Ophiolitic Remnants from the Upper and Intermediate Structural Unit of the Attic-Cycladic Crystalline Belt (Aegean, Greece): Fingerprinting Geochemical Affinities of Magmatic Precursors
Abstract
:1. Introduction
2. Geological Setting
2.1. Local Geology
3. Analytical Techniques
4. Petrography
4.1. Naxos
4.1.1. Amphibolites
4.1.2. Metavolcanics
4.1.3. Dunites and Serpentinites
4.2. Paros
4.2.1. Metagabbros
4.2.2. Serpentinites
4.3. Samos
4.3.1. Metagabbros
4.3.2. Metavolcanics
4.3.3. Serpentinized Harzburgites, Serpentinites
4.4. Skyros
4.4.1. Rodingites
4.4.2. Serpentinites
5. Whole-Rock Geochemistry
5.1. Upper Unit Metabasites
5.2. Naxos Amphibolites and Central Samos Metagabbro (CBU)
5.3. Multi-Element Geochemical Patterns
- (a)
- Paros metagabbros (Figure 7a) (SE Naoussa—Upper Unit) and Samos (Kallithea nappe) metavolcanites (Figure 7b) display a Zr-Y flat pattern and higher Th/Y ratio relative to MORB or OIB; these characteristics are typical of modern arc lavas from complex tectonic settings (C-MORB, Taitao lavas, Chile; [51] and references therein). The gradient of the patterns for the Paros-W. Samos samples is even higher than that for back-arc basin basalts (BABB) tholeiites (Figure 7a,b). Moreover, the (La/Nb)N ratios, which range from 1.2 to 2.35 (Figure 6b), emphasize the HFSE depletion of this type of magmas relative to LREE, which is another characteristic feature of arc magmas [64,65].
- (b)
- Sample SA-11 (metagabbro from CBU), from central Samos, displays a flat pattern typical for MORB (Figure 7b). Following the definition of N-type MORB of [66], this sample exhibits Ce/Nb > 2.5 but CeN/YbN = 1 (Table 1) and, combined with initial Sr > 0.7035, it is assigned to an enriched MORB category (E-MORB) rather than N-MORB. However, comparing sample SA-11 with a complete dataset from [15] (Figure 7f) it becomes clear that there is a whole range of compositions typical of BABB, similar to Troodos ophiolitic lavas [51].
- (c)
- Trace element patterns of Naxos metabasaltic rocks (NA-3, NA-15) share many characteristics with oceanic island basalts (OIB) (Figure 7c): low Zr/Nb (i.e., ~5) relative to N-MORB [67], high Nb/Y, and the negative gradient in the Ti–Yb(Y) part of the diagram, which are characteristics of enriched ocean-island basalts (OIB). This is distinct from the flat patterns for Ti–Yb(Y) that characterize both N- and EMORB compositions.
- (d)
- Naxos amphibolites (CBU) also display a high Th/Y ratio similar to Paros and western Samos metabasalts; however, they also have a strong depletion for most of the trace elements LREE and HFSE, compared to typical MORB patterns (Figure 7c).
- (e)
5.4. Upper Unit Serpentinites and Serpentinized Peridotites
5.5. Sr-Nd Results
5.6. Lead Isotope Geochemistry
6. Discussion
6.1. Determining the Effect of Alteration on the Cycladic Metabasites
6.2. Comparisons of the Upper Unit and CBU Ophiolites of the Broader Aegean Region
- (a)
- Random occurrence of ophiolitic lithologies characterizes the Cycladic mélange units, whereas the Skyros ophiolite consists of more coherent slices of metabasites with essentially boninitic affinities.
- (b)
- Basalts with Ocean Island type (OIB) affinities and alkaline characteristics are recognized in the Cycladic islands (Naxos-Ikaria), but are also common elsewhere in the Cycladic belt and the mainland ophiolite complexes: the amphibolite soles of central–northern Evia ophiolite [8] and Ikaria [10], as well as the main Western Ophiolite Belt (Avdella mélange-Pindos and Koziakas: [86]). These rocks display extreme HFSE enrichments relative to N-type MORB (high Ti, P and Nb, Zr/Y ~ 5, Nb/Y > 1). Alkaline basalts (AB) found in ophiolites mainly include rocks formed at seamounts (OIB) [87]. They mainly occur as tectonic slices or blocks incorporated into mélanges, that is, as accreted fragments of oceanic terranes. Contrary to the Pindos peridotites, the Cycladic rocks exhibit variable enrichments in alkali earth elements (Sr, Rb, and Ba). These enrichments are a common feature of the Cycladic serpentinites from mélange units, which have been interpreted in different ways: oceanic hydrothermal alteration, synmetamorphic fluid–rock interaction, igneous differentiation, or some combination of these processes (e.g., S. Evia, Syros: [17,34]). Due to the random variation in these mobile elements (Sr, Rb, and Ba) we consider these enrichments a result of ocean floor hydrothermal alteration.
- (c)
- The peridotite relicts in Cycladic ophiolites display considerable chemical and petrographic variation and a general refractory nature. Overall their composition correlates with the two groups distinguished by [74] for the ultramafic rocks of the Pindos complex. The observed elemental variations are typical of serpentinites corresponding to harzburgites from mantle wedge settings (Supra Subduction Zones—SSZ [75]).
6.3. Regional Correlation and Significance
6.4. Tectonic Setting
7. Conclusions
- (a)
- Metavolcanics (dolerites, basaltic andesites, minor basalts) and metagabbros from all the upper unit ophiolitic exposures exhibit wide ranges of major element composition (SiO2: 39–56.6 wt %; Mg-number: 37.5–69.2 and high K2O i.e., >0.2 wt %), indicating derivation from evolved magmas.
- (b)
- The petrographic, major and trace element and Sr-isotope data show that all the studied rocks (metagabbros, metavolcanics, and peridotites) underwent ocean floor alteration. Microscopic observations corroborate that low-temperature alteration during the generation of the ocean crust affected the upper unit metavolcanites and metagabbros.
- (c)
- Based on the immobile- element TAS proxy classification diagram, Ti/V, Zr/Y vs. Zr discriminant plots and spidergram patterns of N-MORB-normalized compositions, three magmatic groups are recognized among the upper unit (UU) ophiolitic metabasites: (i) metabasites from Paros and western Samos (Kallithea melange) display affinities of island arc tholeiites (IAT); (ii) Naxos basaltic rocks are highly enriched in incompatible elements and display an OIB type affinity, representing an oceanic island setting; (iii) Metagabbros from the northern Skyros ophiolitic-mélange (Fere-Kambos) and Tinos (Upper Unit—Mt. Tsiknias) exhibit boninitic affinities indicating a fore-arc setting.
- (d)
- Central Samos metagabbros of the Cycladic Blueschists Unit (CBU) are primitive rocks with Back-Arc Basin affinities.
- (e)
- Most peridotite relicts from Samos, Paros, and Naxos—irrespective of the structural unit—display common chemical affinities similar to ocean floor peridotites formed in a supra-subduction zone environment. Major and trace element characteristics of harzburgite relicts in Cycladic serpentinites and Skyros indicate a highly residual nature of the mantle source, comparable to the mantle wedge serpentinites from oceanic fore-arc settings, in accordance with previous studies.
- (f)
- A combination of Pb and Sr isotopic characteristics of the Cycladic metabasites shows the importance of seawater hydrothermal alteration on the composition of the studied metaophiolitic rocks. Trace element patterns of Central Samos metabasites (CBU) and Nd isotopes suggest affinities of Back-Arc Basin Basalts (BABB).
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Dürr, S.; Altherr, R.; Keller, J.; Okrusch, M.; Seidel, E. The median Aegean crystalline belt: Stratigraphy, structure, metamorphism, magmatism. In Alps, Apennines, Hellenides; Closs, H., Roeder, D.H., Schmidt, K., Eds.; IUGS Report; Schweizerbart: Stuttgart, Germany, 1978; Volume 38, pp. 455–477. [Google Scholar]
- Altherr, R.; Kreuzer, H.; Wendt, I.; Lenz, H.; Wagner, G.A.; Keller, J.; Harre, W.; Höhndorf, A.A. Late Oligocene/Early Miocene high temperature belt in the Attic–Cycladic belt in the Attic–Cycladic crystalline complex (SE Pelagonian, Greece). Geol. Jahrb. 1982, 23, 97–164. [Google Scholar]
- Patzak, M.L.; Okrusch, M.; Kreuzer, H. The Akrotiri unit on the island of Tinos, Cyclades, Greece: Witness to a lost terrane of Late Cretaceous age. Neues Jahrb. Geol. Paläontol. 1994, 194, 211–252. [Google Scholar]
- Katzir, Y.; Matthews, A.; Garfunkel, Z.; Schliestedt, M. The tectonometamorphic evolution of a dismembered ophiolite (Tinos, Cyclades, Greece). Geol. Mag. 1996, 133, 237–254. [Google Scholar] [CrossRef]
- Pe-Piper, G.; Piper, D.J.W. The Igneous Rocks of Greece. The Anatomy of an Orogeny; Schweizerbart: Stuttgart Germany, 2002; 573p. [Google Scholar]
- Soukis, K.; Stockli, D. Structural and thermochronometric evidence for multi-stage exhumation of southern Syros, Cycladic islands, Greece. Tectonophysics 2013, 595–596, 148–164. [Google Scholar]
- Robertson, A.H.F.; Shallo, M. Mesozoic-Tertiary evolution of Albania in its regional Eastern Mediterranean context. Tectonophysics 2000, 316, 197–254. [Google Scholar] [CrossRef]
- Gartzos, E.; Dietrch, V.J.; Migiros, G.; Serelis, K.; Lymperopoulou, T. The origin of amphibolites from the metamorphic soles beneath the ultramafic ophiolites in Evia and Lesvos (Greece) and their geotectonic implication. Lithos 2009, 108, 224–242. [Google Scholar] [CrossRef]
- Jolivet, L.; Menant, A.; Sternai, P.; Rabillard, A.; Arbaret, L.; Augier, R.; Laurent, V.; Beaudoin, A.; Grasemann, B.; Huet, B.; et al. The geological signature of a slab tear below the Aegean. Tectonophysics 2015, 659, 166–182. [Google Scholar] [CrossRef] [Green Version]
- Pe-Piper, G.; Photiades, A. Geochemical characteristics of the Cretaceous ophiolitic rocks of Ikaria island Greece. Geol. Mag. 2006, 143, 417–429. [Google Scholar] [CrossRef]
- Pomonis, P.; Hatzipanagiotou, K. Petrography and geochemistry of relict peridotites of the Kallithea-Drakei area (W. Samos). Bull. Geol. Soc. Greece 1998, 32, 215–224. [Google Scholar]
- Jolivet, L.; Brun, J.-P. Cenozoic geodynamic evolution of the Aegean. Int. J. Earth Sci. 2010, 99, 109–138. [Google Scholar] [CrossRef]
- Malandri, C.; Soukis, K.; Maffione, M.; Özkaptan, M.; Vassilakis, E.; Lozios, S.; van Hinsbergen, D.J.J. Vertical-axis rotations accommodated along the Mid-Cycladic lineament on Paros Island in the extensional heart of the Aegean orocline (Greece). Lithosphere 2016. [Google Scholar] [CrossRef]
- Bargnesi, E.A.; Stockli, D.F.; Mancktelow, N.; Soukis, K. Miocene core complex development and coeval supradetachment basin evolution of Paros, Greece, insights from (U–Th)/He thermochronometry. Tectonophysics 2013, 595–596, 165–182. [Google Scholar]
- Bröcker, M.; Löwena, K.; Rodionov, N. Unraveling protolith ages of meta-gabbros from Samos and the Attic–Cycladic Crystalline Belt, Greece: Results of a U–Pb zircon and Sr–Nd whole rock study. Lithos 2014, 198–199, 234–248. [Google Scholar]
- Katzir, Y.; Garfunkel, Z.; Avigad, D.; Matthews, A. The geodynamic evolution of the Alpine orogen in the Cyclades (Aegean Sea, Greece): Insights from diverse origins and modes of emplacement of ultramafic rocks. In The Geodynamics of the Aegean and Anatolia; Taymaz, T., Yilmaz, Y., Dilek, Y., Eds.; Geol. Soc. London Spec. Publ., The Geological Society of London: London, UK, 2007; Volume 291, pp. 17–40. [Google Scholar]
- Bröcker, M.; Enders, M. Unusual bulk-rock compositions in eclogite-facies rocks from Syros and Tinos (Cyclades, Greece): Implications for U-Pb zircon geochronology. Chem. Geol. 2001, 175, 581–603. [Google Scholar] [CrossRef]
- Robertson, A.H.F. Overview of the genesis and emplacement of Mesozoic ophiolites in the Eastern Mediterranean Tethyan region. Lithos 2002, 65, 1–67. [Google Scholar] [CrossRef]
- Papanikolaou, D. Timing of tectonic emplacement of the ophiolites and terrane paleogeography in the Hellenides. Lithos 2009, 108, 262–280. [Google Scholar] [CrossRef]
- Robertson, A.H.F. Late Palaeozoic–Cenozoic tectonic development of Greece and Albania in the context of alternative reconstructions of Tethys in the Eastern Mediterranean region. Int. Geol. Rev. 2012, 54, 373–454. [Google Scholar] [CrossRef]
- Rassios, A.; Smith, A.G. Constraints on the formation and emplacement age of western Greece ophiolites (Vourinos, Pindos and Othris) inferred from deformation structures in peridotites. In Ophiolites and Ocean Crust: New Insights from Field Studies and the Ocean Drilling Program; Dilek, Y., Moores, E.M., Elthon, D., Nicolas, A., Eds.; Geological Society of America Special Papers; The Geological Society of America: Boulder, CO, USA, 2000; pp. 473–483. [Google Scholar]
- Jacobshagen, V.; Dürr, S.; Kockel, E.; Kopp, K.O.; Kowalczyk, G. Structure and geodynamic evolution of the Aegean region. In Alps, Appenines, Hellenides; Closs, H., Roeder, D., Schmid, K., Eds.; E. Schweitzerbartsche Verlagsbuchhandlung: Stuttgart, Germany, 1978; pp. 537–564. [Google Scholar]
- Wakabayashi, J.; Dilek, Y. What constitutes’ emplacement of an ophiolite? Mechanisms and relationship to subduction initiation and formation of metamorphic soles. In Ophiolites in Earth History; Dilek, Y., Robinson, P.T., Eds.; Geol. Soc. London Spec. Publ., The Geological Society of London: London, UK, 2003; Volume 218, pp. 427–447. [Google Scholar]
- Dilek, Y.; Furnes, H. Ophiolites and their origin. Elements 2014, 10, 93–100. [Google Scholar]
- Vanderhaeghe, O. Structural development of the Naxos migmatite dome. In Gneiss Domes in Orogeny; Whitney, D.L., Teyssier, C., Siddoway, C.S., Eds.; The Geological Society of America: Boulder, CO, USA, 2004; pp. 211–227. [Google Scholar]
- Theodoropoulos, D. Geological map of Greece, 1:50,000, Samos Island. Institute of Geology and Mineral Exploration: Athens, Greece, 1979. [Google Scholar]
- Papantoniou, G. The Structure and History of the Strike—Slip Fault Zone of Skyros Island, Central—North Aegean. Master’s Thesis, National and Kapodistrian University of Athens, Athens, Greece, 2015. [Google Scholar]
- Bulle, F.; Bröcker, M.; Gärtner, C.; Keasling, A. Geochemistry and geochronology of HP mélanges from Tinos and Andros, Cycladic Blueschist Belt, Greece. Lithos 2010, 117, 61–81. [Google Scholar] [CrossRef]
- Katzir, Y.; Avigad, D.; Matthews, A.; Garfunkel, Z.; Evans, B.W. Origin and metamorphism of ultrabasic rocks associated with continental margin, Naxos (Cyclades, Greece). J. Metamorph. Geol. 1999, 17, 301–318. [Google Scholar] [CrossRef]
- Pantziris, I. Geochemical—Petrological Study of Basic—Ultrabasic Rocks from the Aegean Islands. Ph.D. Thesis, National and Kapodistrian University of Athens, Athens, Greece, 2000. [Google Scholar]
- Okrusch, M.; Bröcker, M. Eclogite facies rocks in the Cycladic Blueschist Belt, Greece: A review. Eur. J. Mineral. 1990, 2, 451–478. [Google Scholar]
- Bröcker, M.; Franz, L. The base of the Cycladic Blueschist Unit on Tinos Island (Greece) re-visited: Field relationships, phengite chemistry and Rb–Sr geochronology. Neues Jahrb. Mineral. Abh. 2005, 181, 81–93. [Google Scholar]
- Bröcker, M.; Franz, L. Dating metamorphism and tectonic juxtaposition on Andros Island (Cyclades, Greece): Results of a Rb–Sr study. Geol. Mag. 2006, 143, 609–620. [Google Scholar] [CrossRef]
- Katzir, Y.; Matthews, A.; Garfunkel, Z.; Evans, B.W. Origin, HP/LT metamorphism and cooling of ophiolitic mélanges in southern Evia (NW Cyclades) Greece. J. Metamorph. Geol. 2000, 18, 699–718. [Google Scholar] [CrossRef]
- Bröcker, M.; Kreuzer, H.; Matthews, A.; Okrusch, M. 40Ar/39Ar and oxygen isotope studies of polymetamorphism from Tinos Island Cycladic blueschist belt, Greece. J. Metamorph. Geol. 1993, 11, 223–240. [Google Scholar] [CrossRef]
- Tomaschek, F.; Kennedy, A.K.; Villa, I.M.; Lagos, M.; Ballhaus, C. Zircons from Syros, Cyclades, Greece—Recrystallization and mobilization of zircon during high pressure metamorphism. J. Petrol. 2003, 44, 1977–2002. [Google Scholar] [CrossRef]
- Gautier, P.; Brun, J.P.; Moriceau, R.; Sokoutis, D.; Martinod, J.; Jolivet, L. Timing, kinematics and cause of Aegean extension: A scenario based on a comparison with simple analogue experiments. Tectonophysics 1999, 315, 31–72. [Google Scholar] [CrossRef]
- Baziotis, I.; Mposkos, E. Origin of metabasites from upper tectonic unit of the Lavrion area (SE Attica, Greece): Geochemical implications for dual origin with distinct provenance of blueschist and greenschist’s protoliths. Lithos 2011, 126, 161–173. [Google Scholar] [CrossRef]
- Bröcker, M.; Pidgeon, R.T. Protolith ages of meta-igneous and meta-tuffaceous rocks from the Cycladic Blueschist Unit, Greece: Results of a reconnaissance U–Pb zircon study. J. Geol. 2007, 115, 83–98. [Google Scholar] [CrossRef]
- Ring, U.; Gessner, K.; Güngör, T.; Passchier, C.W. The Menderes massif of western Turkey and the Cycladic massif in the Aegean: Do they really correlate? J. Geol. Soc. Lond. 1999, 156, 3–6. [Google Scholar] [CrossRef]
- Karkalis, C.; Magganas, A.; Koutovitis, P. Petrological, mineralogical and geochemical data of Eohellenic ophiolitic rocks in the island of Skyros, Greece. Bull. Geol. Soc. Greece 2016, 50, 1867–1877. [Google Scholar]
- Tarney, J.; Marsh, N.G. Major and trace elements geochemistry of Holes CY-1 and CY-4: Implications for petrogenetic models. In Cyprus Crustal Study Project; Initial Report, Holes CY-1 and 1a; Gibson, I.L., Mapas, J., Robinson, P.T., Xenophontos, C., Eds.; Paper No. 90-20; Geological Survey of Canada: Ottawa, ON, Canada, 1992; pp. 133–175. [Google Scholar]
- Pin, C.; Briot, D.; Bassin, C.; Poitrasson, F. Concomitant separation of strontium and samarium-neodymium for isotopic analysis in silicate samples, based on specific extraction chromatography. Anal. Chim. Act. 1994, 298, 209–217. [Google Scholar] [CrossRef]
- Tanaka, T.; Togashi, S.; Kamioka, H.; Amakawa, H.; Kagami, H.; Hamamoto, T.; Yuhara, M.; Orihashi, Y.; Yoneda, S.; Shimizu, H.; et al. JNdi-1: A neodymium isotopic reference in consistency with LaJolla neodymium. Chem. Geol. 2000, 168, 279–281. [Google Scholar] [CrossRef]
- Baker, J.; Peate, D.; Waight, T.; Meyzen, C. Pb isotopic analysis of standards and samples using a 207Pb-204Pb double spike and thallium to correct for mass bias with a double-focusing MC-ICPMS. Chem. Geol. 2004, 211, 275–303. [Google Scholar] [CrossRef]
- McArthur, J.M.; Howarth, R.J.; Bailey, T.R. Strontium isotope stratigraphy: LOWESS version 3: best fit to the marine Sr-isotope curve for 0–509 Ma and accompanying look-up table for deriving numerical age. J. Geol. 2001, 109, 155–169. [Google Scholar]
- Luff, I.W. Petrogenesis of the island arc tholeiite series of the South Sandwich islands. Ph.D. thesis, University of Leeds, Leeds, UK, 1982. [Google Scholar]
- Sun, S.S.; McDonough, W.F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In Magmatism in Ocean Basins; Saunders, A.D., Norry, M., Eds.; Geol. Soc. London Spec. Publ., The Geological Society of London: London, UK, 1989; Volume 42, pp. 313–345. [Google Scholar]
- Merle, R.; Marzoli, A.; Reisberg, L.; Bertrand, H.; Nemchin, A.; Chiaradia, M.; Callegaro, S.; Jourdan, F.; Bellieni, G.; Kontak, D.; et al. Sr, Nd, Pb and Os isotope systematics of CAMP tholeiites from Eastern North America (ENA): Evidence of a subduction-enriched mantle source. J. Petrol. 2013, 55, 133–180. [Google Scholar] [CrossRef]
- Wilson, M. Igneous Petrogenesis; Unwin Hyman: London, UK, 1989; p. 232. [Google Scholar]
- Pearce, J.A. Immobile element fingerprinting of ophiolites. Elements 2014, 10, 101–108. [Google Scholar] [CrossRef]
- Pearce, J.; Stern, R.; Bloomer, S.; Fryer, P. Geochemical mapping of the Mariana arc-basin system: Implications for the nature and distribution of subduction Component. Geochem. Geophys. Geosyst. 2005, 6. [Google Scholar] [CrossRef]
- Pearce, J.A. A user’s guide to basalt discrimination diagrams. Geol. Assoc. Can. Spec. Publ. 1996, 12, 79–113. [Google Scholar]
- Floyd, P.A.; Winchester, J.A. Magma type and tectonic setting discrimination using immobile elements. Earth Planet. Sc. Lett. 1975, 27, 211–218. [Google Scholar] [CrossRef]
- Pearce, J.; Stern, R. Origin of Back-Arc Basin Magmas: Trace Element and Isotope Perspectives. In Back-Arc Spreading Systems: Geological, Biological, Chemical, and Physical Interactions; Christie, D.M., Fisher, C.R., Lee, S.-M., Givens, S., Eds.; Geophysical Monograph Series, 166; American Geophysical Union: Washington DC, USA, 2006; pp. 63–86. [Google Scholar]
- Shervais, J.W. Ti-V plots and the petrogenesis of modern and ophiolitic lavas. Earth Planet. Sci. Lett. 1982, 59, 101–118. [Google Scholar] [CrossRef]
- Whattam, S.A.; Stern, R.J. The subduction initiation rule: A key for linking ophiolites, intra-oceanic forearcs and subduction initiation. Contrib. Mineral. Petrol. 2011, 162, 1031–1045. [Google Scholar] [CrossRef]
- Koutsovitis, P. Gabbroic rocks in ophiolitic occurrences from East Othris, Greece: Petrogenetic processes and geotectonic environment implications. Mineral. Petrol. 2012, 104, 249–265. [Google Scholar] [CrossRef]
- Saccani, E.; Photiades, A. Mid-ocean ridge and supra-subduction affinities in the Pindos ophiolites (Greece): Implications for magma genesis in a forearc setting. Lithos 2004, 73, 229–253. [Google Scholar] [CrossRef]
- Pearce, J.A.; Norry, M.J. Petrogenetic implications of Ti, Zr, Y and Nb variations in volcanic rocks. Contrib. Mineral. Petrol. 1979, 69, 33–47. [Google Scholar] [CrossRef]
- Saunders, A.D.; Tarney, J.; Marsh, N.G.; Wood, D.A. Ophiolites as ocean crust or marginal basin crust: A geochemical approach. In Ophiolites, Proceedings of the International Ophiolite Symposium; Panayiotou, A., Ed.; Ministry of Agriculture and Natural Resources, Geological Survey Department: Nicosia, Cyprus, 1980; pp. 193–204. [Google Scholar]
- Gills, K.M.; Robinson, P.T. Distribution of alteration zones in the upper oceanic crust. Geology 1988, 16, 262–266. [Google Scholar] [CrossRef]
- Staudigel, H. Chemical fluxes from hydrothermal alteration of the oceanic crust. In Treatise on Geochemistry, 2nd ed.; Turekian, K.K., Holland, H.D., Eds.; Elsevier: London, UK, 2014; Volume 4, pp. 583–606. [Google Scholar]
- Hastie, A.R.; Ramsook, R.; Mitchell, S.F.; Kerr, A.C.; Millar, I.L.; Darren, F. Geochemistry of Compositionally Distinct Late Cretaceous Back-Arc Basin Lavas: Implications for the Tectonomagmatic Evolution of the Caribbean Plate. J. Geol. 2010, 118, 655–676. [Google Scholar] [CrossRef]
- Perfit, M.R.; Gust, D.A.; Bence, R.; Arculus, J.; Taylor, S. Chemical characteristics of island arc basalts: Implications for mantle sources. Chem Geol. 1980, 30, 227–256. [Google Scholar]
- Saunders, A.D.; Norry, M.J.; Tarney, J. Origin of MORB and chemically-depleted mantle reservoirs: Trace element constraints. J. Petrol. Spec. Lithosph. Issue 1988, 1, 415–445. [Google Scholar] [CrossRef]
- Wood, D.A.; Joron, J.L.; Treuil, M. A re-appraisal of the use of trace elements to classify and discriminate between magma series and different tectonic settings. Earth Planet. Sc. Lett. 1979, 45, 326–336. [Google Scholar] [CrossRef]
- Reagan, M.K.; Ishizuka, O.; Stern, R.J.; Kelley, K.A.; Ohara, Y.; Blichert-Toft, J.; Bloomer, S.H.; Cash, J.; Fryer, P.; Hanan, B.B.; et al. Fore-arc basalts and subduction initiation in the Izu-Bonin-Mariana system. Geochem. Geophys. 2010, 11, Q03X12. [Google Scholar] [CrossRef]
- Zindler, A.; Hart, S. Chemical Geodynamics. Annu. Rev. Earth Planet. Sci. 1986, 14, 493–571. [Google Scholar] [CrossRef]
- Niu, Y. Bulk-rock major and trace element compositions of abyssal peridotites: Implications for mantle melting, melt extraction and post-melting processes beneath mid-ocean ridges. J. Petrol. 2004, 45, 2423–2458. [Google Scholar] [CrossRef]
- Boschi, C.; Bonatti, E.; Ligi, M.; Brunelli, D.; Dallai, L.; D’Orazio, M.; Frόh-Green, G.L.; Tonarini, S.; Barnes, J.; Bedini, R. Serpentinization of mantle peridotites along an uplifted lithospheric section, Mid Atlantic Ridge at 11° N. Lithos 2013, 178, 3–23. [Google Scholar] [CrossRef]
- Snow, J.E.; Dick, H.J.B. Pervasive magnesium loss by marine weathering of peridotite. Geochim. Cosmochim. Acta 1995, 59, 4219–4235. [Google Scholar] [CrossRef]
- Magganas, A.; Koutsovitis, P. Composition, melting and evolution of the upper mantle beneath the Jurassic Pindos Ocean inferred by ophiolitic ultramafic rocks in East Othris, Greece. Int. J. Earth Sci. 2015, 104, 1185–1207. [Google Scholar] [CrossRef]
- Saccani, E.; Photiades, A. Petrogenesis and tectono-magmatic significance of volcanic and subvolcanic rocks in the Albanide-Hellenide ophiolitic mélanges. Isl. Arc 2005, 14, 494–516. [Google Scholar] [CrossRef]
- Deschamps, F.; Godard, M.; Guillot, S.; Hattori, K. Geochemistry of subduction zone serpentinites: A review. Lithos 2013, 178, 96–127. [Google Scholar] [CrossRef]
- Bröcker, M.; Keasling, A. Ionprobe U-Pb zircon ages from the high-pressure/low-temperature mèlange of Syros, Greece: Age diversity and the importance of pre-Eocene subduction. J. Metamorph. Geol. 2006, 24, 615–631. [Google Scholar] [CrossRef]
- Liati, A.; Gebauer, D.; Fanning, C.M. The age of ophiolitic rocks of the Hellenides (Vourinos, Pindos, Crete): First U–Pb ion microprobe (SHRIMP) zircon ages. Chem. Geol. 2004, 207, 171–188. [Google Scholar] [CrossRef]
- Parlak, O.; Karaoğlan, F.; Rızaoğlu, T.; Klötzli, U.; Koller, F.; Billor, Z. U–Pb and 40Ar–39Ar geochronology of the ophiolites and granitoids from the Tauride belt: Implications for the evolution of the Inner Tauride suture. J. Geodyn. 2013, 62, 22–37. [Google Scholar] [CrossRef]
- White, W.M.; Klein, E.M. Composition of the oceanic crust. In Treatise on Geochemistry, 2nd ed.; Holland, H.D., Turekian, K.K., Eds.; Elsevier: Amsterdam, The Netherlands, 2014; pp. 457–496. [Google Scholar]
- Booij, Ε.; Bettison-Varga, L.; Farthing, D.; Staudigel, H. Pb-isotope systematics of a fossil hydrothermal system from the Troodos ophiolite, Cyprus: Evidence for a polyphased alteration history. Geochim. Cosmochim. Acta 2000, 64, 3559–3569. [Google Scholar] [CrossRef] [Green Version]
- Janousek, V.; Farrow, C.M.; Erban, V. Interpretation of whole-rock geochemical data in igneous geochemistry: Introducing Geochemical Data Toolkit (GCDkit). J. Petrol. 2006, 47, 1255–1259. [Google Scholar] [CrossRef]
- Faure, G. Principles of Isotope Geology, 2nd ed.; John Wiley & Sons: New York, NY, USA, 1986; p. 589. [Google Scholar]
- Spooner, E.T.C.; Fyfe, W.S. Sub-sea-floor metamorphism, heat and mass transfer. Contrib. Mineral. Petrol. 1973, 42, 287–304. [Google Scholar] [CrossRef]
- Richter, F.M.; Rowley, D.B.; DePaolo, D.J. Sr isotope evolution of seawater: The role of tectonics. Earth Planet. Sci. Lett. 1992, 109, 11–23. [Google Scholar] [CrossRef]
- Veizer, J. Strontium isotopes in seawater through time. Annu. Rev. Earth Planet. Sci. 1989, 17, 141–167. [Google Scholar] [CrossRef]
- Pomonis, P.; Tsikouras, B.; Hatzipanagiotou, K. Petrogenetic evolution of the Koziakas ophiolite complex, (W. Thessaly, Greece). Mineral. Petrol. 2007, 89, 77–111. [Google Scholar]
- Saccani, E. A new method of discriminating different types of post-Archean ophiolitic basalts and their tectonic significance using Th-Nb and Ce-Dy-Yb systematics. Geosci. Front. 2015, 6, 481–501. [Google Scholar] [CrossRef]
- Seck, H.A.; Kötz, J.; Okrusch, M.; Seidel, E.; Stosch, H.G. Geochemistry of a meta-ophiolite suite: An association of metagabbros, eclogites and glaucophanites on the island of Syros, Greece. Eur. J. Mineral. 1996, 8, 607–623. [Google Scholar]
- Moçek, B. Geochemical evidence for arc-type volcanism in the Aegean Sea: The blueschist unit of Siphnos, Cyclades (Greece). Lithos 2001, 57, 263–289. [Google Scholar] [CrossRef]
- Fu, B.; Paul, B.; Cliff, J.; Bröcker, M.; Bulle, F. O-Hf isotope constraints on the origin of zircons in high-pressure melange blocks and associated matrix rocks from Tinos and Syros, Greece. Eur. J. Mineral. 2012, 24, 277–287. [Google Scholar] [CrossRef]
- Fu, B.; Bröcker, M.; Ireland, T. Zircon U–Pb, O, and Hf isotopic constraints on Mesozoic magmatism in the Cyclades, Aegean Sea, Greece. Int. J. Earth Sci. 2015, 104, 75–87. [Google Scholar] [CrossRef]
- Weaver, B.L.; Wood, D.A.; Tarney, J.; Joron, J.L. Geochemistry of ocean island basalts from the south Atlantic: Ascension, Bouvet, St. Helena, Gough and Tristan da Cunha. In Alkaline Igneous Rocks; Fitton, J.G., Upton, B.G.J., Eds.; Geol. Soc. London Spec. Publ., The Geological Society of London: London, UK, 1987; Volume 30, pp. 253–267. [Google Scholar]
SAMPLE | NA-3 | NA-4 | NA-5 | NA-7 | NA-9 | NA-15 | PA-9 | PA-10 | SA-2 | SA-5 | |
Rock Type wt % | Meta Basalt (UU) | Meta Basalt/Andesite (UU) | Meta Basalt/Andesite (UU) | Amphi-Bolite (CBU) | Amphi-Bolite (CBU) | Meta Gabbro (UU) | Meta Gabbro (UU) | Meta Gabbro (UU) | Meta Basalt (UU) | Meta Basalt (UU) | |
SiO2 | 42.00 | 53.49 | 54.53 | 50.21 | 56.6 | 45.94 | 50.41 | 52.19 | 38.88 | 49.04 | |
TiO2 | 1.79 | 1.41 | 0.35 | 0.21 | 0.10 | 1.40 | 0.61 | 0.51 | 0.69 | 1.92 | |
Al2O3 | 17.11 | 13.19 | 12.75 | 7.33 | 3.56 | 15.00 | 14.36 | 16.36 | 15.99 | 17.01 | |
Fe2O3T | 9.59 | 8.62 | 4.75 | 5.59 | 7.51 | 8.89 | 7.75 | 7.49 | 8.57 | 11.17 | |
MnO | 0.14 | 0.14 | 0.16 | 0.07 | 0.29 | 0.10 | 0.15 | 0.17 | 0.12 | 0.12 | |
MgO | 3.26 | 5.27 | 2.30 | 25.87 | 19.17 | 4.66 | 5.21 | 4.54 | 6.39 | 3.39 | |
CaO | 11.4 | 11.07 | 10.06 | 6.09 | 12.20 | 11.55 | 11.05 | 11.03 | 12.99 | 4.62 | |
Na2O | 2.14 | 1.06 | 1.24 | 0.08 | 0.17 | 3.20 | 1.99 | 2.79 | 2.18 | 6.44 | |
K2O | 4.13 | 0.16 | 4.55 | 0.04 | 0.16 | 0.73 | 1.98 | 2.05 | 1.53 | 0.20 | |
P2O5 | 0.49 | 0.25 | 0.10 | 0.01 | 0.01 | 0.54 | 0.17 | 0.42 | 0.13 | 0.01 | |
LOI | 8.27 | 5.78 | 9.20 | 5.21 | 1.46 | 7.48 | 6.51 | 2.60 | 12.69 | 6.76 | |
TOTAL | 100.32 | 100.44 | 100.00 | 100.71 | 100.22 | 99.49 | 100.21 | 100.57 | 100.15 | 100.72 | |
Mg# | 40.23 | 54.76 | 48.95 | 90.16 | 83.48 | 50.93 | 57.10 | 54.55 | 59.62 | 37.54 | |
Trace elements (ppm) | |||||||||||
Sc | 30 | 29 | 28 | 14 | 24 | 37 | 32 | 29 | 40 | 30 | |
V | 236 | 246 | 104 | 81 | 65 | 217 | 178 | 187 | 254 | 194 | |
Cr | 240 | 171 | 40 | 1212 | 1643 | 416 | 144 | 131 | 125 | 83 | |
Co | 45 | 42 | 21 | 57 | 71 | 46 | 34 | 33 | 34 | 30 | |
Ni | 130 | 90 | 32 | 1550 | 1035 | 225 | 42 | 45 | 40 | 32 | |
Cu | 10 | 50 | 39 | bdl | 4 | 49 | 88 | 42 | 18 | 3 | |
Zn | 100 | 67 | 55 | 37 | 144 | 64 | 95 | 73 | 57 | 77 | |
Ga | 19 | 16 | 11 | 8 | 6 | 14 | 13 | 15 | 15 | 15 | |
Rb | 79 | 2 | 142 | bdl | 8 | 15 | 56 | 62 | 39 | 22 | |
Sr | 206 | 395 | 204 | 12 | 33 | 216 | 299 | 262 | 152 | 231 | |
Y | 31 | 22 | 19 | 13 | 5 | 27 | 24 | 21 | 12 | 20 | |
Zr | 161 | 119 | 100 | 10 | 7 | 144 | 82 | 124 | 35 | 53 | |
Nb | 34 | 22 | 8 | 4 | 1 | 31 | 5 | 11 | 6 | 9 | |
Ba | 456 | 16 | 449 | 19 | 22 | 147 | 676 | 429 | 136 | 105 | |
Pb | 3 | 2 | 18 | 3 | 7 | 2 | 17 | 14 | 4 | 5 | |
Th | 4 | 2 | 11 | 2 | bdl | 4 | 3 | 9 | 2 | 3 | |
U | 1 | 1 | 2 | 1 | 1 | 1 | 2 | 2 | bdl | 1 | |
La | 19 | 17 | 21 | 4 | bdl | 24 | 11 | 32 | 11 | 15 | |
Ce | 47 | 29 | 37 | 3 | 2 | 39 | 30 | 54 | 16 | 28 | |
Nd | 26 | 16 | 19 | 6 | 2 | 20 | 14 | 23 | 8 | 11 | |
Zr/Nb | 4.7 | 5.4 | 12.5 | 2.5 | 7 | 4.6 | 16.4 | 11.2 | 5.8 | 5.9 | |
Ce/Y | 1.5 | 1.3 | 1.9 | 0.2 | 0.4 | 1.4 | 1.2 | 2.5 | 1.3 | 1.4 | |
Nb/Y | 1.09 | 1.0 | 0.42 | 0.3 | 0.2 | 1.14 | 0.2 | 0.52 | 0.5 | 0.45 | |
SAMPLE | SA-8 | SA-11 | SK-1 | NA-6 | NA-14 | PA-2 | PA-4 | PA-7 | PA-12 | PA-13 | |
Rock Type wt % | Meta Basalt (UU) | Meta Gabbro (CBU) | Meta Dolerite (UU) | Serp. Harzb. (CBU) | Serp. Harzb. (UU) | Harzb. (UU) | Harzb. (UU) | Harzb. (UU) | Harzb. (UU) | Harzb. (UU) | |
SiO2 | 46.06 | 44.93 | 50.35 | 43.13 | 40.66 | 39.86 | 40.71 | 39.93 | 41.80 | 39.76 | |
TiO2 | 0.68 | 1.04 | 0.13 | 0.04 | 0.01 | 0.02 | 0.02 | 0.02 | 0.05 | 0.01 | |
Al2O3 | 16.74 | 18.80 | 16.70 | 1.74 | 0.9 | 1.44 | 1.66 | 1.43 | 2.68 | 0.85 | |
Fe2O3T | 8.57 | 8.01 | 4.24 | 8.47 | 8.86 | 8.15 | 8.26 | 7.87 | 8.37 | 7.91 | |
MnO | 0.14 | 0.15 | 0.06 | 0.13 | 0.07 | 0.07 | 0.07 | 0.06 | 0.13 | 0.10 | |
MgO | 6.29 | 9.09 | 10.04 | 42.58 | 36.76 | 36.29 | 36.98 | 37.15 | 34.12 | 37.60 | |
CaO | 10.21 | 11.61 | 12.82 | 1.61 | 0.76 | 0.13 | 0.06 | 0.04 | 1.99 | 0.97 | |
Na2O | 1.18 | 1.73 | 1.47 | bdl | bdl | 0.27 | 0.03 | 0.04 | bdl | bdl | |
K2O | 2.55 | 1.59 | 0.44 | bdl | bdl | 0.04 | 0.01 | 0.01 | bdl | bdl | |
P2O5 | 0.18 | 0.24 | 0.01 | 0.09 | 0.07 | bdl | bdl | bdl | 0.01 | 0.01 | |
LOI | 7.54 | 3.47 | 3.60 | 1.66 | 11.86 | 12.59 | 12.31 | 12.37 | 10.96 | 13.33 | |
TOTAL | 100.15 | 100.55 | 99.87 | 99.45 | 99.95 | 98.87 | 100.11 | 98.94 | 100.05 | 100.47 | |
Mg# | 59.24 | 69.20 | 82.42 | 90.87 | 89.15 | 89.81 | 89.86 | 90.33 | 88.97 | 90.39 | |
Trace elements (ppm) | |||||||||||
Sc | 27 | 27 | 39 | 8 | 6 | 4 | 8 | 8 | 9 | 5 | |
V | 172 | 224 | 168 | 50 | 37 | 27 | 41 | 44 | 60 | 39 | |
Cr | 261 | 162 | 1159 | 2895 | 3932 | 1935 | 2634 | 2799 | 2525 | 1789 | |
Co | 35 | 43 | 36 | 100 | 112 | 63 | 88 | 81 | 95 | 95 | |
Ni | 72 | 244 | 210 | 2306 | 2312 | 2000 | 2564 | 2394 | 2119 | 2502 | |
Cu | 5 | 16 | 80 | 18 | 5 | 8 | 5 | 20 | 20 | 6 | |
Zn | 145 | 64 | 17 | 40 | 37 | 37 | 45 | 49 | 40 | 51 | |
Ga | 23 | 19 | 8 | 2 | 2 | 1 | 1 | bdl | 1 | bdl | |
Rb | 101 | 62 | 8 | bdl | 2 | bdl | bdl | 2 | bdl | bdl | |
Sr | 50 | 259 | 116 | 5 | 6 | 20 | 6 | 5 | 12 | 4 | |
Y | 12 | 30 | 5 | bdl | 1 | 1 | 1 | 2 | 2 | 1 | |
Zr | 67 | 100 | 20 | bdl | bdl | bdl | bdl | 2 | 2 | bdl | |
Nb | 55 | 2 | <0.5 | bdl | bdl | 1 | bdl | bdl | bdl | bdl | |
Ba | 299 | 893 | 38 | bdl | 4 | 4 | 6 | 3 | 11 | 3 | |
Pb | 10 | 7 | 1 | bdl | 1 | 2 | 1 | 3 | 1 | 2 | |
Th | 3 | bdl | bdl | bdl | bdl | bdl | bdl | bdl | bdl | bdl | |
U | 1 | 1 | 1 | bdl | 1 | bdl | 1 | 1 | 1 | 3 | |
La | 10 | 2 | 2 | bdl | bdl | bdl | 3 | bdl | 2 | bdl | |
Ce | 27 | 8 | 5 | bdl | bdl | bdl | bdl | bdl | bdl | bdl | |
Nd | 13 | 8 | 3 | bdl | bdl | bdl | bdl | bdl | 2 | bdl | |
Zr/Nb | 13.4 | 50 | 50 | 1 | |||||||
Ce/Y | 2.25 | 0.26 | 1 | ||||||||
Nb/Y | 4.58 | 0.06 | 0.08 | ||||||||
SAMPLE | PA-16 | SA-12 | SA-14 | SK-4 | SK-7 | SK-9 | SK-10 | SK-13 | SK-17 | SK-19 | |
Rock Type wt % | Harzb. (UU) | Olivin Pyrox. (CBU) | Olivin Pyrox. (CBU) | Harzb. (UU) | Harzb. (UU) | Lherz. (UU) | Harzb. (UU) | Harzb. (UU) | Harzb. (UU) | Harzb. (UU) | |
SiO2 | 36.70 | 42.35 | 39.25 | 36.68 | 40.00 | 37.75 | 38.30 | 42.60 | 40.30 | 40.95 | |
TiO2 | 0.02 | 0.02 | 0.11 | 0.35 | 0.02 | 0.02 | 0.02 | 0.01 | bdl | 0.01 | |
Al2O3 | 0.69 | 1.54 | 4.82 | 8.61 | 1.27 | 1.29 | 1.14 | 0.43 | 0.32 | 0.88 | |
Fe2O3T | 8.27 | 8.52 | 12.18 | 7.35 | 8.43 | 8.09 | 11.26 | 6.76 | 8.49 | 7.75 | |
MnO | 0.11 | 0.11 | 0.11 | 0.13 | 0.14 | 0.13 | 0.18 | 0.07 | 0.30 | 0.14 | |
MgO | 37.39 | 36.84 | 32.48 | 35.44 | 36.04 | 35.55 | 34.88 | 36.68 | 36.58 | 36.18 | |
CaO | 1.03 | 0.03 | 0.37 | 0.91 | 1.39 | 2.90 | 1.00 | 0.04 | 0.80 | 0.28 | |
Na2O | bdl | bdl | bdl | bdl | bdl | bdl | Bdl | bdl | bdl | bdl | |
K2O | bdl | bdl | bdl | bdl | bdl | bdl | Bdl | bdl | bdl | bdl | |
P2O5 | 0.01 | 0.01 | 0.01 | 0.12 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | |
LOI | 13.19 | 11.26 | 10.81 | 12.09 | 11.72 | 13.45 | 13.21 | 11.95 | 13.20 | 11.95 | |
TOTAL | 99.32 | 100.56 | 100.05 | 100.59 | 99.31 | 99.10 | 100.00 | 100.45 | 100.00 | 100.07 | |
Mg# | 89.95 | 90.02 | 84.07 | 90.52 | 89.43 | 89.69 | 85.98 | 91.48 | 89.51 | 90.24 | |
Trace elements (ppm) | |||||||||||
Sc | 4 | 4 | 7 | 6 | 6 | 13 | 33 | 3 | 7 | 34 | |
V | 7 | 34 | 87 | 90 | 45 | 49 | 32 | 16 | 36 | 5 | |
Cr | 3226 | 3367 | 2940 | 2014 | 2824 | 2542 | 2542 | 2213 | 3314 | 1578 | |
Co | 107 | 82 | 86 | 99 | 94 | 123 | 102 | 84 | 98 | 103 | |
Ni | 2720 | 2175 | 2218 | 1754 | 2285 | 2507 | 2375 | 2108 | 2452 | 2131 | |
Cu | 5 | 9 | 53 | 2 | 2 | 10 | 6 | 2 | 6 | 4 | |
Zn | 38 | 60 | 61 | 49 | 36 | 26 | 31 | 25 | 35 | 21 | |
Ga | bdl | 2 | 4 | 8 | 1 | bdl | bdl | bdl | bdl | bdl | |
Rb | bdl | 2 | bdl | 2 | bdl | bdl | bdl | bdl | bdl | bdl | |
Sr | 47 | 3 | 3 | 12 | 2 | 4 | 12 | 5 | 2 | 12 | |
Y | 1 | 4 | 3 | 7 | 1 | 2 | 1 | 1 | bdl | 1 | |
Zr | bdl | 2 | 3 | 82 | bdl | 2 | bdl | bdl | bdl | bdl | |
Nb | bdl | bdl | bdl | 6 | bdl | bdl | 1 | bdl | bdl | bdl | |
Ba | 3 | bdl | 7 | 3 | 4 | 5 | 11 | 22 | bdl | 18 | |
Pb | 1 | 1 | 1 | 3 | 1 | 2 | 1 | 1 | 3 | 2 | |
Th | bdl | bdl | bdl | 3 | bdl | bdl | bdl | bdl | bdl | bdl | |
U | bdl | bdl | bdl | 2 | bdl | bdl | 2 | 1 | bdl | 1 | |
La | bdl | 2 | 2 | 7 | bdl | bdl | bdl | bdl | 2 | bdl | |
Ce | bdl | 5 | bdl | 22 | bdl | bdl | bdl | bdl | bdl | bdl | |
Nd | bdl | 2 | bdl | 11 | bdl | bdl | 3 | bdl | bdl | 2 | |
Zr/Nb | 13.6 | 1 | |||||||||
Ce/Y | 1.25 | 3.14 | |||||||||
SAMPLE | SK-21 | SK-23 | SK-26 | Samos | Skyros | N-MORB | E-MORB | IAT 3 | OIB | ||
Rock Type wt % | Olivin Webst. (UU) | Harzb. (UU) | Harzb. (UU) | Meta Gabbro 1 (CBU) | (SGBR) Meta Gabbro 2 | ||||||
SiO2 | 39.83 | 40.59 | 38.68 | 49.90 | 50.37 | 51.03 | |||||
TiO2 | 0.01 | 0.01 | 0.02 | 0.90 | 0.23 | 1.27 | 1.00 | 0.82 | 2.86 | ||
Al2O3 | 0.47 | 0.99 | 1.27 | 16.30 | 17.06 | 15.76 | |||||
Fe2O3T | 9.00 | 7.49 | 10.19 | 6.40 | 5.67 | 11.76 | |||||
MnO | 0.09 | 0.13 | 0.14 | 0.10 | 0.11 | 0.21 | |||||
MgO | 30.72 | 38.86 | 37.45 | 8.00 | 9.00 | 6.30 | |||||
CaO | 5.31 | 0.17 | 0.07 | 11.0 | 9.98 | 10.72 | |||||
Na2O | bdl | bdl | bdl | 3.60 | 2.80 | 2.40 | |||||
K2O | bdl | bdl | bdl | 0.50 | 0.81 | 0.072 | 0.25 | 0.18 | 1.44 | ||
P2O5 | 0.01 | 0.01 | 0.01 | 0.10 | 0.02 | 0.116 | 0.142 | 0.13 | 0.618 | ||
LOI | 13.73 | 12.17 | 11.93 | 3.60 | 3.80 | ||||||
TOTAL | 99.06 | 100.31 | 99.67 | 100.40 | 99.96 | ||||||
Mg# | 87.11 | 91.13 | 87.92 | 71.28 | 76.06 | ||||||
Trace elements (ppm) | |||||||||||
Sc | 11 | 6 | 7 | 34.8 | 41 | ||||||
V | 19 | 37 | 44 | 207.3 | 177 | ||||||
Cr | 3359 | 2938 | 3104 | 366.7 | 520 | 100 | |||||
Co | 100 | 87 | 105 | 27.3 | 31 | ||||||
Ni | 2388 | 2234 | 2826 | 151.7 | 111 | 14 | |||||
Cu | 14 | 1 | 5 | 20 | 15 | ||||||
Zn | 19 | 33 | 32 | 40 | 7 | 79 | |||||
Ga | bdl | bdl | 1 | ||||||||
Rb | bdl | bdl | bdl | 15 | 11 | 0.6 | 5 | 3 | 31 | ||
Sr | 21 | 1 | 1 | 179 | 193 | 90 | 155 | 133 | 660 | ||
Y | 1 | bdl | bdl | 19 | 10 | 28 | 22 | 18 | 29 | ||
Zr | bdl | bdl | bdl | 53 | 32 | 74 | 73 | 29 | 280 | ||
Nb | bdl | bdl | bdl | 1.1 | 0.1 | 2.3 | 8.3 | 1 | 48 | ||
Ba | bdl | 3 | 4 | 108 | 34 | 6.3 | 57 | 57 | 350 | ||
Pb | 2 | 2 | bdl | bdl | 1.4 | 0.3 | 0.6 | 3.2 | |||
Th | bdl | bdl | bdl | 0.1 | 0.1 | 0.6 | 4 | ||||
U | 1 | bdl | bdl | 0.1 | 0.1 | 0.2 | 1 | ||||
La | bdl | bdl | bdl | 2.5 | 1.4 | 2.5 | 6.3 | 1.59 | 37 | ||
Ce | bdl | bdl | bdl | 7 | 2.3 | 7.5 | 15 | 4.99 | 80 | ||
Nd | bdl | bdl | bdl | 6.6 | 1.4 | 7.3 | 9 | 4.39 | 38.5 | ||
Yb | 1.76 | 1.22 | 3.1 | 2.4 | 1.84 | 2.2 | |||||
CeN/YbN | 1.04 | 0.49 | 0.63 | 1.64 | 0.71 | 9.55 | |||||
Zr/Nb | 48.1 | 320 | 32.2 | 8.8 | 29 | 5.8 | |||||
Ce/Y | 3.14 | 0.2 | 0.2 | 0.7 | 0.3 | 2.7 | |||||
Nb/Y | 2.8 | 3.2 | 2.6 | 3.3 | 1.6 | 9.7 |
Sample No. | Rock Type | Rb | Sr | 87Rb/86Sr | 87Sr/86Sr (m) | 2σ | 87Sr/86Sr (80 Ma) | 87Sr/86Sr (160 Ma) | |||
---|---|---|---|---|---|---|---|---|---|---|---|
Metabasites | |||||||||||
NA-3 | Metabasalt | 79 | 206 | 1.1098 | 0.706656 | 0.000004 | 0.705395 | 0.704132 | |||
NA-9 | Amphibolite | 8 | 33 | 0.7018 | 0.710557 | 0.000009 | 0.709759 | 0.708961 | |||
PA-9 | Metagabbro | 56 | 299 | 0.5420 | 0.706858 | 0.000015 | 0.706242 | 0.705625 | |||
SA-8 | Metandesite | 101 | 50 | 5.8454 | 0.705731 | 0.000004 | 0.707109 | 0.692435 | |||
SA-11 | Metagabbro | 62 | 259 | 0.6928 | 0.707224 | 0.000004 | 0.706437 | 0.705648 | |||
SK-1 | Metadorerit. | 8 | 116 | 0.1996 | 0.707165 | 0.000006 | 0.706938 | 0.706711 | |||
Serpentinites | |||||||||||
NA-6 | Dunite | 1 | 5 | 0.5262 | 0.707540 | 0.000013 | 0.706942 | 0.706343 | |||
NA-14 | Serpentinite | 2 | 6 | 0.9045 | 0.708138 | 0.000011 | 0.707109 | 0.706078 | |||
PA-7 | Serpentinite | 2 | 5 | 1.0584 | 0.708772 | 0.000016 | 0.707569 | 0.706364 | |||
PA-16 | Serpentinite | 1 | 47 | 0.0610 | 0.709102 | 0.000004 | 0.709033 | 0.708964 | |||
SA-12 | Serpentinite | 2 | 3 | 1.6571 | 0.709911 | 0.000100 | 0.708034 | 0.706155 | |||
SK-4 | Serpentinite | 2 | 12 | 0.6212 | 0.708550 | 0.000023 | 0.707847 | 0.707143 | |||
Sample No. | Rock Type | Sm | Nd | 147Sm/144Nd | 143Nd/144Nd (m) | 2σ | εNd(CHUR) (0 Ma) | 143Nd/144Nd (80 Ma) | εNd(CHUR) (80 Ma) * | 143Nd/144Nd (160 Ma) | εNd(CHUR) (160 Ma) |
Metabasites | |||||||||||
NA-3 | Metabasalt | 6 | 26 | 0.136990 | 0.512786 | 0.000005 | 2.91 | 0.512715 | 3.52 | 0.512644 | 4.13 |
NA-9 | Amphibolite | bdl | 2 | - | 0.512406 | 0.000020 | −4.51 | - | - | - | - |
PA-9 | Metagabbro | 3 | 14 | 0.136890 | 0.512592 | 0.000004 | −0.90 | 0.512520 | −0.29 | 0.512449 | 0.32 |
SA-8 | Metandesite | 2.8 | 13 | 0.130253 | 0.512689 | 0.000003 | 1.01 | 0.512622 | 1.69 | 0.512554 | 2.37 |
SA-11 | Metagabbro | 3 | 8 | 0.253171 | 0.513000 | 0.000008 | 7.07 | 0.512868 | 6.49 | 0.512735 | 5.91 |
SK-1 | Metadorerit. | bdl | 3 | - | 0.512932 | 0.000018 | 5.75 | - | - | - | - |
Serpentinites | |||||||||||
NA-6 | Dunite | n.d | n.d | - | - | - | - | - | - | - | - |
NA-14 | Serpentinite | n.d | n.d | - | - | - | - | - | - | - | - |
PA-7 | Serpentinite | n.d | n.d | - | 0.512710 | 0.000062 | 1.41 | - | - | - | - |
PA-16 | Serpentinite | n.d | n.d | - | - | - | - | - | - | - | - |
SA-12 | Serpentinite | bdl | 2 | - | 0.512990 | 0.000041 | 6.87 | - | - | - | - |
SK-4 | Serpentinite | 2 | 11 | 0.104920 | 0.512240 | 0.000005 | −7.76 | 0.512185 | −6.83 | 0.512130 | −5.89 |
Sample No. | NA-3 | NA-9 | SA-8 | SA-11 | NA-6 | NA-14 |
---|---|---|---|---|---|---|
Rock Type | Metabasalt | Amphibolite | Metabasalt | Metabasalt | Serp. Harzb. | Serp. Harzb. |
206Pb/204Pb | 18.802 | 18.816 | 18.670 | 18.703 | 18.518 | 21.534 |
207Pb/204Pb | 15.625 | 15.771 | 15.607 | 15.665 | 15.594 | 15.838 |
208Pb/204Pb | 39.039 | 39.065 | 38.807 | 38.799 | 38.419 | 38.326 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stouraiti, C.; Pantziris, I.; Vasilatos, C.; Kanellopoulos, C.; Mitropoulos, P.; Pomonis, P.; Moritz, R.; Chiaradia, M. Ophiolitic Remnants from the Upper and Intermediate Structural Unit of the Attic-Cycladic Crystalline Belt (Aegean, Greece): Fingerprinting Geochemical Affinities of Magmatic Precursors. Geosciences 2017, 7, 14. https://doi.org/10.3390/geosciences7010014
Stouraiti C, Pantziris I, Vasilatos C, Kanellopoulos C, Mitropoulos P, Pomonis P, Moritz R, Chiaradia M. Ophiolitic Remnants from the Upper and Intermediate Structural Unit of the Attic-Cycladic Crystalline Belt (Aegean, Greece): Fingerprinting Geochemical Affinities of Magmatic Precursors. Geosciences. 2017; 7(1):14. https://doi.org/10.3390/geosciences7010014
Chicago/Turabian StyleStouraiti, Christina, Iakovos Pantziris, Charalampos Vasilatos, Christos Kanellopoulos, Panagiotis Mitropoulos, Panagiotis Pomonis, Robert Moritz, and Massimo Chiaradia. 2017. "Ophiolitic Remnants from the Upper and Intermediate Structural Unit of the Attic-Cycladic Crystalline Belt (Aegean, Greece): Fingerprinting Geochemical Affinities of Magmatic Precursors" Geosciences 7, no. 1: 14. https://doi.org/10.3390/geosciences7010014
APA StyleStouraiti, C., Pantziris, I., Vasilatos, C., Kanellopoulos, C., Mitropoulos, P., Pomonis, P., Moritz, R., & Chiaradia, M. (2017). Ophiolitic Remnants from the Upper and Intermediate Structural Unit of the Attic-Cycladic Crystalline Belt (Aegean, Greece): Fingerprinting Geochemical Affinities of Magmatic Precursors. Geosciences, 7(1), 14. https://doi.org/10.3390/geosciences7010014