Quantifying Aperiodic Cliff Top and Cliff Face Retreat Rates for an Eroding Drumlin on Ireland’s Atlantic Coast Using Structure-from-Motion
Abstract
:1. Introduction
2. Study Site
2.1. Physiographic Setting
2.2. Geological History
3. Materials and Methods
3.1. Structure from Motion
3.1.1. SfM Data Acquisition
3.1.2. SfM Data Processing
Computation of PCs and DSMs
PC Change Detection
Cliff Face Retreat Rate [m yr−1] and Erosion Rate [m3 yr−1]
3.2. Cliff Top Position
3.2.1. Cliff Top Digitization and Error Analysis
3.2.2. Cliff Top Changes
3.3. Storm Event Detection
4. Results
4.1. Cliff Face Changes
4.2. Cliff Top Changes
4.3. Storm Conditions
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Knight, J.; Harrison, S. Paraglacial Evolution of the Irish Landscape. Ir. Geogr. 2018, 51, 171–186. [Google Scholar] [CrossRef]
- Hanvey, P.M. The Sedimentology and Genesis of Late-Pleistocene Drumlins in Counties Mayo and Donegal, Western Ireland. Ph.D. Thesis, University of Ulster, Coleraine, UK, 1988. [Google Scholar]
- Greenwood, R.O.; Orford, J.D. Temporal Patterns and Processes of Retreat of Drumlin Coastal Cliffs—Strangford Lough, Northern Ireland. Geomorphology 2008, 94, 153–169. [Google Scholar] [CrossRef]
- McCabe, A.M.; Dardis, G.F. Sedimentology and Depositional Setting of Late Pleistocene Drumlins, Galway Bay, Western Ireland. J. Sediment. Res. 1989, 59, 944–959. [Google Scholar] [CrossRef]
- Department of Housing, Local Government and Heritage and the Office of Public Works. Report of the Inter-Departmental Group on National Coastal Change Management Strategy; Government of Ireland: Dublin, Ireland, 2023; p. 108.
- Emery, K.O.; Kuhn, G.G. Sea Cliffs: Their Processes, Profiles, and Classification. Geol. Soc. Am. Bull. 1982, 93, 644. [Google Scholar] [CrossRef]
- Prémaillon, M.; Regard, V.; Dewez, T.J.B.; Auda, Y. GlobR2C2 (Global Recession Rates of Coastal Cliffs): A Global Relational Database to Investigate Coastal Rocky Cliff Erosion Rate Variations. Earth Surf. Dyn. 2018, 6, 651–668. [Google Scholar] [CrossRef]
- Young, A.P.; Carilli, J.E. Global Distribution of Coastal Cliffs. Earth Surf. Process. Landf. 2019, 44, 1309–1316. [Google Scholar] [CrossRef]
- Cullen, N. A Study of Rock Coast Erosion on the Atlantic Coast of Ireland. Ph.D. Thesis, Trinity College Dublin, School of Natural Sciences, Dublin, Ireland, 2019. [Google Scholar]
- Caplain, B.; Astruc, D.; Regard, V.; Moulin, F.Y. Cliff Retreat and Sea Bed Morphology under Monochromatic Wave Forcing: Experimental Study. Comptes Rendus Geosci. 2011, 343, 471–477. [Google Scholar] [CrossRef]
- Westoby, M.J.; Brasington, J.; Glasser, N.F.; Hambrey, M.J.; Reynolds, J.M. ‘Structure-from-Motion’ Photogrammetry: A Low-Cost, Effective Tool for Geoscience Applications. Geomorphology 2012, 179, 300–314. [Google Scholar] [CrossRef]
- Gonçalves, J.A.; Henriques, R. UAV Photogrammetry for Topographic Monitoring of Coastal Areas. J. Photogramm. Remote Sens. 2015, 104, 101–111. [Google Scholar] [CrossRef]
- Luetzenburg, G.; Townsend, D.; Svennevig, K.; Bendixen, M.; Bjørk, A.A.; Eidam, E.F.; Kroon, A. Sedimentary Coastal Cliff Erosion in Greenland. J. Geophys. Res. Earth Surf. 2023, 128, e2022JF007026. [Google Scholar] [CrossRef]
- Ruggiero, P.; Kratzmann, M.G.; Himmelstoss, E.A.; Reid, D.; Allan, J.; Kaminsky, G. National Assessment of Shoreline Change: Historical Shoreline Change along the Pacific Northwest Coast; Open-File Report; United States Geological Survey: Reston, VA, USA, 2013.
- Irrgang, A.M.; Lantuit, H.; Manson, G.K.; Günther, F.; Grosse, G.; Overduin, P.P. Variability in Rates of Coastal Change along the Yukon Coast, 1951 to 2015. J. Geophys. Res. Earth Surf. 2018, 123, 779–800. [Google Scholar] [CrossRef]
- Rosser, N.J.; Brain, M.J.; Petley, D.N.; Lim, M.; Norman, E.C. Coastline Retreat via Progressive Failure of Rocky Coastal Cliffs. Geology 2013, 41, 939–942. [Google Scholar] [CrossRef]
- Williams, J.G.; Rosser, N.J.; Hardy, R.J.; Brain, M.J.; Afana, A.A. Optimising 4-D Surface Change Detection: An Approach for Capturing Rockfall Magnitude–Frequency. Earth Surf. Dyn. 2018, 6, 101–119. [Google Scholar] [CrossRef]
- Swirad, Z.M.; Young, A.P. Spatial and Temporal Trends in California Coastal Cliff Retreat. Geomorphology 2022, 412, 108318. [Google Scholar] [CrossRef]
- Swirad, Z.M.; Rosser, N.J.; Brain, M.J. Identifying Mechanisms of Shore Platform Erosion Using Structure-from-Motion (SfM) Photogrammetry. Earth Surf. Process. Landf. 2019, 44, 1542–1558. [Google Scholar] [CrossRef]
- Vanneschi, C.; Camillo, M.; Aiello, E.; Bonciani, F.; Salvini, R. SfM-MVS Photogrammetry for Rockfall Analysis and Hazard Assessment along the Ancient Roman via Flaminia Road at the Furlo Gorge (Italy). ISPRS Int. J. Geo-Inf. 2019, 8, 325. [Google Scholar] [CrossRef]
- Piermattei, L.; Carturan, L.; Guarnieri, A. Use of Terrestrial Photogrammetry Based on Structure-from-Motion for Mass Balance Estimation of a Small Glacier in the Italian Alps: SfM-MVS approach for glacier mass balance estimation. Earth Surf. Process. Landf. 2015, 40, 1791–1802. [Google Scholar] [CrossRef]
- Marcer, M.; Stentoft, P.A.; Bjerre, E.; Cimoli, E.; Bjørk, A.; Stenseng, L.; Machguth, H. Three Decades of Volume Change of a Small Greenlandic Glacier Using Ground Penetrating Radar, Structure from Motion, and Aerial Photogrammetry. Arct. Antarct. Alp. Res. 2017, 49, 411–425. [Google Scholar] [CrossRef]
- Colomina, I.; Molina, P. Unmanned Aerial Systems for Photogrammetry and Remote Sensing: A Review. ISPRS J. Photogramm. Remote Sens. 2014, 92, 79–97. [Google Scholar] [CrossRef]
- James, M.R.; Robson, S.; d’Oleire-Oltmanns, S.; Niethammer, U. Optimising UAV Topographic Surveys Processed with Structure-from-Motion: Ground Control Quality, Quantity and Bundle Adjustment. Geomorphology 2017, 280, 51–66. [Google Scholar] [CrossRef]
- James, L.A.; Hodgson, M.E.; Ghoshal, S.; Latiolais, M.M. Geomorphic Change Detection Using Historic Maps and DEM Differencing: The Temporal Dimension of Geospatial Analysis. Geomorphology 2012, 137, 181–198. [Google Scholar] [CrossRef]
- DaSilva, M.; Miot Da Silva, G.; Hesp, P.A.; Bruce, D.; Keane, R.; Moore, C. Assessing Shoreline Change Using Historical Aerial and RapidEye Satellite Imagery (Cape Jaffa, South Australia). J. Coast. Res. 2021, 37, 468–483. [Google Scholar] [CrossRef]
- Hapke, C.J.; Reid, D. National Assessment of Shoreline Change, Part 4: Historical Coastal Cliff Retreat along the California Coast; United States Geological Survey: Reston, VA, USA, 2007.
- Kenny, P. MapGenie; Ordnance Survey Ireland: Dublin, Ireland, 2023. [Google Scholar]
- Boardman, J.; Favis-Mortlock, D.T. The Use of Erosion Pins in Geomorphology. In Geomorphological Techniques (Online Edition); Chapter, 3.5.3; Cook, S.J., Clarke, L.E., Nield, J.M., Eds.; British Society for Geomorphology: London, UK, 2016; ISSN 2047-0371. ISBN 2047-0371. [Google Scholar]
- Jaud, M.; Le Dantec, N.; Parker, K.; Lemon, K.; Lendre, S.; Delacourt, C.; Gomes, R.C. How to Include Crowd-Sourced Photogrammetry in a Geohazard Observatory—Case Study of the Giant’s Causeway Coastal Cliffs. Remote Sens. 2022, 14, 3243. [Google Scholar] [CrossRef]
- Wernette, P.; Miller, I.M.; Ritchie, A.W.; Warrick, J.A. Crowd-Sourced SfM: Best Practices for High Resolution Monitoring of Coastal Cliffs and Bluffs. Cont. Shelf Res. 2022, 245, 104799. [Google Scholar] [CrossRef]
- Young, A.P. Decadal-Scale Coastal Cliff Retreat in Southern and Central California. Geomorphology 2018, 300, 164–175. [Google Scholar] [CrossRef]
- Sunamura, T. Rocky Coast Processes: With Special Reference to the Recession of Soft Rock Cliffs. Procirca Jpn. Acad. Ser. B 2015, 91, 481–500. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Pazo, A.; Pérez-Alberti, A.; Trenhaile, A. Tracking the Behavior of Rocky Coastal Cliffs in Northwestern Spain. Environ. Earth Sci. 2021, 80, 757. [Google Scholar] [CrossRef]
- Utting, D.; Gallacher, A. Coastal Environments and Erosion in Southwest St. Georges Bay, Antigonish County; Report ME 2009-1; Nova Scotia Department of Natural: Halifax, NS, Canada, 2008.
- Nunes, M.; Ferreira, Ó.; Loureiro, C.; Baily, B. Beach and Cliff Retreat Induced by Storm Groups at Forte Novo, Algarve (Portugal). J. Coast. Res. 2011, 64, 795–799. [Google Scholar]
- McKenna, J.; Carter, R.W.G.; Bartlett, D. Coast Erosion in Northeast Ireland: Part II Cliffs and Shore Platforms. Ir. Geogr. 1992, 25, 111–128. [Google Scholar] [CrossRef]
- Thébaudeau, B.; Trenhaile, A.S.; Edwards, R.J. Modelling the Development of Rocky Shoreline Profiles along the Northern Coast of Ireland. Geomorphology 2013, 203, 66–78. [Google Scholar] [CrossRef]
- Cullen, N.D.; Bourke, M.C. Clast Abrasion of a Rock Shore Platform on the Atlantic Coast of Ireland: Clast Abrasion of a Rock Shore Platform. Earth Surf. Process. Landf. 2018, 43, 2627–2641. [Google Scholar] [CrossRef]
- Benjamin, J. Regional-Scale Controls on Rockfall Occurrence. Ph.D. Thesis, Durham University, Durham, UK, 2018. [Google Scholar]
- Shadrick, J.R.; Hurst, M.D.; Piggott, M.D.; Hebditch, B.G.; Seal, A.J.; Wilcken, K.M.; Rood, D.H. Multi-Objective Optimisation of a Rock Coast Evolution Model with Cosmogenic 10Be Analysis for the Quantification of Long-Term Cliff Retreat Rates. Earth Surf. Dyn. 2021, 9, 1505–1529. [Google Scholar] [CrossRef]
- Shadrick, J.R.; Rood, D.H.; Hurst, M.D.; Piggott, M.D.; Wilcken, K.M.; Seal, A.J. Constraints on Long-Term Cliff Retreat and Intertidal Weathering at Weak Rock Coasts Using Cosmogenic 10 Be, Nearshore Topography and Numerical Modelling. Earth Surf. Dyn. 2023, 11, 429–450. [Google Scholar] [CrossRef]
- Dornbusch, U.; Robinson, D.A.; Moses, C.A.; Williams, R.B.G. Temporal and Spatial Variations of Chalk Cliff Retreat in East Sussex, 1873 to 2001. Mar. Geol. 2008, 249, 271–282. [Google Scholar] [CrossRef]
- Smith, R. Implications of Proposed Engineering for Soft Rock Coast & Saltmarsh Sediment Dynamics. Master’s Thesis, University of Galway, Galway, Ireland, 2019. [Google Scholar]
- Hennessy, R.; Meehan, R.; Gallagher, V.; Parkes, M.; Glanville, C. The Geological Heritage of Galway City. An Audit of County Geological Sites in Galway City; Geological Survey Ireland: Dublin, Ireland, 2020. [Google Scholar]
- Peel, M.C.; Finlayson, B.L.; McMahon, T.A. Updated World Map of the Köppen-Geiger Climate Classification. Hydrol. Earth Syst. Sci. 2007, 11, 1633–1644. [Google Scholar] [CrossRef]
- Fiaschi, S.; Holohan, E.; Sheehy, M.; Floris, M. PS-InSAR Analysis of Sentinel-1 Data for Detecting Ground Motion in Temperate Oceanic Climate Zones: A Case Study in the Republic of Ireland. Remote Sens. 2019, 11, 348. [Google Scholar] [CrossRef]
- Ren, L.; Nash, S.; Hartnett, M. Observation and Modeling of Tide- and Wind-Induced Surface Currents in Galway Bay. Water Sci. Eng. 2015, 8, 345–352. [Google Scholar] [CrossRef]
- Calvino, C.; Dabrowski, T.; Dias, F. A Study of the Sea Level and Current Effects on the Sea State in Galway Bay, Using the Numerical Model COAWST. Ocean. Dyn. 2022, 72, 761–774. [Google Scholar] [CrossRef]
- Calvino, C.; Dabrowski, T.; Dias, F. A Study of the Wave Effects on the Current Circulation in Galway Bay, Using the Numerical Model COAWST. Coast. Eng. 2023, 180, 104251. [Google Scholar] [CrossRef]
- Atan, R.; Goggins, J.; Harnett, M.; Agostinho, P.; Nash, S. Assessment of Wave Characteristics and Resource Variability at a 1/4-Scale Wave Energy Test Site in Galway Bay Using Waverider and High Frequency Radar (CODAR) Data. Ocean. Eng. 2016, 117, 272–291. [Google Scholar] [CrossRef]
- Miccadei, E.; Mascioli, F.; Ricci, F.; Piacentini, T. Geomorphology of Soft Clastic Rock Coasts in the Mid-Western Adriatic Sea (Abruzzo, Italy). Geomorphology 2019, 324, 72–94. [Google Scholar] [CrossRef]
- ESRI Esri Gray (Light) 2021. WMS Server. Available online: https://services.arcgisonline.com/ArcGIS/rest/services/Canvas/World_Light_Gray_Base/MapServer/tile/{z}/{y}/{x} (accessed on 26 January 2024).
- Google Google Satellite 2024. WMS Server. Available online: https://mt1.google.com/vt/lyrs=s&x={x}&y={y}&z={z} (accessed on 26 January 2024).
- Greenwood, S.L.; Clark, C.D. Reconstructing the Last Irish Ice Sheet 1: Changing Flow Geometries and Ice Flow Dynamics Deciphered from the Glacial Landform Record. Quat. Sci. Rev. 2009, 28, 3085–3100. [Google Scholar] [CrossRef]
- Smith, M.J.; Knight, J. Palaeoglaciology of the Last Irish Ice Sheet Reconstructed from Striae Evidence. Quat. Sci. Rev. 2011, 30, 147–160. [Google Scholar] [CrossRef]
- Clark, C.D.; Hughes, A.L.C.; Greenwood, S.L.; Spagnolo, M.; Ng, F.S.L. Size and Shape Characteristics of Drumlins, Derived from a Large Sample, and Associated Scaling Laws. Quat. Sci. Rev. 2009, 28, 677–692. [Google Scholar] [CrossRef]
- Spagnolo, M.; Clark, C.D.; Hughes, A.L.C.; Dunlop, P.; Stokes, C.R. The Planar Shape of Drumlins. Sediment. Geol. 2010, 232, 119–129. [Google Scholar] [CrossRef]
- Foreman, A.C.; Bromley, G.R.M.; Hall, B.L.; Jackson, M.S. A 10Be-Dated Record of Glacial Retreat in Connemara, Ireland, Following the Last Glacial Maximum and Implications for Regional Climate. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2022, 592, 110901. [Google Scholar] [CrossRef]
- Williams, D.M.; Doyle, E. Dates from Drowned Mid-Holocene Landscapes on the Central Western Irish Seaboard. Ir. J. Earth Sci. 2014, 32, 23–27. [Google Scholar] [CrossRef]
- O’Connell, M.; Molloy, K. Mid- and Late-Holocene Environmental Change in Western Ireland: New Evidence from Coastal Peats and Fossil Timbers with Particular Reference to Relative Sea-Level Change. Holocene 2017, 27, 1825–1845. [Google Scholar] [CrossRef]
- Schettler, G.; Romer, R.L.; O’Connell, M.; Molloy, K. Holocene Climatic Variations and Postglacial Sea-Level Rise Geochemically Recorded in the Sediments of the Brackish Karst Lake an Loch Mor, Western Ireland. Boreas 2006, 35, 674–693. [Google Scholar] [CrossRef]
- Himmelstoss, E.A.; Farris, A.S.; Henderson, R.E.; Kratzmann, M.G.; Ergul, A.; Zhang, O.; Zichichi, J.L.; Thieler, E.R. Digital Shoreline Analysis System; Version 5; U.S. Geological Survey: Reston, VA, USA, 2018.
- Himmelstoss, E.A.; Henderson, R.E.; Kratzmann, M.G.; Farris, A.S. Digital Shoreline Analysis System (DSAS) Version 5.1 User Guide; Open-File Report; U.S. Geological Survey: Reston, VA, USA, 2021.
- Lague, D.; Brodu, N.; Leroux, J. Accurate 3D Comparison of Complex Topography with Terrestrial Laser Scanner: Application to the Rangitikei Canyon (N-Z). ISPRS J. Photogramm. Remote Sens. 2013, 82, 10–26. [Google Scholar] [CrossRef]
- CloudCompare CloudCompare 2022. Available online: https://www.cloudcompare.org/release/notes/20220330/ (accessed on 3 July 2023).
- Agisoft LCC. Agisoft Metashape User Manual Professional Edition; Version 2.0; Agisoft LLC: Saint Petersburg, Russia, 2023. [Google Scholar]
- Cullen, N.D.; Verma, A.K.; Bourke, M.C. A Comparison of Structure from Motion Photogrammetry and the Traversing Micro-Erosion Meter for Measuring Erosion on Shore Platforms. Earth Surf. Dyn. 2018, 6, 1023–1039. [Google Scholar] [CrossRef]
- Kromer, R.; Lato, M.; Hutchinson, D.J.; Gauthier, D.; Edwards, T. Managing Rockfall Risk through Baseline Monitoring of Precursors Using a Terrestrial Laser Scanner. Can. Geotech. J. 2017, 54, 953–967. [Google Scholar] [CrossRef]
- Chen, Y.; Medioni, G. Object Modeling by Registration of Multiple Range Images. In Proceedings of the 1991 IEEE International Conference on Robotics and Automation, Sacramento, CA, USA, 9–11 April 1991; pp. 2724–2729. [Google Scholar]
- Hartmeyer, I.; Keuschnig, M.; Delleske, R.; Krautblatter, M.; Lang, A.; Schrott, L.; Prasicek, G.; Otto, J.-C. A 6-Year Lidar Survey Reveals Enhanced Rockwall Retreat and Modified Rockfall Magnitudes/Frequencies in Deglaciating Cirques. Earth Surf. Dyn. 2020, 8, 753–768. [Google Scholar] [CrossRef]
- OSI MapGenie WMS 2023. WMTS Server. Available online: https://ogcmapgenie.osi.ie/data/rest/services/ITM (accessed on 3 July 2023).
- Asoni, S.G.; Stavrou, A.; Lawrence, J.A. Developing a GIS Based Methodology for Coastal Chalk Cliff Retreat Using Multiple Datasets. In Proceedings of the Engineering in Chalk, London, UK, 17–18 January 2018; pp. 369–374. [Google Scholar]
- Terres De Lima, L.; Fernández-Fernández, S.; Marcel De Almeida Espinoza, J.; Da Guia Albuquerque, M.; Bernardes, C. End Point Rate Tool for QGIS (EPR4Q): Validation Using DSAS and AMBUR. ISPRS Int. J. Geo-Inf. 2021, 10, 162. [Google Scholar] [CrossRef]
- Vallarino Castillo, R.; Negro Valdecantos, V.; Moreno Blasco, L. Shoreline Change Analysis Using Historical Multispectral Landsat Images of the Pacific Coast of Panama. J. Mar. Sci. Eng. 2022, 10, 1801. [Google Scholar] [CrossRef]
- Genz, A.S.; Fletcher, C.H.; Dunn, R.A.; Frazer, L.N.; Rooney, J.J. The Predictive Accuracy of Shoreline Change Rate Methods and Alongshore Beach Variation on Maui, Hawaii. J. Coast. Res. 2007, 23, 87–105. [Google Scholar] [CrossRef]
- Guisado-Pintado, E.; Jackson, D.W.T. Coastal Impact from High-Energy Events and the Importance of Concurrent Forcing Parameters: The Cases of Storm Ophelia (2017) and Storm Hector (2018) in NW Ireland. Front. Earth Sci. 2019, 7, 190. [Google Scholar] [CrossRef]
- Zelinsky, D.A. Tropical Cyclone Report: Hurricane Lorenzo (AL132019); United States National Hurricane Center: Miami, FL, USA, 2019.
- Lim, M.; Rosser, N.J.; Allison, R.J.; Petley, D.N. Erosional Processes in the Hard Rock Coastal Cliffs at Staithes, North Yorkshire. Geomorphology 2010, 114, 12–21. [Google Scholar] [CrossRef]
- Jordan, S.F.; Murphy, B.T.; O’Reilly, S.S.; Doyle, K.P.; Williams, M.D.; Grey, A.; Lee, S.; McCaul, M.V.; Kelleher, B.P. Mid-Holocene Climate Change and Landscape Formation in Ireland: Evidence from a Geochemical Investigation of a Coastal Peat Bog. Org. Geochem. 2017, 109, 67–76. [Google Scholar] [CrossRef]
- Williams, J.G.; Rosser, N.J.; Hardy, R.J.; Brain, M.J. The Importance of Monitoring Interval for Rockfall Magnitude-Frequency Estimation. J. Geophys. Res. Earth Surf. 2019, 124, 2841–2853. [Google Scholar] [CrossRef]
- Brooks, S.M.; Spencer, T.; Boreham, S. Deriving Mechanisms and Thresholds for Cliff Retreat in Soft-Rock Cliffs under Changing Climates: Rapidly Retreating Cliffs of the Suffolk Coast, UK. Geomorphology 2012, 153–154, 48–60. [Google Scholar] [CrossRef]
Study | Region | Cliff Lithology | Age | Study Period | Number of Cliffs | Total Studied Cliff Length | Methods | Retreat Rate (m/year) |
---|---|---|---|---|---|---|---|---|
[3] | Strangford Lough, UK | Till | Holocene | 3 | 16 | Historical maps, aerial photographs | 0.01–0.16 | |
[34] | Portballintrae, UK | Till | Holocene | 156 | 5 | Historical maps, aerial photographs | 0.00–0.52 | |
[37] | N Yorkshire, UK | Sandstone, mudstone | Jurassic | 3 | 2 | 20.459 km | Historical maps, aerial photographs | 0.02–0.10 |
[38] | Bideford, UK | Sandstone, mudstone | Carboniferous | 1 | Historical maps, aerial photographs | 0.01–0.03 | ||
[39] | St. Margarets, UK | Chalk | Cretaceous | 122 | 1 | ~5.5 km | Historical maps, aerial photographs | 0.07 +/− 0.043 |
[40] | E Sussex, UK | Chalk | Cretaceous | 128 | 5 | 23 km | Historical maps, aerial photographs | 0.27–0.41 |
Data Source | Date | Feature | UAV Model | Images Collected | GCPs |
---|---|---|---|---|---|
OSI 6” map | 1842 | Cliff top | |||
OSI orthophoto | 1995 | Cliff top | |||
OSI orthophoto | 2000 | Cliff top | |||
UAV | 11 June 2019 | Cliff face | DJI Phantom 4 Pro | 118 | 6 |
UAV | 2 October 2019 | Cliff face | DJI Phantom 4 Pro | 257 | 9 |
UAV | 5 October 2019 | Both | DJI Phantom 4 Pro | 185 | 5 |
UAV | 22 November 2022 | Cliff face | DJI Mavic 2 Pro | 321 | 9 |
UAV | 21 September 2023 | Both | DJI Mavic 3M | 348 | 5 |
UAV | 21 November 2023 | Cliff face | DJI Mavic 3M | 513 | 9 |
Time Period | Reference Survey Date | Comparison Survey Date | Duration between Surveys (Days) |
---|---|---|---|
PC-change I | 11 June 2019 | 2 October 2019 | 1260 |
PC-change II | 11 June 2019 | 5 October 2019 | 1563 |
PC-change III | 11 June 2019 | 22 November 2022 | 1624 |
PC-change IV | 11 June 2019 | 21 September 2023 | 113 |
PC-change V | 11 June 2019 | 21 November 2023 | 116 |
Time Period | Reference Date | Analysed Date |
---|---|---|
DSAS I | 1842 | 1 January 2000 |
DSAS II | 1842 | 5 October 2019 |
DSAS III | 1842 | 21 September 2023 |
DSAS IV | 1995 | 21 September 2023 |
Western Section | Eastern Section | |||
---|---|---|---|---|
er [m3 yr−1] | cfr [m yr−1] | er [m3 yr−1] | cfr [m yr−1] | |
PC-change III | 184 +/− 34 | 0.125 +/− 0.023 | 102 +/− 6 | 0.052 +/− 0.003 |
PC-change IV | 169 +/− 59 | 0.111 +/− 0.038 | 101 +/− 10 | 0.047 +/− 0.005 |
PC-change V | 160 +/− 36 | 0.104 +/− 0.023 | 109 +/− 13 | 0.05 +/− 0.006 |
# Storms | Hs Average (m) | Hs Max (m) | Direction ° | Duration Average (hrs) | |
---|---|---|---|---|---|
Winter | 21 | 3.15 | 5.44 | 322 | 95 |
Spring | 5 | 3.06 | 5.32 | 323 | 62 |
Summer | 0 | ||||
Autumn | 4 | 2.89 | 4.84 | 325 | 61 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rink, G.M.; Farrell, E.J.; Bromley, G.R.M. Quantifying Aperiodic Cliff Top and Cliff Face Retreat Rates for an Eroding Drumlin on Ireland’s Atlantic Coast Using Structure-from-Motion. Geosciences 2024, 14, 165. https://doi.org/10.3390/geosciences14060165
Rink GM, Farrell EJ, Bromley GRM. Quantifying Aperiodic Cliff Top and Cliff Face Retreat Rates for an Eroding Drumlin on Ireland’s Atlantic Coast Using Structure-from-Motion. Geosciences. 2024; 14(6):165. https://doi.org/10.3390/geosciences14060165
Chicago/Turabian StyleRink, Gregor M., Eugene J. Farrell, and Gordon R. M. Bromley. 2024. "Quantifying Aperiodic Cliff Top and Cliff Face Retreat Rates for an Eroding Drumlin on Ireland’s Atlantic Coast Using Structure-from-Motion" Geosciences 14, no. 6: 165. https://doi.org/10.3390/geosciences14060165
APA StyleRink, G. M., Farrell, E. J., & Bromley, G. R. M. (2024). Quantifying Aperiodic Cliff Top and Cliff Face Retreat Rates for an Eroding Drumlin on Ireland’s Atlantic Coast Using Structure-from-Motion. Geosciences, 14(6), 165. https://doi.org/10.3390/geosciences14060165