3.2. Evidence of Environments Different Than the Contemporary Ones
3.2.1. Individual Geosites
3.2.2. Multiple Geosites—A Journey through Time
4. Evidence of Extreme Atmospheric Events
5. Geosites and Ongoing Climate Change
6. Interpretation Challenges
7. Conclusions—A Synthesis
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gray, M. Geodiversity: Valuing and Conserving Abiotic Nature; Wiley Blackwell: Chichester, UK, 2013. [Google Scholar]
- Brilha, J. Geoheritage: Inventories and evaluation. In Geoheritage. Assessment, Protection, and Management; Reynard, E., Brilha, J., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 69–85. [Google Scholar]
- Reynard, E. Geosite. In Encyclopedia of Geomorphology; Goudie, A.S., Ed.; Routledge: London, UK, 2004; Volume 1, p. 440. [Google Scholar]
- Brilha, J. Inventory and quantitative assessment of geosites and geodiversity sites: A review. Geoheritage 2016, 8, 119–134. [Google Scholar] [CrossRef]
- Reynard, E.; Fontana, G.; Kozlik, L.; Scapozza, C. A method for assessing scientific and additional values of geomorphosites. Geogr. Helv. 2007, 62, 148–158. [Google Scholar] [CrossRef]
- Pereira, P.; Pereira, D.; Caetano Alves, M.I. Geomorphosite assessment in Montesinho Natural Park (Portugal). Geogr. Helv. 2007, 62, 159–168. [Google Scholar] [CrossRef]
- Prosser, C.D.; Diaz-Martinez, E.; Larwood, J. The conservation of geosites: Principles and practice. In Geoheritage. Assessment, Protection, and Management; Reynard, E., Brilha, J., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 193–212. [Google Scholar]
- Reynard, E.; Perret, A.; Bussard, J.; Grangier, L.; Martin, S. Integrated approach for the inventory and management of geomorphological heritage at the regional scale. Geoheritage 2016, 8, 43–60. [Google Scholar] [CrossRef]
- Pica, A.; Vergari, F.; Fredi, P.; Del Monte, M. The Aeterna Urbs geomorphological heritage (Rome, Italy). Geoheritage 2016, 8, 31–42. [Google Scholar] [CrossRef]
- Tessema, G.A.; Poesen, J.; Verstraeten, G.; Van Rompaey, A.; van der Borg, J. The scenic beauty of geosites and its relation to their scientific value and geoscience knowledge of tourists: A case study from southeastern Spain. Land 2021, 10, 460. [Google Scholar] [CrossRef]
- Pasquaré Mariotto, F.; Drymoni, K.; Bonali, F.L.; Tibaldi, A.; Corti, N.; Oppizzi, P. Geosite assessment and communication: A review. Resources 2023, 12, 29. [Google Scholar] [CrossRef]
- Reynard, E. Geomorphosites: Definition and characteristics. In Geomorphosites; Reynard, E., Coratza, P., Regolini-Bissig, G., Eds.; Dr. Friedrich Pfeil Verlag: Munich, Germany, 2009; pp. 9–20. [Google Scholar]
- Reynard, E. Geomorphosites and landscapes. In Geomorphosites; Reynard, E., Coratza, P., Regolini-Bissig, G., Eds.; Dr. Friedrich Pfeil Verlag: Munich, Germany, 2009; pp. 21–34. [Google Scholar]
- Migoń, P.; Pijet-Migoń, E. Viewpoint geosites—Values, conservation and management issues. Proc. Geol. Assoc. 2017, 128, 511–522. [Google Scholar] [CrossRef]
- Ruban, D.A. Quantification of geodiversity and its loss. Proc. Geol. Assoc. 2010, 121, 326–333. [Google Scholar] [CrossRef]
- Hilario, A.; Asrat, A.; van Wyk de Vries, B.; Mogk, D.; Lozano, G.; Zhang, J.; Brilha, J.; Vegas, J.; Lemon, K.; Carcavilla, L.; et al. (Eds.) The First 100 IUGS Geological Heritage Sites; IUGS (International Union of Geological Sciences): Spain, 2022; Available online: https://iugs-geoheritage.org/videos-pdfs/iugs_first_100_book_v2.pdf (accessed on 3 May 2024).
- Kagawa, F.; Selby, D. Education and Climate Change. In Living and Learning in Interesting Times; Routledge: New York, UK, 2010. [Google Scholar]
- Moser, S.C. Communicating climate change: History, challenges, process and future directions. Wiley Interdiscip. Rev. Clim. Chang. 2010, 1, 31–53. [Google Scholar] [CrossRef]
- Monroe, M.C.; Plate, R.R.; Oxarart, A.; Bowers, A.; Chaves, W.A. Identifying effective climate change education strategies: A systematic review of the research. Environ. Educ. Res. 2017, 25, 791–812. [Google Scholar] [CrossRef]
- Stevenson, R.B.; Nicholls, J.; Whitehouse, H. What is climate change education? Curric. Perspect. 2017, 37, 67–71. [Google Scholar] [CrossRef]
- Available online: https://www.unesco.org/en/articles/unesco-global-geoparks-forefront-climate-change-action (accessed on 3 May 2024).
- Martini, G.; Zouros, N.; Zhang, J.; Jin, X.; Komoo, I.; Border, M.; Watanabe, M.; Frey, M.-L.; Rangnes, K.; Tan Van, T.; et al. UNESCO Global Geoparks in the “World after”: A multiple-goals roadmap proposal for future discussion. Episodes 2021, 45, 29–35. [Google Scholar] [CrossRef] [PubMed]
- Giardino, M.; Justice, S.; Olsbo, R.; Balzarini, P.; Magagna, A.; Viani, C.; Selvaggio, I.; Kiuttu, M.; Kauhanen, J.; Laukkanen, M.; et al. ERASMUS+ strategic partnerships between UNESCO Global Geoparks, schools, and research institutions: A window of opportunity for geoheritage enhancement and geoscience education. Heritage 2022, 5, 677–701. [Google Scholar] [CrossRef]
- Tardy, Y.; Bocquier, G.; Paquet, H.; Millot, G. Formation of clay from granite and its distribution in relation to climate and topography. Geoderma 1973, 10, 271–284. [Google Scholar] [CrossRef]
- Taylor, G.; Eggleton, R.A. Regolith Geology and Geomorphology; Wiley: Chichester, The Netherlands, 2001. [Google Scholar]
- Dixon, J.C. Pedogenesis with respect to geomorphology. In Treatise on Geomorphology, 2nd ed.; Shroder, J.J.F., Ed.; Elsevier, Academic Press: San Diego, CA, USA, 2022; Volume 3, pp. 57–77. [Google Scholar] [CrossRef]
- Pope, G.A. Weathering in the tropics, and related extratropical processes. In Treatise on Geomorphology, 2nd ed.; Shroder, J.J.F., Ed.; Elsevier, Academic Press: San Diego, CA, USA, 2022; Volume 3, pp. 279–298. [Google Scholar] [CrossRef]
- Smith, B.J.; McAlister, J.J. Tertiary weathering environments and products in northeast Ireland. In International Geomorphology 1986, Part II.; Gardiner, V., Ed.; Wiley: Chichester, The Netherlands, 1987; pp. 1007–1031. [Google Scholar]
- Hill, I.G.; Worden, R.H.; Meighan, I.G. Formation of interbasaltic laterite horizons in NE Ireland by early Tertiary weathering processes. Proc. Geol. Assoc. 2001, 112, 339–348. [Google Scholar] [CrossRef]
- Goudie, A.S. Duricrusts in Tropical and Subtropical Landscapes; Clarendon: Oxford, UK, 1973. [Google Scholar]
- Van Loon, A.J. Soft-sediment deformation structures in siliciclastic sediments: An overview. Geologos 2009, 15, 3–55. [Google Scholar]
- Taylor, G.; Eggleton, R.A.; Holzhauer, C.C.; Maconachie, L.A.; Gordon, M.; Brown, M.C.; McQueen, K.G. Cool climate lateritic and bauxitic weathering. J. Geol. 1992, 100, 669–677. [Google Scholar] [CrossRef]
- Brown, A.G.; Tooth, S.; Bullard, J.E.; Thomas, D.S.G.; Chiverrell, R.C.; Plater, A.J.; Murton, J.; Thorndycraft, V.R.; Tarolli, P.; Rose, J.; et al. The geomorphology of the Anthropocene: Emergence, status and implications. Earth Surf. Proc. Landf. 2017, 42, 71–90. [Google Scholar] [CrossRef]
- Cendrero, A.; Forte, L.M.; Remondo, J.; Cuesta-Albertos, J.A. Anthropocene geomorphic change. Climate or human activities? Earth’s Future 2020, 8, e2019EF001305. [Google Scholar] [CrossRef]
- Jass, C.N.; George, C.O. An assessment of the contribution of fossil cave deposits to the Quaternary paleontological record. Quat. Intern. 2010, 217, 105–116. [Google Scholar] [CrossRef]
- Schubert, B.W.; Mead, J.I. Paleontology of caves. In Encyclopedia of Caves, 3rd ed.; White, W.B., Culver, D.C., Pipan, T., Eds.; Elsevier, Academic Press: San Diego, CA, USA, 2019; pp. 794–805. [Google Scholar] [CrossRef]
- Marciszak, A.; Sobczyk, A.; Kasprzak, M.; Gornig, W.; Ratajczak, U.; Wiśniewski, A.; Stefaniak, K. Taphonomic and paleoecological aspects of large mammals from Sudety Mts (Silesia, SW Poland), with particular interest to the carnivores. Quat. Intern. 2020, 546, 42–63. [Google Scholar] [CrossRef]
- Clary, R.M.; Wandersee, J.H. Lessons from US Fossil Parks for effective informal science education. Geoheritage 2014, 6, 241–256. [Google Scholar] [CrossRef]
- Henriques, M.H.; Pena dos Reis, R. Framing the palaeontological heritage within the geological heritage: An integrative vision. Geoheritage 2015, 7, 249–259. [Google Scholar] [CrossRef]
- Zouros, N.C. The Miocene Petrified Forest of Lesvos, Greece: Research and geoconservation activities. Geoconserv. Res. 2021, 4, 635–649. [Google Scholar] [CrossRef]
- Neto de Carvalho, C.; Baucon, A.; Bayet-Goll, A.; Belo, J. The Penha Garcia Ichnological Park at Naturtejo UNESCO Global Geopark (Portugal): A geotourism destination in the footprint of the Great Ordovician biodiversification event. Geoconserv. Res. 2021, 4, 70–79. [Google Scholar] [CrossRef]
- Gutiérrez, M.; Gutiérrez, F. Climatic geomorphology. In Treatise on Geomorphology, 2nd ed.; Shroder, J.J.F., Ed.; Elsevier, Academic Press: San Diego, CA, USA, 2022; Volume 9, pp. 263–279. [Google Scholar] [CrossRef]
- Morino, C.; Coratza, P.; Soldati, M. Landslides, a key landform in the global geological heritage. Front. Earth Sci. 2022, 10, 864760. [Google Scholar] [CrossRef]
- Moreno-de las Heras, M.; Gallart, F. The origin of badlands. In Badland Dynamics in the Context of Global Change; Nadal-Romero, E., Martínez-Murillo, J.F., Kuhn, N.J., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 27–59. [Google Scholar]
- Nadal-Romero, E.; Rodríguez-Caballero, E.; Chamizo, S.; Juez, C.; Cantón, Y.; García-Ruiz, J.M. Mediterranean badlands: Their driving processes and climate change futures. Earth Surf. Proc. Landf. 2022, 47, 17–31. [Google Scholar] [CrossRef]
- Anderson, R.S.; Anderson, S.P. Geomorphology. The Mechanics and Chemistry of Landscapes; Cambridge University Press: Cambrige, UK, 2010. [Google Scholar]
- Łopuch, M.; Sokołowski, R.J.; Jary, Z. Factors controlling the development of cold-climate dune fields within the central part of the European Sand Belt—Insights from morphometry. Geomorphology 2023, 420, 108514. [Google Scholar] [CrossRef]
- Łopuch, M.; Zieliński, P.; Jary, Z. Morphometry of the cold-climate Bory Stobrawskie Dune Field (SW Poland): Evidence for multi-phase Lateglacial aeolian activity within the European Sand Belt. Open Geosci. 2023, 15, 20220518. [Google Scholar] [CrossRef]
- Kubaliková, L. Mining landforms: An integrated approach for assessing the geotourism and geoeducational potential. Czech J. Tour. 2017, 6, 131–154. [Google Scholar] [CrossRef]
- Pánek, T.; Miklín, J.; Kirchner, K. Limestone klippen of the Pavlov Hills. In Landscapes and Landforms of the Czech Republic; Pánek, T., Hradecký, J., Eds.; Springer: Cham, Switzerland, 2016; pp. 373–384. [Google Scholar] [CrossRef]
- Riedl, D.; Roetzel, R.; Pöppl, R.E.; Sprafke, T. Wachau World Heritage Site: A diverse riverine landscape. In Landscapes and Landforms of Austria; Embleton-Hamann, C., Ed.; Springer: Cham, Switzerland, 2022; pp. 163–178. [Google Scholar] [CrossRef]
- Vasiljević, D.A.; Marković, S.B.; Hose, T.A.; Smalley, I.; Basarin, B.; Lazić, L.; Jović, G. The introduction to geoconservation of loess-palaeosol sequences in the Vojvodina region: Significant geoheritage of Serbia. Quat. Intern. 2011, 240, 108–116. [Google Scholar] [CrossRef]
- Vasiljević, D.A.; Marković, S.B.; Hose, T.A.; Smalley, I.; O’Hara-Dhand, K.; Basarin, B.; Lukić, T.; Vujičić, M.D. Loess towards (geo) tourism—Proposed application on loessin Vojvodina region (north Serbia). Acta geogr. Slov. 2011, 51, 390–406. [Google Scholar] [CrossRef]
- Bollati, I.; Zerboni, A. The Po Plain loess basin (Northern Italy): Scientific values, threats, and promotion opportunities. Geoheritage 2021, 13, 74. [Google Scholar] [CrossRef]
- Newsome, D.; Ladd, P. The dimensions of geotourism with a spotlight on geodiversity in a subdued landscape. Intern. J. Geoheritage Parks 2022, 10, 351–366. [Google Scholar] [CrossRef]
- Pelfini, M.; Bollati, I. Landforms and geomorphosites ongoing changes: Concepts and implications for geoheritage promotion. Quaest. Geogr. 2014, 33, 131–143. [Google Scholar] [CrossRef]
- Reynard, E.; Coratza, P. The importance of mountain geomorphosites for environmental education. Acta Geogr. Slov. 2016, 56, 291–303. [Google Scholar] [CrossRef]
- Holzhauser, H. The Aletsch region with the majestic Grosser Aletschgletscher. In Landscapes and Landforms of Switzerland; Reynard, E., Ed.; Springer: Cham, Switzerland, 2021; pp. 159–175. [Google Scholar] [CrossRef]
- Beus, S.S.; Morales, M. (Eds.) Grand Canyon Geology, 2nd ed.; Oxford University Press: New York, UK; Oxford, UK, 2002. [Google Scholar]
- Villarreal, M.L.; Coronato, A. Characteristics and nature of pans in the semi-arid temperate/cold steppe of Tierra del Fuego. In Advances in Geomorphology and Quaternary Studies in Argentina; Rabassa, J., Ed.; Springer: Cham, Switzerland, 2017; pp. 203–224. [Google Scholar] [CrossRef]
- Salemme, M.; Coronato, A.; Schwarz, S.; Flores Barrera, F.; Guerrero Gallardo, G.; Labrone, S.; Montes, A.; Mora, C.; Oría, J.; Santiago, F. Paisajes Que Cuentan Historias. Descubriendo el Norte de Tierra del Fuego; Conicet Cadic: Ushuaia, Argentina, 2023. [Google Scholar]
- Benson, L.V.; Thompson, R.S. Lake-level variation in the Lahontan Basin for the past 50,000 years. Quat. Res. 1987, 28, 69–85. [Google Scholar] [CrossRef]
- Orndorff, R.L.; Wieder, R.W.; Filkorn, H.F. Geology Underfoot in Central Nevada; Mountain Press: Missoula, Montana, 2001. [Google Scholar]
- Chan, M.A.; Godsey, H.S. Lake Bonneville geosites in the urban landscape: Potential loss of geological heritage. Dev. Earth Surf. Process. 2016, 20, 617–633. [Google Scholar] [CrossRef]
- Smith, B.J. Management challenges at a complex geosite: The Giant’s Causeway World Heritage site, Northern Ireland. Géomorphologie Relief Process. Environ. 2005, 11, 219–226. [Google Scholar] [CrossRef]
- Ruban, D.A. Ancient carbonate reefs as geological heritage: State of knowledge and case example. Carbonates Evaporites 2023, 38, 75. [Google Scholar] [CrossRef]
- Frey, M.-L.; Schmitz, P.; Weber, J. Messel Pit UNESCO World Heritage Fossil Site in the UNESCO Global Geopark Bergstrasse-Odenwald, Germany—Challenges of geoscience popularisation in a complex geoheritage context. Geoconserv. Res. 2021, 4, 524–546. [Google Scholar] [CrossRef]
- Zieliński, A.; Marek, A.; Zwoliński, Z. Geotourism potential of show caves in Poland. Quaest. Geogr. 2022, 41, 169–181. [Google Scholar] [CrossRef]
- Schütze, K.; Börner, A. Die Geotouristikkarte des Europäischen Geoparks Mecklenburgische Eiszeitlandschaft 1: 200 000. Schrift. Dt. Gesell. Geowiss. 2007, 51, 189–194. [Google Scholar]
- Jamorska, I.; Sobiech, M.; Karasiewicz, T.; Tylmann, K. Geoheritage of postglacial areas in Northern Poland—Prospects for geotourism. Geoheritage 2020, 12, 12. [Google Scholar] [CrossRef]
- Mazurek, M.; Paluszkiewicz, R.; Zwoliński, Z. Glacial and postglacial landforms of the Drawsko Lakeland. In Landscapes and Landforms of Poland; Migoń, P., Jancewicz, K., Eds.; Springer: Cham, Switzerland, 2024; pp. 597–614. [Google Scholar] [CrossRef]
- Zwoliński, Z.; Kostrzewski, A.; Winowski, M.; Mazurek, M. Wolin Island—Outstanding geodiversity on the Polish Coast. In Landscapes and Landforms of Poland; Migoń, P., Jancewicz, K., Eds.; Springer: Cham, Switzerland, 2024; pp. 687–708. [Google Scholar] [CrossRef]
- Kupetz, A.; Kupetz, M. Der Muskauer Faltenbogen. Wanderungen in die Erdgeschichte (24); Verlag Dr. Friedrich Pfeil: Munchen, Germany, 2009. [Google Scholar]
- Koźma, J.; Migoń, P. Mużaków Rampart (Muskau Arch)—The legacy of glacial processes and mining in the UNESCO Global Geopark. In Landscapes and Landforms of Poland; Migoń, P., Jancewicz, K., Eds.; Springer: Cham, Switzerland, 2024; pp. 483–497. [Google Scholar] [CrossRef]
- Migoń, P. Wybrane formy rzeźby terenu w sudeckiej części Geoparku Kraina Wygasłych Wulkanów (pd.-zach. Polska). Landf. Anal. 2021, 40, 5–33. [Google Scholar] [CrossRef]
- Migoń, P. Land of Extinct Volcanoes—Rock-controlled landforms, postglacial gorges and faulted margin of the Sudetes. In Landscapes and Landforms of Poland; Migoń, P., Jancewicz, K., Eds.; Springer: Cham, Switzerland, 2024; pp. 159–175. [Google Scholar] [CrossRef]
- Migoń, P.; Maciejak, K.; Zygmunt, M. Peryglacjalna rzeźba wzgórz bazaltowych Pogórza Kaczawskiego (Sudety Zachodnie) i jej znaczenie dla paleogeografii plejstocenu. Przegl. Geogr. 2002, 74, 491–508. [Google Scholar]
- Michniewicz, A. Skałki zieleńcowe grzbietu Okola w Górach Kaczawskich (Sudety Zachodnie). Chrońmy Przyr. Ojczystą 2016, 72, 206–218. [Google Scholar]
- Migoń, P.; Kasprzak, M.; Jancewicz, K. Inherited periglacial geomorphology of a basalt hill in the Sudetes, Central Europe: Insights from LiDAR-aided landform mapping. Permafr. Perigl. Proc. 2020, 31, 587–597. [Google Scholar] [CrossRef]
- Kowalski, A.; Makoś, M.; Pitura, M. New insights into the glacial history of southwestern Poland based on large-scale glaciotectonic deformations—A case study from the Czaple II gravel pit (Western Sudetes). Ann. Soc. Geol. Polon. 2018, 88, 341–359. [Google Scholar] [CrossRef]
- Kida, J.; Jary, Z. Lessy Pogórza Kaczawskiego. Przyr. Sudet. Zach. 2003, 6, 211–222. [Google Scholar]
- Müller, P.; Novák, Z. (Eds.) Geologie Brna a okolí; Český geologický ústav: Praha, The Czech Republic, 2000. [Google Scholar]
- Lozar, F.; Clari, P.; Dela Pierre, F.; Natalicchio, M.; Berbardi, E.; Violanti, D.; Costa, M.; Giardino, M. Virtual tour of past environmental and climate change: The Messinian succession of the Tertiary Piedmont Basin (Italy). Geoheritage 2014, 7, 47–56. [Google Scholar] [CrossRef]
- Migoń, P.; Hrádek, M.; Parzóch, K. Extreme geomorphic events in the Sudetes Mountains and their long-term impact. Stud. Geomorph. Carpatho-Balc. 2002, 36, 29–49. [Google Scholar]
- Rodzik, J.; Terpiłowski, S.; Godlewska, A. Influence of field and road pattern changes on gully development in the Bug river valley side (E Poland). Landf. Anal. 2011, 17, 241–245. [Google Scholar]
- Rodzik, J.; Terpiłowski, S.; Godlewska, A.; Mroczek, P. Contemporary development of an atypical bank gully in the Szwajcaria Podlaska Nature Reserve resulting from human activity (E Poland). Z. Geomorph. N. F. 2015, 59 (Suppl. S2), 7–22. [Google Scholar] [CrossRef]
- Bork, H.-R. Mittelalterliche und neuzeitliche lineare Bodenerosion in Südniedersachsen. Hercynia N. F. 1985, 22, 259–279. [Google Scholar]
- Reynard, E.; Regolini-Bissig, G.; Kozlik, L.; Benedetti, S. Assessment and promotion of cultural geomorphosites in the Trient Valley (Switzerland). Mem. Descr. Carta Geol. d’It. 2009, 87, 181–189. [Google Scholar]
- Reynard, E.; Giusti, C. The landscape and the cultural value of geoheritage. In Geoheritage. Assessment, Protection, and Management; Reynard, E., Brilha, J., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 147–166. [Google Scholar]
- Wagner, H.-G. Bodenerosion in der Agrarlandschaft des Taubertales; Würzburger Geogr. Manuskripte 88: Würzburg, Germany, 2018; Available online: https://opus.bibliothek.uni-wuerzburg.de/opus4-wuerzburg/frontdoor/deliver/index/docId/19246/file/Wagner_Bodenerosion_Taubertal_W%c3%bcrzburgerGeographischeManuskripte88.pdf (accessed on 5 May 2024).
- Rotnicki, K. Ruins of the Mediaeval Church at Trzęsacz and the intensity of cliff abrasion over the last few hundred years. J. Coastal Res. 1995, SI 22, 287–288. [Google Scholar]
- Łabuz, T. Morfodynamika i tempo erozji klifu w Trzęsaczu (1997–2017). Landf. Anal. 2017, 34, 29–50. [Google Scholar] [CrossRef]
- Bollati, I.M.; Pellegrini, M.; Reynard, E.; Pelfini, M. Water driven processes and landforms evolution rates in mountain geomorphosites: Examples from Swiss Alps. Catena 2017, 158, 321–339. [Google Scholar] [CrossRef]
- Bollati, I.M.; Viani, C.; Masseroli, A.; Mortara, G.; Testa, B.; Tronti, G.; Pelfini, M.; Reynard, E. Geodiversity of proglacial areas and implications for geosystem services: A review. Geomorphology 2023, 421, 108517. [Google Scholar] [CrossRef]
- Bussard, J.; Reynard, E. Conservation of World Heritage glacial landscapes in a changing climate: The Swiss Alps Jungfrau-Aletsch case. Intern. J. Geoherit. Parks 2023, 11, 535–552. [Google Scholar] [CrossRef]
- Available online: https://www.katlageopark.com/geosites/mainly-geology/solheimajoekull/ (accessed on 3 May 2024).
- Naylor, L.A.; Spencer, T.; Lane, S.N.; Darby, S.E.; Magilligan, F.J.; Macklin, M.G.; Möller, I. Stormy geomorphology: Geomorphic contributions in an age of climate extremes. Earth Surf. Proc. Landf. 2017, 42, 166–190. [Google Scholar] [CrossRef]
- Myhre, G.; Alterskjær, K.; Stjern, C.W.; Hodnenrog, Ø.; Marelle, L.; Samset, B.H.; Sillmann, J.; Schaller, N.; Fischer, E.; Schulz, M.; et al. Frequency of extreme precipitation increases extensively with event rareness under global warming. Sci. Rep. 2019, 9, 16063. [Google Scholar] [CrossRef] [PubMed]
- Satariano, B.; Gauci, R. Landform loss and its effect on health and wellbeing: The collapse of the Azure Window (Gozo) and the resultant reactions of the media and the Maltese community. In Landscapes and Landforms of the Maltese Islands; Gauci, R., Schembri, J.A., Eds.; Springer: Cham, Switzerland, 2019; pp. 289–303. [Google Scholar]
- Coratza, P.; Gauci, R.; Schembri, J.; Soldati, M.; Tonelli, C. Bridging natural and cultural values of sites with outstanding scenery: Evidence from Gozo, Maltese Islands. Geoheritage 2016, 8, 91–103. [Google Scholar] [CrossRef]
- Wignall, R.M.L.; Gordon, J.E.; Brazier, V.; MacFadyen, C.C.J.; Everett, N.S. A Climate Change Risk-Based Assessment for Nationally and Internationally Important Geoheritage Sites in Scotland Including All Earth Science Features in Sites of Special Scientific Interest (SSSI); Scottish Natural Heritage Research Report No. 1014; Scottish Natural Heritage: Inverness, Scotland, 2018. [Google Scholar]
- Selmi, L.; Canesin, T.S.; Gauci, R.; Pereira, P.; Coratza, P. Degradation risk assessment: Understanding the impacts of climate change on geoheritage. Sustainability 2022, 14, 4262. [Google Scholar] [CrossRef]
- Hose, T.A. Geotourism and interpretation. In Geotourism; Dowling, R., Newsome, D., Eds.; Elsevier Butterworth-Heinemann: Oxford, UK, 2005; pp. 221–241. [Google Scholar]
- Macadam, J. Geoheritage: Getting the message across. What message and to whom? In Geoheritage. Assessment, Protection and Management; Reynard, E., Brilha, J., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 267–288. [Google Scholar]
- Migoń, P. Geo-Interpretation—How and for whom? In Handbook of Geotourism; Dowling, R.K., Newsome, D., Eds.; Edward Elgar: Cheltenham, UK, 2018; pp. 223–233. [Google Scholar]
- Tormey, D. Communicating geoheritage: Interpretation, education, outreach. Park. Steward. Forum 2022, 38, 75–83. [Google Scholar] [CrossRef]
- Crofts, R. Improving visitors’ geoheritage experience: Some practical pointers for managers. Geoheritage 2024, 16, 46. [Google Scholar] [CrossRef]
- Hughes, K.; Ballantyne, R. Interpretation rocks! Designing signs for geotourism sites. In Geotourism. The Tourism of Geology and Landscape; Newsome, D., Dowling, R.K., Eds.; Goodfellow: Oxford, UK, 2010; pp. 184–199. [Google Scholar]
- Bruno, B.C.; Wallace, A. Interpretative panels for geoheritage sites: Guidelines for design and evaluation. Geoheritage 2019, 11, 1315–1323. [Google Scholar] [CrossRef]
- Cayla, N. An overview of new technologies applied to the management of geoheritage. Geoheritage 2014, 6, 91–102. [Google Scholar] [CrossRef]
- Aldighieri, B.; Testa, B.; Bertini, A. 3D Exploration of the San Lucano Valley: Virtual geo-routes for everyone who would like to understand the landscape of the Dolomites. Geoheritage 2016, 8, 77–90. [Google Scholar] [CrossRef]
- Cayla, N.; Martin, S. Digital geovisualization technologies applied to geoheritage management. In Geoheritage, Assessment, Protection and Management; Reynard, E., Brilha, J., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 289–303. [Google Scholar]
- Fassoulas, C.; Nikolakakis, E.; Staridas, S. Digital tools to serve geotourism and sustainable development at Psiloritis UNESCO Global Geopark in COVID times and beyond. Geosciences 2022, 12, 78. [Google Scholar] [CrossRef]
- Catana, M.M.; Brilha, J.B. The role of UNESCO Global Geoparks in promoting geosciences education for sustainability. Geoheritage 2020, 12, 1. [Google Scholar] [CrossRef]
- Smith, B.J.; Pellitero Ondicol, R.; Alexander, G. Mapping slope instability at the Giant’s Causeway and Causeway Coast World Heritage Site: Implications for site management. Geoheritage 2011, 3, 253–266. [Google Scholar] [CrossRef]
- Gordon, J.E.; Wignall, R.M.L.; Brazier, V.; Crofts, R.; Tormey, D. Planning for climate change impacts on geoheritage interests in protected and conserved areas. Geoheritage 2022, 14, 126. [Google Scholar] [CrossRef]
- Evans, D.; Brown, E.; Larwood, J.; Prosser, C.; Silva, B.; Townley, H.; Wetherell, A. Geoconservation: Principles and Practice; Natural England General Publication NE802; Natural England: York, UK, 2023; Available online: https://publications.naturalengland.org.uk/publication/6152405931261952 (accessed on 3 May 2024).
- Bollati, I.M.; Smiraglia, C.; Pelfini, M. Assessment and selection of geomorphosites and trails in the Miage Glacier area (Western Italian Alps). Environ. Manag. 2013, 51, 951–967. [Google Scholar] [CrossRef]
Geosite Thematic Classification [15] | Climate-Related Issues at Geosites | |||
---|---|---|---|---|
Evidence of Climate Change | Evidence of a Different Environment | Evidence of Extreme Weather | Evidence of Ongoing Change | |
Stratigraphic | X | X | ||
Palaeontological | X | X | ||
Sedimentary | X | X | X | |
Igneous | ||||
Metamorphic | ||||
Mineralogical | ||||
Economic | ||||
Geochemical | X | X | ||
Seismic | ||||
Structural | ||||
Palaeogeographical | X | X | ||
Cosmogenic | ||||
Geothermal | ||||
Geocryological | X | X | ||
Geomorphological | X | X | X | X |
Hydrological | ||||
Engineering | ||||
Radiogeological | ||||
Neotectonic | ||||
Pedologic (soil) | X | X | ||
Geohistorical |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Migoń, P. Geosites and Climate Change—A Review and Conceptual Framework. Geosciences 2024, 14, 153. https://doi.org/10.3390/geosciences14060153
Migoń P. Geosites and Climate Change—A Review and Conceptual Framework. Geosciences. 2024; 14(6):153. https://doi.org/10.3390/geosciences14060153
Chicago/Turabian StyleMigoń, Piotr. 2024. "Geosites and Climate Change—A Review and Conceptual Framework" Geosciences 14, no. 6: 153. https://doi.org/10.3390/geosciences14060153
APA StyleMigoń, P. (2024). Geosites and Climate Change—A Review and Conceptual Framework. Geosciences, 14(6), 153. https://doi.org/10.3390/geosciences14060153