Petrogenetic Implications for Ophiolite Ultramafic Bodies from Lokris and Beotia (Central Greece) Based on Chemistry of Their Cr-spinels
Abstract
:1. Introduction
2. Geological Setting
3. Materials and Methods
4. Results
4.1. Petrography
4.2. Mineral Chemistry
4.2.1. Spinel
4.2.2. Olivine
4.2.3. Pyroxene
5. Discussion
5.1. Partial Melting and Geotectonic Setting
5.2. Geothermobarometry
6. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Dick, H.J.B.; Bullen, T. Chromium spinel as a petrogenetic indicator in abyssal and alpine-type peridotites and spatially associated lavas. Contrib. Mineral. Petr. 1984, 86, 54–76. [Google Scholar] [CrossRef]
- Arai, S. Chemistry of chromian spinel in volcanic rocks as a potential guide to magma chemistry. Mineral. Mag. 1992, 56, 173–184. [Google Scholar] [CrossRef]
- Arai, S. Compositional variation of olivine-chromian spinel in Mg-rich magmas as a guide to their residual spinel peridotites. J. Volcanol. Geoth. Res. 1994, 59, 279–293. [Google Scholar] [CrossRef]
- Arai, S.; Okamura, H.; Kadoshima, K.; Tanaka, C.; Suzuki, K.; Ishimaru, S. Chemical characteristics of chromian spinel in plutonic rocks: Implications for deep magma processes and discrimination of tectonic setting. Island Arc 2011, 20, 125–137. [Google Scholar] [CrossRef]
- Arai, S. Characterization of spinel peridotites by olivine-spinel compositional relationships: Review and interpretation. Chem. Geol. 1994, 113, 191–204. [Google Scholar] [CrossRef]
- Barnes, S.J.; Roeder, P.L. The range of spinel compositions in terrestrial mafic and ultramafic rocks. J. Petrol. 2001, 42, 2279–2302. [Google Scholar] [CrossRef]
- Kamenetsky, V.S.; Crawford, A.J.; Meffre, S. Factors controlling chemistry of magmatic spinel: An empirical study of associated olivine, Cr-spinel and melt inclusions from primitive rocks. J. Petrol. 2001, 42, 655–671. [Google Scholar] [CrossRef]
- Pal, T. Petrology and geochemistry of the Andaman ophiolite: Melt–rock interaction in a suprasubduction-zone setting. J. Geol. Soc. London 2011, 168, 1031–1045. [Google Scholar] [CrossRef]
- Picazo, S.; Müntener, O.; Manatschal, G.; Bauville, A.; Karner, G.; Johnson, C. Mapping the nature of mantle domains in Western and Central Europe based on clinopyroxene and spinel chemistry: Evidence for mantle modification during an extensional cycle. Lithos 2016, 266, 233–263. [Google Scholar] [CrossRef]
- Rollinson, H. The geochemistry of mantle chromitites from the northern part of the Oman ophiolite: inferred parental melt compositions. Contrib. Mineral. Petr. 2008, 156, 273–288. [Google Scholar] [CrossRef]
- Uysal, İ.; Ersoy, E.Y.; Karslı, O.; Dilek, Y.; Sadıklar, M.B.; Ottley, C.J.; Tiepolo, M.; Meisel, T. Coexistence of abyssal and ultra-depleted SSZ type mantle peridotites in a Neo-Tethyan Ophiolite in SW Turkey: Constraints from mineral composition, whole-rock geochemistry (major–trace–REE–PGE), and Re–Os isotope systematics. Lithos 2012, 132, 50–69. [Google Scholar] [CrossRef]
- Zhou, M.; Robinson, P.T. Origin and tectonic environment of podiform chromite deposits. Econ. Geol. 1997, 92, 259–262. [Google Scholar] [CrossRef]
- Arai, S. Origin of podiform chromitites. J. Asian Earth Sci. 1997, 15.2, 303–310. [Google Scholar] [CrossRef]
- Ballhaus, C. Origin of podiform chromite deposits by magma mingling. Earth. Planet. Sc. Lett. 1998, 156.3, 185–193. [Google Scholar] [CrossRef]
- González-Jiménez, J.M.; Proenza, J.A.; Gervilla, F.; Melgarejo, J.C.; Blanco-Moreno, J.A.; Ruiz-Sánchez, R.; Griffin, W.L. High-Cr and high-Al chromitites from the Sagua de Tánamo district, Mayarí-Cristal ophiolitic massif (eastern Cuba): Constraints on their origin from mineralogy and geochemistry of chromian spinel and platinum-group elements. Lithos 2011, 125, 101–121. [Google Scholar] [CrossRef]
- Melcher, F.; Grum, W.; Simon, G.; Thalhammer, T.V.; Stumpfl, E.F. Petrogenesis of the ophiolitic giant chromite deposits of Kempirsai, Kazakhstan: A study of solid and fluid inclusions in chromite. J. Petrol. 1997, 38, 1419–1458. [Google Scholar] [CrossRef]
- Melcher, F.; Grum, W.; Thalhammer, T.V.; Thalhammer, O.A.R. The giant chromite deposits at Kempirsai, Urals: Constraints from trace element (PGE, REE) and isotope data. Miner. Deposita 1999, 34, 250–272. [Google Scholar] [CrossRef]
- Proenza, J.A.; Ortega-Gutiérrez, F.; Camprubı, A.; Tritlla, J.; Elıas-Herrera, M.; Reyes-Salas, M. Paleozoic serpentinite-enclosed chromitites from Tehuitzingo (Acatlán Complex, southern Mexico): A petrological and mineralogical study. J. S. Am. Earth Sci. 2004, 16, 649–666. [Google Scholar] [CrossRef]
- Uysal, İ.; Kaliwoda, M.; Karsli, O.; Tarkian, M.; Sadiklar, M.B.; Ottley, C.J. Compositional variations as a result of partial melting and melt–peridotite interaction in an upper mantle section from the Ortaca area, southwestern Turkey. Can. Mineral. 2007, 45, 1471–1493. [Google Scholar] [CrossRef]
- Uysal, I.; Sadiklar, M.B.; Tarkian, M.; Karsli, O.; Aydin, F. Mineralogy and composition of the chromitites and their platinum-group minerals from Ortaca (Muğla-SW Turkey): Evidence for ophiolitic chromitite genesis. Miner. Petrol. 2005, 83, 219–242. [Google Scholar] [CrossRef]
- Zaccarini, F.; Garuti, G.; Proenza, J.A.; Campos, L.; Thalhammer, O.A.; Aiglsperger, T.; Lewis, J.F. Chromite and platinum group elements mineralization in the Santa Elena Ultramafic Nappe (Costa Rica): geodynamic implications. Geol. Acta 2011, 9. [Google Scholar]
- Zhou, M.; Robinson, P.T.; Bai, W.J. Formation of podiform chromitites by melt/rock interaction in the upper mantle. Miner. Deposita 1994, 29, 98–101. [Google Scholar]
- Zhou, M.F.; Sun, M.; Keays, R.R.; Kerrich, R.W. Controls on platinum-group elemental distributions of podiform chromitites: A case study of high-Cr and high-Al chromitites from Chinese orogenic belts. Geochim. Cosmochim. Ac. 1998, 62, 677–688. [Google Scholar] [CrossRef]
- Voigt, M.; Von Der Handt, A. Influence of subsolidus processes on the chromium number in spinel in ultramafic rocks. Contrib. Mineral. Petr. 2011, 162, 675–689. [Google Scholar] [CrossRef]
- Robertson, A.H.F.; Clift, P.D.; Degnan, P.J.; Jones, G. Palaeogeographic and palaeotectonic evolution of the Eastern Mediterranean Neotethys. Palaeogeogr. Palaeoclimatol. Palaeoeco. 1991, 87, 289–343. [Google Scholar] [CrossRef]
- Smith, A.G. Othris, Pindos and Vourinos ophiolites and the Pelagonian zone. In Proceedings of the 6th Colloquium on the Geology of the Aegean Region, Athens, Greece, 27 September 1977; pp. 1369–1374.
- Robertson, A.H. Overview of the genesis and emplacement of Mesozoic ophiolites in the Eastern Mediterranean Tethyan region. Lithos 2002, 65, 1–67. [Google Scholar] [CrossRef]
- Stampfli, G.M.; Hochard, C. Plate tectonics of the Alpine realm. Geol. Soc. Lond. Spec. Publ. 2009, 327, 89–111. [Google Scholar] [CrossRef]
- Juteau, T.; Berger, E.; Cannat, M. Serpentinized, Residual Mantle Peridotites from the M.A.R. Median Valley, ODP Hole 670A (21° 10′N, 45° 02′W): Primary Mineralogy and Geothermometry. Available online: http://www-odp.tamu.edu/Publications/106109SR/VOLUME/CHAPTERS/sr106109_04.pdf (accessed on 3 March 2017).
- Ishii, T.; Robinson, P.T.; Maekawa, H.; Fiske, R. Petrological Studies of Peridotites from Diapiric Serpentinite Seamounts in the Izu–Mariana Fore-Arc, Leg 125. Available online: http://www-odp.tamu.edu/publications/125_SR/VOLUME/CHAPTERS/sr125_27.pdf (accessed on 3 March 2017).
- Ohara, Y.; Ishii, T. Peridotites from the southern Mariana forearc: heterogeneous fluid supply in the mantle wedge. Isl. Arc 1998, 7, 541–558. [Google Scholar] [CrossRef]
- Economou-Eliopoulos, M.; Vacondios, I. Geochemistry of chromitites and host rocks from the Pindos ophiolite complex, northwestern Greece. Chem. Geol. 1995, 122, 99–108. [Google Scholar] [CrossRef]
- Economou-Eliopoulos, M.; Tarkian, M.; Sambanis, G. On the geochemistry of chromitites from the Pindos ophiolite complex, Greece. Chem. Erde 1999, 59, 19–31. [Google Scholar]
- Kapsiotis, A.N. Mineralogy, geochemistry and geotectonic significance of harzburgites from the southern Dramala upper mantle suite, Pindos ophiolite complex, NW Greece. Geol. J. 2014, 51, 236–262. [Google Scholar] [CrossRef]
- Karipi, S.; Tsikouras, B.; Hatzipanagiotou, K.; Grammatikopoulos, T. Petrogenetic significance of spinel-group minerals from the ultramafic rocks of the Iti and Kallidromon ophiolites (Central Greece). Lithos 2007, 99, 136–149. [Google Scholar] [CrossRef]
- Magganas, A.; Koutsovitis, P. Composition, melting and evolution of the upper mantle beneath the Jurassic Pindos ocean inferred by ophiolitic ultramafic rocks in East Othris, Greece. Int. J. Earth Sci. 2015, 104, 1185–1207. [Google Scholar] [CrossRef]
- Pomonis, P.; Tsikouras, B.; Hatzipanagiotou, K. Petrogenetic evolution of the Koziakas ophiolite complex (W. Thessaly, Greece). Miner. Petrol. 2007, 89, 77–111. [Google Scholar] [CrossRef]
- Hatzipanagiotou, K.; Pomonis, P.; Tsikouras, B. Origin and evolution of ultramafic rocks from the Koziakas ophiolite‚ continental Greece. Braunschweiger geowiss Arb 2001, 24, 235–247. [Google Scholar]
- Barth, M.G.; Mason, P.R.; Davies, G.R.; Dijkstra, A.H.; Drury, M.R. Geochemistry of the Othris ophiolite, Greece: Evidence for refertilization? J. Petrol. 2003, 44, 1759–1785. [Google Scholar] [CrossRef] [Green Version]
- Bortolotti, V.; Chiari, M.; Marcucci, M.; Marroni, M.; Pandolfi, L.; Principi, G.; Saccani, E. Comparison among the Albanian and Greek ophiolites: In search of constraints for the evolution of the Mesozoic Tethys Ocean. Ofioliti 2004, 29, 19–35. [Google Scholar]
- Koutsovitis, P.; Magganas, A.; Pomonis, P.; Ntaflos, T. Subduction-related rodingites from East Othris, Greece: Mineral reactions and physicochemical conditions of formation. Lithos 2013, 172–173, 139–157. [Google Scholar] [CrossRef]
- Karipi, S.; Tsikouras, B.; Hatzipanagiotou, K. The petrogenesis and tectonic setting of ultramafic rocks from Iti and Kallidromon Mountains, continental Central Greece: Vestiges of the Pindos Ocean. Can. Mineral. 2006, 44, 267–287. [Google Scholar] [CrossRef]
- Tsikouras, B.; Karipi, S.; Rigopoulos, I.; Perraki, M.; Pomonis, P.; Hatzipanagiotou, K. Geochemical processes and petrogenetic evolution of rodingite dykes in the ophiolite complex of Othrys (Central Greece). Lithos 2009, 113, 540–554. [Google Scholar] [CrossRef]
- Rassios, A.H.; Moores, E.M. Heterogeneous mantle complex, crustal processes, and obduction kinematics in a unified Pindos-Vourinos ophiolitic slab (northern Greece). Geol. Soc. Lond. Spec. Publ. 2006, 260, 237–266. [Google Scholar] [CrossRef]
- Rassios, A.; Smith, A.G. Constraints on the formation and emplacement age of western Greek ophiolites (Vourinos, Pindos, and Othris) inferred from deformation structures in peridotites. Geol. S. Am. S. 2000, 473–484. [Google Scholar]
- Smith, A.G. Tectonic significance of the Hellenic-Dinaric ophiolites. Geol. Soc. Lond. Spec. Publ. 1993, 76, 213–243. [Google Scholar] [CrossRef]
- Smith, A.G. Tethyan ophiolite emplacement, Africa to Europe motions, and Atlantic spreading. Geol. Soc. Lond. Spec. Publ. 2006, 260, 11–34. [Google Scholar] [CrossRef]
- Parkinson, I.J.; Pearce, J.A. Peridotites of the Izu-Bonin-Mariana forearc (ODP Leg 125) evidence for mantle melting and melt–mantle interactions in a suprasubduction zone setting. J. Petrol. 1998, 39, 1577–1618. [Google Scholar] [CrossRef]
- Dokuz, A.; Uysal, I.; Kaliwoda, M.; Karsli, O.; Ottley, C.J.; Kandemir, R. Early abyssal- and late SSZ-type vestiges of the Rheic oceanic mantle in the Variscanbasement of the Sakarya Zone, NE Turkey: Implications for the sense of subduction and opening of the Paleotethys. Lithos 2011, 127, 176–191. [Google Scholar] [CrossRef]
- Seyler, M.; Lorand, J.P.; Dick, H.J.B.; Drouin, M. Pervasive melt percolation reactions in ultra-depleted refractory harzburgites at the Mid-Atlantic Ridge, 15°20N: ODP Hole 1274A. Contrib. Miner. Petrol. 2007, 153, 303–319. [Google Scholar] [CrossRef]
- Bédard, J.H.; Leclerc, F.; Harris, L.B.; Goulet, N. Intra-sill magmatic evolution in the Cummings Complex, Abitibi greenstone belt: Tholeiitic to calc-alkaline magmatism recorded in an Archaean subvolcanic conduit system. Lithos 2009, 111, 47–71. [Google Scholar] [CrossRef]
- Choi, S.H.; Shervais, J.W.; Mukasa, S.B. Supra-subduction and abyssal mantle peridotites of the Coast Range ophiolite, California. Contrib. Mineral. Petrol. 2008, 156, 551–576. [Google Scholar] [CrossRef]
- Kinzler, R.J.; Grove, T.L. Primary magmas of mid-ocean ridge basalts 1. Experiments and methods. J. Geophys. Res. Solid Earth 1992, 97, 6885–6906. [Google Scholar] [CrossRef]
- Langmuir, C.H.; Klein, E.M.; Plank, T. Petrological systematics of mid-ocean ridge basalts: Constraints on melt generation beneath ocean ridges. In Mantle Flow and Melt Generation at Mid-Ocean Ridges; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 1993; pp. 183–280. [Google Scholar]
- Pearce, J.A.; Barker, P.F.; Edwards, S.J.; Parkinson, I.J.; Leat, P.T. Geochemistry and tectonic significance of peridotites from the South Sandwich arc-basin system, south Atlantic. Contrib. Mineral. Petr. 2000, 139, 36–53. [Google Scholar] [CrossRef]
- Ghosh, B.; Morishita, T.; Bhatta, K. Significance of chromian spinels from the mantle sequence of the Andaman Ophiolite, India: Paleogeodynamic implications. Lithos 2013, 164, 86–96. [Google Scholar] [CrossRef]
- Parkinson, I.J.; Pearce, J.A.; Thirwall, M.F.; Johnson, K.T.M.; Ingram, G. Trace Element Geochemistry of Peridotites from the Izu-Bonin-Mariana forearc, Leg 125. Available online: http://www-odp.tamu.edu/publications/125_SR/VOLUME/CHAPTERS/sr125_28.pdf (accessed on 3 March 2017).
- Bloomer, S.H.; Hawkins, J.W. Gabbroic and ultramafic rocks from the Mariana Trench: An island arc ophiolite. In The Tectonic and Geologic Evolution of Southeast Asian Seas and Islands: Part 2; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 1983; pp. 294–317. [Google Scholar]
- Bizimis, M.; Salters, V.J.M.; Bonatti, E. Trace and REE content of clinopyroxenes from supra-subduction zone peridotites. Implications for melting and enrichment processes in island arcs. Chem. Geol. 2000, 165, 67–85. [Google Scholar] [CrossRef]
- Stern, R.J. The anatomy and ontogeny of modern intra-oceanic arc systems. Geol. Soc. Lond. Spec. Publ. 2010, 338, 7–34. [Google Scholar] [CrossRef]
- Pearce, J.A.; Lippard, S.J.; Roberts, S. Characteristics and tectonic significance of supra-subduction zone ophiolites. Geol. Soc. Lond. Spec. Publ. 1984, 16, 77–94. [Google Scholar] [CrossRef]
- Khedr, M.Z.; Arai, S.; Python, M.; Tamura, A. Chemical variations of abyssal peridotites in the central Oman ophiolite: Evidence of oceanic mantle heterogeneity. Gondwana Res. 2014, 25, 1242–1262. [Google Scholar] [CrossRef]
- Yang, J.S.; Robinson, P.T.; Dilek, Y. Diamonds in ophiolites. Elements 2014, 10, 127–130. [Google Scholar] [CrossRef]
- Uysal, I.; Ersoy, E.Y.; Dilek, Y.; Kapsiotis, A.; Sarıfakıoğlu, E. Multiple episodes of partial melting, depletion, metasomatism and enrichment processes recorded in the heterogeneous upper mantle sequence of the Neotethyan Eldivan ophiolite, Turkey. Lithos 2016, 246, 228–245. [Google Scholar] [CrossRef]
- Moghadam, H.S.; Khedr, M.Z.; Arai, S.; Sternd, R.J.; Ghorbani, G.; Tamura, A.; Ottley, C.J. Arc-related harzburgite–dunite–chromitite complexes in the mantle section of the Sabzevar ophiolite, Iran: A model for formation of podiform chromitites. Gondwana Res. 2013, 27, 575–593. [Google Scholar] [CrossRef]
- Brey, G.P.; Köhler, T. Geothermobarometry in four-phase lherzolites. II. New thermobarometers and practical assessment of existing thermobarometers. J. Petrol. 1990, 31, 1353–1378. [Google Scholar] [CrossRef]
- Fabries, I. Spinel-olivine geothermometry in peridotites from ultramafic complexes. Contrib. Mineral. Petr. 1979, 69, 329–336. [Google Scholar] [CrossRef]
- Putirka, K.D. Thermometers and Barometers for volcanic systems. Rev. Miner. Geochem. 2008, 69, 61–120. [Google Scholar] [CrossRef]
- Gasparik, T. Orthopyroxene thermometry in simple and complex systems. Contrib. Miner. Petr. 1987, 96, 357–370. [Google Scholar] [CrossRef]
- Elthon, D. Chemical trends in abyssal peridotites: Refertilization of depleted suboceanic mantle. J. Geophys. Res. 1992, 97, 9015–9025. [Google Scholar] [CrossRef]
Sample | MG2-4 | MG3-24 | MG4-12 | MG4-23 | MG5-14 | MG5-23 | TR5-9 | TR5-14 | TR6-1 | TR6-8 | TR14-3 | TR14-7 |
Rock-Type | Harzb. | Harzb. | Dunite | Dunite | Harzb. | Harzb. | Harzb. | Harzb. | Harzb. | Harzb. | Harzb. | Harzb. |
wt. % | ||||||||||||
TiO2 | 0.20 | - | 0.18 | 0.16 | - | 0.15 | 0.15 | - | 0.12 | 0.18 | 0.10 | - |
Al2O3 | 26.52 | 23.10 | 14.64 | 15.53 | 27.71 | 28.22 | 37.96 | 33.78 | 30.07 | 30.77 | 33.37 | 33.54 |
FeOt | 17.58 | 20.17 | 18.54 | 21.07 | 16.26 | 15.67 | 15.74 | 14.50 | 19.15 | 17.12 | 17.11 | 16.04 |
MgO | 13.17 | 11.97 | 11.03 | 10.83 | 13.91 | 14.20 | 15.76 | 16.89 | 13.29 | 14.03 | 15.14 | 15.32 |
Cr2O3 | 42.92 | 44.75 | 54.92 | 52.48 | 42.63 | 40.94 | 30.33 | 34.03 | 37.01 | 37.51 | 34.70 | 34.68 |
Total | 100.39 | 99.99 | 99.31 | 100.07 | 100.51 | 99.18 | 99.94 | 99.20 | 99.64 | 99.61 | 100.42 | 99.58 |
Formula units based on 32 oxygens | ||||||||||||
Cr | 1.021 | 1.091 | 1.404 | 1.329 | 1.004 | 0.971 | 0.682 | 0.776 | 0.872 | 0.878 | 0.794 | 0.797 |
Ti | 0.005 | 0.000 | 0.004 | 0.004 | 0.000 | 0.003 | 0.003 | 0.000 | 0.003 | 0.004 | 0.002 | 0.000 |
Al | 0.941 | 0.839 | 0.558 | 0.586 | 0.973 | 0.998 | 1.272 | 1.148 | 1.057 | 1.074 | 1.138 | 1.149 |
Fe3+ | 0.029 | 0.070 | 0.029 | 0.077 | 0.023 | 0.025 | 0.039 | 0.076 | 0.066 | 0.040 | 0.065 | 0.054 |
Fe2+ | 0.414 | 0.450 | 0.473 | 0.487 | 0.382 | 0.368 | 0.335 | 0.274 | 0.412 | 0.385 | 0.349 | 0.336 |
Mg | 0.591 | 0.550 | 0.532 | 0.517 | 0.618 | 0.635 | 0.668 | 0.726 | 0.591 | 0.619 | 0.653 | 0.664 |
Total cat | 3.000 | 3.000 | 3.000 | 3.000 | 3.000 | 3.000 | 3.000 | 3.000 | 3.000 | 3.000 | 3.000 | 3.000 |
Mg# | 0.59 | 0.55 | 0.53 | 0.52 | 0.62 | 0.63 | 0.67 | 0.73 | 0.59 | 0.62 | 0.65 | 0.66 |
Cr# | 0.52 | 0.57 | 0.72 | 0.69 | 0.51 | 0.49 | 0.35 | 0.40 | 0.45 | 0.45 | 0.41 | 0.41 |
Sample | YP2-1 | YP2-12 | YP2-14 | YP2-16 | YP2-19 | YP2-21 | ALY2-2 | ALY2-6 | ALY14-2 | ALY14-12 | ALY14-26 | ALY27-10 |
Rock-Type | Harzb. | Harzb. | Harzb. | Harzb. | Harzb. | Harzb. | Lherz. | Lherz. | Lherz. | Lherz. | Lherz. | Dunite |
wt. % | ||||||||||||
TiO2 | 0.16 | - | 0.14 | - | 0.18 | - | 0.14 | 0.12 | - | 0.11 | 0.10 | 0.14 |
Al2O3 | 32.63 | 38.25 | 34.07 | 34.42 | 33.32 | 34.65 | 44.40 | 42.73 | 44.04 | 43.09 | 47.44 | 20.83 |
FeOt | 17.43 | 14.91 | 16.13 | 15.81 | 15.49 | 16.31 | 13.93 | 15.50 | 14.65 | 14.94 | 13.99 | 20.28 |
MgO | 13.77 | 16.10 | 15.18 | 15.42 | 15.69 | 15.21 | 16.86 | 16.62 | 17.19 | 16.78 | 18.03 | 12.04 |
Cr2O3 | 36.18 | 31.60 | 35.01 | 34.85 | 35.74 | 33.80 | 24.68 | 24.32 | 23.48 | 25.52 | 19.73 | 45.99 |
Total | 100.17 | 100.86 | 100.53 | 100.50 | 100.42 | 99.97 | 100.01 | 99.29 | 99.36 | 100.44 | 99.29 | 99.28 |
Formula units based on 32 oxygens | ||||||||||||
Cr | 0.839 | 0.704 | 0.798 | 0.792 | 0.815 | 0.772 | 0.538 | 0.537 | 0.514 | 0.558 | 0.425 | 1.137 |
Ti | 0.004 | 0.000 | 0.003 | 0.000 | 0.004 | 0.000 | 0.003 | 0.003 | 0.000 | 0.002 | 0.002 | 0.003 |
Al | 1.128 | 1.269 | 1.158 | 1.166 | 1.133 | 1.179 | 1.444 | 1.406 | 1.437 | 1.403 | 1.523 | 0.768 |
Fe3+ | 0.026 | 0.027 | 0.038 | 0.041 | 0.044 | 0.049 | 0.012 | 0.051 | 0.049 | 0.034 | 0.049 | 0.088 |
Fe2+ | 0.401 | 0.324 | 0.351 | 0.339 | 0.329 | 0.345 | 0.309 | 0.311 | 0.290 | 0.311 | 0.270 | 0.442 |
Mg | 0.602 | 0.676 | 0.652 | 0.661 | 0.675 | 0.655 | 0.693 | 0.692 | 0.710 | 0.691 | 0.732 | 0.561 |
Total cat | 3.000 | 3.000 | 3.000 | 3.000 | 3.000 | 3.000 | 3.000 | 3.000 | 3.000 | 3.000 | 3.000 | 3.000 |
Mg# | 0.60 | 0.68 | 0.65 | 0.66 | 0.67 | 0.65 | 0.69 | 0.69 | 0.71 | 0.69 | 0.73 | 0.56 |
Cr# | 0.43 | 0.36 | 0.41 | 0.40 | 0.42 | 0.40 | 0.27 | 0.28 | 0.26 | 0.28 | 0.22 | 0.60 |
Olivine | Pyroxene | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Sample | MG1-13 | MG4-15 | TR5-10 | TR6-9 | YP2-2 | YP2-9 | ALY2-7 | ALY2-15 | ALY27-20 | Sample | MG1-10 | MG5-6 | TR5-12 | TR14-9 | YP2-3 | YP2-5 | ALY2-8 | ALY14-11 |
Rock-Type | Harzb. | Dunite | Harzb. | Harzb. | Harzb. | Harzb. | Lherz. | Lherz. | Dunite | Rock-Type | Harzb. | Harzb. | Harzb. | Harzb. | Harzb. | Harzb. | Lherz. | Lherz. |
wt. % | wt. % | |||||||||||||||||
SiO2 | 39.90 | 39.03 | 41.25 | 41.34 | 40.84 | 40.34 | 40.92 | 39.95 | 41.15 | SiO2 | 55.12 | 54.92 | 53.08 | 56.70 | 55.49 | 53.86 | 54.97 | 53.70 |
TiO2 | - | - | - | 0.02 | - | - | - | - | - | TiO2 | - | - | 0.20 | - | - | - | - | 0.31 |
Al2O3 | - | - | - | - | - | - | 0.18 | - | 0.02 | Al2O3 | 1.78 | 0.86 | 2.86 | 3.83 | 2.57 | 2.30 | 3.57 | 3.50 |
FeO | 8.35 | 8.43 | 8.02 | 8.85 | 8.74 | 8.56 | 8.98 | 9.14 | 8.19 | FeO | 6.68 | 1.82 | 2.03 | 5.18 | 5.85 | 1.82 | 5.41 | 2.26 |
MgO | 50.99 | 51.62 | 50.40 | 50.36 | 51.10 | 51.02 | 50.04 | 50.47 | 50.99 | MgO | 35.41 | 18.81 | 17.12 | 34.39 | 34.84 | 18.11 | 33.15 | 17.18 |
CaO | - | - | - | - | - | - | 0.10 | - | - | CaO | 0.29 | 23.53 | 22.82 | - | 0.69 | 23.09 | 2.90 | 23.17 |
Cr2O3 | 0.27 | 0.22 | - | - | - | - | 0.13 | - | 0.22 | Cr2O3 | 0.81 | 0.82 | 0.96 | - | 0.51 | 0.65 | 0.69 | 0.80 |
NiO | - | - | - | - | 0.22 | 0.38 | - | - | - | Total | 100.09 | 100.76 | 99.07 | 100.10 | 99.95 | 99.83 | 100.69 | 100.92 |
Total | 99.51 | 99.30 | 99.67 | 100.57 | 100.90 | 100.30 | 100.35 | 99.56 | 100.57 | |||||||||
Formula units based on 6 oxygens | ||||||||||||||||||
Formula units based on 4 oxygens | Si | 1.892 | 1.972 | 1.938 | 1.935 | 1.905 | 1.949 | 1.883 | 1.926 | |||||||||
Si | 0.978 | 0.962 | 1.004 | 1.001 | 0.988 | 0.983 | 1.244 | 0.982 | 0.995 | Ti | - | - | 0.005 | - | - | - | - | 0.008 |
Al | - | - | - | - | - | - | 0.006 | - | 0.001 | Al | 0.072 | 0.036 | 0.123 | 0.154 | 0.104 | 0.098 | 0.144 | 0.148 |
Ti | - | - | - | - | - | - | - | - | - | Fe3+ | 0.122 | - | - | - | 0.071 | - | 0.071 | - |
Fe2+ | 0.171 | 0.174 | 0.163 | 0.179 | 0.177 | 0.174 | 0.228 | 0.188 | 0.166 | Fe2+ | 0.069 | 0.055 | 0.062 | 0.148 | 0.097 | 0.055 | 0.084 | 0.068 |
Mg | 1.864 | 1.896 | 1.829 | 1.818 | 1.843 | 1.853 | 2.267 | 1.849 | 1.838 | Cr | 0.022 | 0.023 | 0.028 | - | 0.014 | 0.019 | 0.019 | 0.023 |
Ca | - | - | - | - | - | - | 0.003 | - | - | Mg | 1.812 | 1.007 | 0.932 | 1.750 | 1.783 | 0.977 | 1.693 | 0.918 |
Ni | - | - | - | - | 0.004 | 0.007 | - | - | - | Ca | 0.011 | 0.905 | 0.893 | - | 0.025 | 0.895 | 0.106 | 0.890 |
Cr | 0.005 | 0.004 | - | - | - | - | 0.003 | - | 0.004 | |||||||||
Wo | 0.53 | 46.03 | 47.32 | - | 1.28 | 46.45 | 5.45 | 47.44 | ||||||||||
Mg# | 0.92 | 0.92 | 0.92 | 0.91 | 0.91 | 0.91 | 0.91 | 0.91 | 0.92 | En | 89.95 | 51.19 | 49.39 | 92.21 | 90.22 | 50.69 | 86.62 | 48.95 |
Fs | 9.52 | 2.78 | 3.29 | 7.79 | 8.50 | 2.86 | 7.93 | 3.61 | ||||||||||
Mg# | 0.96 | 0.95 | 0.94 | 0.92 | 0.95 | 0.95 | 0.95 | 0.93 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pomonis, P.; Magganas, A. Petrogenetic Implications for Ophiolite Ultramafic Bodies from Lokris and Beotia (Central Greece) Based on Chemistry of Their Cr-spinels. Geosciences 2017, 7, 10. https://doi.org/10.3390/geosciences7010010
Pomonis P, Magganas A. Petrogenetic Implications for Ophiolite Ultramafic Bodies from Lokris and Beotia (Central Greece) Based on Chemistry of Their Cr-spinels. Geosciences. 2017; 7(1):10. https://doi.org/10.3390/geosciences7010010
Chicago/Turabian StylePomonis, Panagiotis, and Andreas Magganas. 2017. "Petrogenetic Implications for Ophiolite Ultramafic Bodies from Lokris and Beotia (Central Greece) Based on Chemistry of Their Cr-spinels" Geosciences 7, no. 1: 10. https://doi.org/10.3390/geosciences7010010
APA StylePomonis, P., & Magganas, A. (2017). Petrogenetic Implications for Ophiolite Ultramafic Bodies from Lokris and Beotia (Central Greece) Based on Chemistry of Their Cr-spinels. Geosciences, 7(1), 10. https://doi.org/10.3390/geosciences7010010