Climate Change and Future Fire Regimes: Examples from California
Abstract
:1. Introduction
2. Fire and Global Warming
3. Fire and Drought
4. Fire–Climate Interaction Is a Moving Target
5. Confounding Factors Affecting Future Fire Regimes
5.1. Interactions between Vegetation Trajectories and Fire Regime
5.2. Population Growth and Future Fires
5.3. Effects of Changing Management Tactics
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Bond, W.J.; Woodward, F.I.; Midgley, G.F. The global distribution of ecosystems in a world without fire. New Phytol. 2005, 165, 525–538. [Google Scholar] [CrossRef] [PubMed]
- Krawchuk, M.A.; Moritz, M.A.; Parisien, M-A.; Van Dorn, J.; Hayhoe, K. Global pyrogeography: The current and future distribution of wildfire. PLoS ONE 2009, 4, e5102. [Google Scholar] [CrossRef] [PubMed]
- Van Mantgem, E.F.; Keeley, J.E.; Witter, M. Faunal responses to fire in California chaparral and sage scrub in California, USA. Fire Ecol. 2015, 11, 128–148. [Google Scholar]
- Keeley, J.E.; Syphard, A.D. Different fire-climate relationships on forested and non-forested landscapes in the Sierra Nevada ecoregion. Int. J. Wildland Fire 2015, 24, 27–36. [Google Scholar] [CrossRef]
- Westerling, A.L. Increasing western US forest wildfire activity: Sensitivity to changes in the timing of spring. Philophical Trans. R. Soc. B 2016, 371. [Google Scholar] [CrossRef] [PubMed]
- Westerling, A.L.; Hidalgo, H.G.; Cayan, D.R.; Swetnam, T.W. Warming and earlier spring increase western U.S. forest wildfire activity. Science 2006, 313, 940–943. [Google Scholar] [CrossRef] [PubMed]
- Barbero, R.; Abatzoglou, J.T.; Larkin, N.K.; Kolden, C.A.; Stocks, B. Climate change presents increased potential for very large fires in the contiguous United States. Int.J. Wildland Fire 2015, 24, 892–899. [Google Scholar] [CrossRef]
- Keeley, J.E.; Syphard, A.D. Historical fire-climate patterns in California climate divisions. Int. J. Wildland Fire Rev. 2016. under review. [Google Scholar]
- Swetnam, T.W.; Betancourt, J.L. Mesoscale disturbance and ecological response to decadal climatic variability in the American Southwest. J. Clim. 1998, 11, 3128–3147. [Google Scholar] [CrossRef]
- Power, M.J.; Marlon, J.; Ortiz, N.; Bartlein, N.J.; Harrison, S.P.; Mayle, F.E.; Ballouche, A.; Bradshaw, R.H.W.; Carcaillet, C.; Cordova, C. Changes in fire regimes since the Last Glacial Maximum: An assessment based on a global synthesis and analysis of charcoal data. Clim. Dyn. 2008, 30, 887–907. [Google Scholar] [CrossRef]
- Taylor, A.H.; Beaty, R.M. Climatic influences on fire regiems in the northern Sierra Nevada mountains, Lake Tahoe Basin, Nevada, USA. J. Biogeogr. 2005, 32, 425–438. [Google Scholar] [CrossRef]
- Collins, B.M.; Omi, P.N.; Chapman, P.L. Regional relationships between climate and wildfire-burned area in the Interior west, USA. Can. J. For. Res. 2006, 36, 699–709. [Google Scholar] [CrossRef]
- Swetnam, T.W.; Anderson, R.S. Fire climatology in the western United States: introduction to special issue. Int. J. Wildland Fire 2008, 17, 1–7. [Google Scholar] [CrossRef]
- Littell, J.S.; Peterson, D.L.; Riley, K.L.; Liu, Y.; Luce, C.H. A review of the relationships between drought and forest fire in the United States. Glob. Chang. Biol. 2016. [Google Scholar] [CrossRef] [PubMed]
- Littell, J.S.; McKenzie, D.; Peterson, D.L.; Westerling, A.L. Climate and wildfire area burned in western U.S. ecoprovinces, 1916–2003. Ecol. Appl. 2009, 19, 1003–1021. [Google Scholar] [CrossRef] [PubMed]
- Abatzoglou, J.T.; Kolden, C.A. Relationships between climate and macroscale area burned in the western United States. Int. J. Wildland Fire 2013, 22, 1003–1020. [Google Scholar] [CrossRef]
- Westerling, A.; Brown, T.; Schoennagel, T.; Swetnam, T.; Turner, M.; Veblen, T. Briefing: Climate and Wildfire in Western U.S. Forests; US Department of Agriculture, Forest Service, Rocky Mountain Research Station: Logan, UT, USA, 2014; pp. 81–102.
- Westerling, A.L.; Gershunov, A.; Cayan, D.R.; Barnett, T.P. Long lead statistical forecasts of area burned in western U.S. wildfires by ecosystems province. Int. J. Wildland Fire 2002, 11, 257–266. [Google Scholar] [CrossRef]
- Crimmins, M.A.; Comrie, A.C. Interactions between antecedent climate and wildfire variability across south-eastern Arizona. Int. J. Wildland Fire 2011, 13, 455–466. [Google Scholar] [CrossRef]
- Medler, M.J.; Montesano, P.; Robinson, D. Examining the relationship between snowfall and wildfire patterns in the western United States. Phys. Geogr. 2002, 23, 335–342. [Google Scholar] [CrossRef]
- Moritz, M.A.; Parisien, M-A.; Batllorei, E.; Krawchuk, M.A.; Van Dorn, J.; Ganz, D.J.; Hayhoe, K. Climate change and disruptions to global fire activity. Ecosphere 2012, 3, 49. [Google Scholar] [CrossRef]
- Jolly, W.M.; Cochrane, M.A.; Freeborn, P.H.; Holden, Z.A.; Brown, T.J.; Williamson, G.J.; Bowman, M.J.S. Climate-induced variations in global wildfire danger from 1979–2013. Nat. Commun. 2015. [Google Scholar] [CrossRef] [PubMed]
- McKenzie, D.; Gedalof, Z.; Peterson, D.L.; Mote, P. Climatic change, wildfire, and conservation. Conserv. Biol. 2004, 18, 890–902. [Google Scholar] [CrossRef]
- Flato, F.; Marotzke, J.; Abiodun, B.; Braconnot, P.; Chou, S.C.; Collins, W.; Driouech, F.; Emori, S.; Eyring, V.; Forest, C.; et al. Evaluation of climate models. In Climate Change 2013: The Physical Science Basis; IPCC Working Group I Contribution to AR5; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Solomon, S.; Plattner, G.-K.; Knutti, R.; Friedlingstein, P. Irreversible climate change due to carbon dioxide emissions. Proc. Natl. Acad. Sci. USA 2009, 106, 1704–1709. [Google Scholar] [CrossRef] [PubMed]
- Flannigan, M.D.; Krawchuk, M.A.; de Groot, W.J.; Wotton, B.M.; Gowman, L.M. Implications of changing climate for global wildland fire. Int. J. Wildland Fire 2009, 18, 483–507. [Google Scholar] [CrossRef]
- Batllori, E.; Parisien, M.A.; Krawchuk, M.A.; Moritz, M.A. Climate change-induced shifts in fire for Mediterranean ecosystems. Glob. Ecol. Beogeogr. 2013, 22, 1118–1129. [Google Scholar] [CrossRef]
- Yue, X.; Mickley, L.J.; Logan, J.A. Projection of wildfire activity in southern California in the mid-twenty-first century. Clim. Dyn. 2014, 43, 1973–1991. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Wimberly, M.C. Direct and indirect effects of climate change on projected future fire regimes in the western United States. Sci. Total Environ. 2016, 542, 65–75. [Google Scholar] [CrossRef] [PubMed]
- Moritz, M.A.; Knowles, S.G. Coexisting with wildfire. Am. Sci. 2016, 104, 220. [Google Scholar] [CrossRef]
- Keeley, J.E.; Safford, H.D. Fire as an ecosystem process. In Ecosystems of California; Mooney, H., Zavaleta, E., Eds.; University of California Press: Oakland, CA, USA, 2016; pp. 27–45. [Google Scholar]
- Peterson, D.L.; (U.S. Forest Service and University of Washington, Seattle, WA, USA). Personal communication, 2016.
- National Climatic Data Center (NCDC) California Climate Divisions. Available online: https://www.ncdc.noaa.gov/monitoring-references/maps/us-climate-divisions.php (accessed on 15 August 2016).
- Abatzoglou, J.T.; Redmond, K.T.; Edwards, L.M. Classification of regional climate variability in the State of California. J. Appl. Meteorol. Climatol. 2009, 48, 1527–1541. [Google Scholar] [CrossRef]
- Christy, J.R.; Norris, W.B.; Redmond, K.; Gallo, K.P. Methodology and results of calculating central California surface temperature trends: Evidence of human-induced climate change? J. Clim. 2006, 19, 548–563. [Google Scholar] [CrossRef]
- Pausas, J.G.; Paula, S. Fuel shapes the fire-climate relationship: evidence from Mediterranean ecosystems. Glob. Ecol. Biogeogr. 2012, 21, 1074–1082. [Google Scholar] [CrossRef]
- Steel, Z.L.; Safford, H.D.; Viers, J.H. The fire frequency-severity relationship and the legacy of fire suppression in California forests. Ecosphere 2015, 6. [Google Scholar] [CrossRef]
- Keeley, J.E.; Syphard, A.D. South coast bioregion. In Fire in California’s Ecosystems, 2nd ed.; Van Wagtendonk, J., Ed.; University of California Press: Oakland, CA, USA, 2016; in press. [Google Scholar]
- Williams, A.P.; Seager, R.; Abatzoglou, J.T.; Cook, B.I.; Smerdon, J.E.; Cook, E.R. Contribution of anthropogenic warming to California drought during 2012–2014. Geophys. Res. Lett. 2015, 42. [Google Scholar] [CrossRef]
- Pierce, D.W.; Cayan, D.R.; Das, T.; Maurer, E.P.; Miller, N.L.; Bao, Y.; Kanamitsu, M.; Yoshimura, K.; Snyder, M.A.; Sloan, L.C.; et al. The key role of heavy precipitation events in climate model disagreements of future annual precipitation changes in California. J. Clim. 2013, 26, 5879–5896. [Google Scholar] [CrossRef]
- Neelin, J.D.; Langenbrunner, B.; Meyerson, J.E.; Hall, A.; Berg, H. California winter precipitation change under global warming in the coupled model intercomparison project phase 5 ensemble. J. Clim. 2013, 26, 6238–6256. [Google Scholar] [CrossRef]
- Fellows, A.W.; Goulden, M.L. Rapid vegetation redistribution in southern California during the early 2000s drought. J. Geophys. Res. 2012, 117, G03025. [Google Scholar] [CrossRef]
- Iacobellis, S.F.; Cayan, D.R. The variability of California summertime marine stratus: Impacts on surface air temperatures. J. Geophys. Res. Atmos. 2013, 118, 9105–9122. [Google Scholar] [CrossRef]
- Allen, C.D.; Breshears, D.D.; McDowell, N.G. On underestimation of global vulnerability to tree mortality and forest die-off from hotter drought in the Anthropocene. Ecosphere 2015, 6, 1–55. [Google Scholar] [CrossRef]
- Overpeck, J.T. Climate science: The challenge of hot drought. Nature 2013, 503, 350–351. [Google Scholar] [CrossRef] [PubMed]
- Van Mantgem, P.J.; Nesmith, J.C.B.; Keifer, M.B.; Knapp, E.E.; Flint, A.; Flint, L. Climatic stress increases forest fire severity across the western United States. Ecol. Lett. 2013, 16, 1151–1156. [Google Scholar] [CrossRef] [PubMed]
- Ficklin, D.L.; Abatzoglou, J.T.; Robeson, S.M.; Dufficy, A. The influence of climate model biases on projections of aridity and drought. J. Clim. 2016, 29, 1269–1285. [Google Scholar] [CrossRef]
- Higuera, P.E.; Abatzoglou, J.T.; Littell, J.S.; Morgan, P. The changing strength and nature of fire-climate relationships in the northern Rocky Mountains, USA, 1902–2008. PLoS ONE 2015, 10, e0127563. [Google Scholar] [CrossRef] [PubMed]
- Williams, J.W.; Jackson, S.T. Novel climates, no-analog communities, and ecological surprises. Front. Ecol. Environ. 2007, 5, 475–482. [Google Scholar] [CrossRef]
- Williams, J.W.; Jackson, S.T.; Kutzbach, J.E. Projected distributions of novel and disappearing climates by 2100 AD. Proc. Natl. Acad. Sci. USA 2006, 104, 5738–5742. [Google Scholar] [CrossRef] [PubMed]
- Dugan, A.J.; Baker, W.L. Sequentially contingent fires, droughts and pluvials structured a historical dry forest landscape and suggest future contingencies. J. Veg. Sci. 2015, 26, 297–710. [Google Scholar] [CrossRef]
- Parks, S.A.; Miller, C.; Abatzoglou, J.T.; Holsinger, L.M.; Parisien, M-A.; Dobrowski, S.Z. How will climate change affect wildland fire severity in the western US? Environ. Res. Lett. 2016, 11, 035002. [Google Scholar] [CrossRef]
- Stephenson, N.L. Climatic control of vegetation distribution: The role of the water balance. Am. Nat. 1990, 135, 649–670. [Google Scholar] [CrossRef]
- Franklin, J.; Serra-Diaz, J.M.; Syphard, A.D.; Regan, H.M. Global change and terrestrial plant community dynamics. Proc. Natl. Acad. Sci. USA 2016, 113, 3725–3734. [Google Scholar] [CrossRef] [PubMed]
- Lenihan, J.M.; Drapek, R.; Bachelet, D.; Neilson, R.P. Climate change effects on vegetation distribution, carbon, and fire in California. Ecol. Appl. 2003, 13, 1667–1681. [Google Scholar] [CrossRef]
- Bowman, D.M.J.S.; Balch, J.K.; Artaxo, P.; Bond, W.J.; Carlson, J.M.; Cochrane, M.A.; D’Antonio, C.M.; DeFries, R.S.; Doyle, J.C.; Harrison, S.P.; et al. Fire in the earth system. Science 2009, 324, 481–484. [Google Scholar] [CrossRef] [PubMed]
- McKenzie, D.; Littell, J.S. Climate change and the eco-hydrology of fire: will area burned increase in a warming western U.S.? Ecol. Appli. 2016, 26. in press. [Google Scholar]
- Sturtevant, B.R.; Scheller, R.M.; Miranda, B.R.; Shinneman, D.; Syphard, A.D. Simulating dynamic and mixed-severity fire regimes: A process-based fire extension for LANDIS-II. Ecol. Model. 2009, 220, 3380–3393. [Google Scholar] [CrossRef]
- Global. Vegetation Dynamics: Concepts and Applications in MC1 Model; Bachelet, D.; Turner, D. (Eds.) John Wiley & Sons: Hoboken, NJ, USA, 2010.
- Keane, R.E.; McKenzie, D.; Falk, D.A.; Smithwick, E.A.H.; Miller, C.; Kellogg, L.-K.B. Representing climate, disturbance, and vegetation interactions in landscape models. Ecol. Model. 2015, 309, 33–47. [Google Scholar] [CrossRef]
- Loehle, C.; Idso, C.; Wigley, T.B. Physiological and ecological factors influencing recent trends in United States forest health responses to climate change. For. Ecol. Manag. 2016, 363, 179–189. [Google Scholar] [CrossRef]
- Charney, N.D.; Babst, F.; Poulter, B.; Record, S.; Trouet, V.M.; Frank, D.; Enquist, B.J.; Evans, M.E.K. Observed forest sensitivity to climate implies large changes in 21st century North American forest growth. Ecol. Lett. 2016. [Google Scholar] [CrossRef] [PubMed]
- Smith, W.; Kolby, S.C.; Cleveland, C.C.; Ballantyne, A.P.; Anderegg, W.R.L.; Wieder, W.R.; Liu, Y.Y.; Running, S.W. Large divergence of satellite and Earth system model estimates of global terrestrial CO2 fertilization. Nat. Clim. Chang. 2015, 6, 306–310. [Google Scholar] [CrossRef]
- Moritz, M.A.; Batllori, E.; Bradstock, R.A.; Gill, A.M.; Handmer, J.; Hessburg, P.F.; Leonard, J.; McCaffrey, S.; Odion, D.C.; Schoennagel, T.; et al. Learning to coexist with wilfire. Nature 2014, 515, 58–66. [Google Scholar] [CrossRef] [PubMed]
- Radeloff, V.C.; Williams, J.W.; Bateman, B.L.; Burke, K.D.; Carter, S.K.; Childress, E.S.; Cromwell, K.J.; Gratton, C.; Hasley, A.O.; Kraemer, B.M.; et al. The rise of novelty in ecosystems. Ecol. Appl. 2015, 25, 2051–2068. [Google Scholar] [CrossRef] [PubMed]
- Hessl, A.E. Pathways for climate change effects on fire: Models, data, and uncertainties. Prog. Phys. Geogr. 2011, 35, 393–407. [Google Scholar] [CrossRef]
- Mann, M.L.; Batlori, E.; Moritz, M.A.; Waller, E.K.; Berck, P.; Flint, A.L.; Flint, L.E.; Dojfi, E. Fire probability models: effects of human activity and climate change on fire activity in California. PLoS ONE 2016. [Google Scholar] [CrossRef] [PubMed]
- Gude, P.; Rasker, R.; Van den Noort, J. Potential for future development on fire-prone lands. J. For. 2008, 106, 198–205. [Google Scholar]
- Syphard, A.D.; Keeley, J.E. Location, timing and extent of wildfire vary by cause of ignition. Int. J. Wildland Fire 2015, 24, 37–47. [Google Scholar] [CrossRef]
- Hawbaker, T.J.; Radeloff, V.C.; Stewart, S.I.; Hammer, R.B.; Keuler, N.S.; Clayton, M.K. Human and biophysical influences on fire occurrence in the United States. Ecol. Appl. 2013, 23, 565–582. [Google Scholar] [CrossRef] [PubMed]
- Faivre, N.; Jin, Y.; Goulden, M.L.; Randerson, J.T. Controls on the spatial pattern of wildfire ignitions in southern California. Int. J. Wildland Fire 2014, 23, 799–811. [Google Scholar] [CrossRef]
- Fule, P.Z.; Yocom, L.L.; Montano, C.C.; Falk, D.A.; Cerano, J.; Villanueva-Diaz, J. Testing a pyroclimatic hypothesis on the Mexico-United States border. Ecology 2012, 93, 1830–1840. [Google Scholar] [CrossRef] [PubMed]
- Hurteau, M.D.; Bradford, J.B.; Fule, P.Z.; Taylor, A.H.; Martin, K.L. Climate change, fire management, and ecological services in the southwestern US. For. Ecol. Manag. 2014, 327, 280–289. [Google Scholar] [CrossRef]
- Van Mantgem, P.J.; Caprio, A.C.; Stephenson, N.L.; Das, A.J. Does prescribed fire promote resistance to drought in low elevation forests of the Sierra Nevada, California, USA? Fire Ecol. 2016, 12, 13–25. [Google Scholar]
- Miller, J.D.; Skinner, C.N.; Safford, H.D.; Knapp, E.E.; Ramirez, C.M. Trends and causes of severity, size and number of fires in northwestern California, USA. Ecol. Appl. 2012, 22, 184–203. [Google Scholar] [CrossRef] [PubMed]
- Cermak, R.W. Fire in Forest; A History Forest Fire Control on National Forests in California, 1898–1956; USDA Forest Service, Pacific Southwest Region: Albany, CA, USA, 2005.
- Brotons, L.; Aquilue, N.; de Caceres, M.; Fortin, M.-J.; Fall, A. How fire history, fire suppression practices and climate change affect wildfire regimes in Mediterranean landscapes. PLoS ONE 2013, 8, e62392. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Reference | Regional Historical Divisions * Record | Region | Vegetation | r2 | Model (Strongest Variables) |
---|---|---|---|---|---|
[16] | GACC 1984–2010 | NO (N coast/N interior) | forest | 0.54 | July–October fine fuel moisture |
GACC 1984–2010 | NO (N coast/N interior) | non-forest | 0.35 | Prior year April–October T | |
GACC 1984–2010 | SO (sierra/C coast/S cal) | forest | 0.44 | May–July evapotranspiration | |
GACC 1984–2010 | SO (sierra/C coast/S cal) | non-forest | 0.44 | 15 June–15 September T | |
[15] | Bailey 1977–2003 | Sierra (& N coast) | forest/woodland | 0.53 | Sum ppt, prior win ppt |
Bailey 1977–2003 | CA chaparral | chaparral/woodland | 0.54 | Prior winPDSI, sumppt, 2 prior | |
Bailey 1977–2003 | CA woodland | woodland/grass/chap | 0.47 | Sum ppt, prior win temp, spr T | |
[4] | NOAA/USFS 1910–1959 | Sierra (C&S) | forest | 0.41 | Spr ppt, win ppt |
NOAA/USFS 1960–2010 | Sierra (C&S) | forest | 0.53 | Sum T, spr ppt | |
NOAA/Cal Fire 1910–1959 | Sierra (C&S) | woodland/grass/chap | 0.34 | Prior spr ppt, spg T, sum ppt | |
NOAA/Cal Fire 1960–2010 | Sierra (C&S) | woodland/grass/chap | 0.27 | Prior spr ppt, priorwinppt, sumT | |
[8] | NOAA/USFS 1910–2013 | Southern Calif | chaparral/woodland/forest | 0.02 | - |
NOAA/Cal Fire 1910–2013 | Southern Calif | chaparral/grass/woodland/ | 0.09 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Keeley, J.E.; Syphard, A.D. Climate Change and Future Fire Regimes: Examples from California. Geosciences 2016, 6, 37. https://doi.org/10.3390/geosciences6030037
Keeley JE, Syphard AD. Climate Change and Future Fire Regimes: Examples from California. Geosciences. 2016; 6(3):37. https://doi.org/10.3390/geosciences6030037
Chicago/Turabian StyleKeeley, Jon E., and Alexandra D. Syphard. 2016. "Climate Change and Future Fire Regimes: Examples from California" Geosciences 6, no. 3: 37. https://doi.org/10.3390/geosciences6030037
APA StyleKeeley, J. E., & Syphard, A. D. (2016). Climate Change and Future Fire Regimes: Examples from California. Geosciences, 6(3), 37. https://doi.org/10.3390/geosciences6030037