Spatio-Temporal Mapping of Plate Boundary Faults in California Using Geodetic Imaging
Abstract
:1. Introduction
2. Materials and Methods
2.1. GPS
2.2. InSAR
2.3. Topography
2.3.1. Lidar
2.3.2. Structure from Motion (SfM)
3. Results
3.1. South Napa Earthquake—Moderate Rupture through Several Mapped and Unmapped Traces
3.2. Creeping Section of the SAF
3.3. Carrizo Section San Andreas Fault—A Mature and Locked Fault
3.4. Landers Rupture: Geomorphic Modifications to Earthquake Surface Rupture
3.5. The Convergence of the San Andreas and Eastern California Shear Zones
4. Measurement Requirements and Discussion
4.1. Connecting Plate Boundary Motions to Surface Faults and Their Associated Deformation
4.2. Fault Rupture and Slip throughout Multiple Earthquake Cycles
4.3. Implications for Earthquake Hazard
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Field, E.H.; Arrowsmith, R.J.; Biasi, G.P.; Bird, P.; Dawson, T.E.; Felzer, K.R.; Jackson, D.D.; Johnson, K.M.; Jordan, T.H.; Madden, C. Uniform California Earthquake Rupture Forecast, version 3 (UCERF3)—The time-independent model. Bull. Seismol. Soc. Am. 2014, 104, 1122–1180. [Google Scholar] [CrossRef]
- Rundle, J.B.; Turcotte, D.L.; Shcherbakov, R.; Klein, W.; Sammis, C. Statistical physics approach to understanding the multiscale dynamics of earthquake fault systems. Rev. Geophys. 2003, 41. [Google Scholar] [CrossRef]
- Council, N.R. Landscapes on the Edge: New Horizons for Research on Earth’s Surface; National Academies Press: Washington, DC, USA, 2010. [Google Scholar]
- Sauber, J.; Thatcher, W.; Solomon, S.C.; Lisowski, M. Geodetic slip rate for the eastern California shear zone and the recurrence time of Mojave Desert earthquakes. Nature 1994, 367, 264–266. [Google Scholar] [CrossRef]
- Wesnousky, S.G. The San Andreas and Walker Lane fault systems, western North America: Transpression, transtension, cumulative slip and the structural evolution of a major transform plate boundary. J. Struct. Geol. 2005, 27, 1505–1512. [Google Scholar] [CrossRef]
- Meade, B.J.; Hager, B.H. Block models of crustal motion in southern California constrained by GPS measurements. J. Geophys. Res. Solid Earth 2005, 110, 1–19. [Google Scholar] [CrossRef]
- Spinler, J.C.; Bennett, R.A.; Anderson, M.L.; McGill, S.F.; Hreinsdóttir, S.; McCallister, A. Present-day strain accumulation and slip rates associated with southern San Andreas and eastern California shear zone faults. J. Geophys. Res. Solid Earth 2010, 115, B11407. [Google Scholar] [CrossRef]
- Rockwell, T.; Loughman, C.; Merifield, P. Late Quaternary rate of slip along the San Jacinto fault zone near Anza, southern California. J. Geophys. Res. Solid Earth 1990, 95, 8593–8605. [Google Scholar] [CrossRef]
- Fletcher, K.E.; Rockwell, T.K.; Sharp, W.D. Late Quaternary slip rate of the southern Elsinore fault, Southern California: Dating offset alluvial fans via 230Th/U on pedogenic carbonate. J. Geophys. Res. Earth Surf. 2011, 116. [Google Scholar] [CrossRef]
- Stein, R.S.; Barka, A.A.; Dieterich, J.H. Progressive failure on the North Anatolian fault since 1939 by earthquake stress triggering. Geophys. J. Int. 1997, 128, 594–604. [Google Scholar] [CrossRef]
- Barka, A.; Akyüz, H.S.; Altunel, E.; Sunal, G.; Cakir, Z.; Dikbas, A.; Yerli, B.; Armijo, R.; Meyer, B.; De Chabalier, J.B. The surface rupture and slip distribution of the 17 August 1999 Izmit earthquake (M 7.4), North Anatolian fault. Bull. Seismol. Soc. Am. 2002, 92, 43–60. [Google Scholar] [CrossRef]
- Sieh, K.; Jones, L.; Hauksson, E.; Hudnut, K.; Eberhart-Phillips, D.; Heaton, T.; Hough, S.; Hutton, K.; Kanamori, H.; Lilje, A. Near-field investigations of the Landers earthquake sequence, April to July 1992. Science 1993, 260, 171–176. [Google Scholar] [CrossRef] [PubMed]
- Heflin, M.; Dong, D.; Donnellan, A.; Hurst, K.; Jefferson, D.; Watkins, M.; Webb, F.; Zumberge, J.; Dauger, D.; Lyzenga, G. Rate change observed at JPLM after the Northridge earthquake. Geophys. Res. Lett. 1998, 25, 93–96. [Google Scholar] [CrossRef]
- Wells, D.L.; Coppersmith, K.J. New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bull. Seismol. Soc. Am. 1994, 84, 974–1002. [Google Scholar]
- Aki, K. Characterization of barriers on an earthquake fault. J. Geophys. Res. Solid Earth 1979, 84, 6140–6148. [Google Scholar] [CrossRef]
- Harris, R.A.; Day, S.M. Dynamics of fault interaction: Parallel strike-slip faults. J. Geophys. Res. Solid Earth 1993, 98, 4461–4472. [Google Scholar] [CrossRef]
- Harding, T.P. Seismic characteristics and identification of negative flower structures, positive flower structures, and positive structural inversion. AAPG Bull. 1985, 69, 582–600. [Google Scholar]
- Cowie, P. A.; Scholz, C. H. Physical explanation for the displacement-length relationship of faults using a post-yield fracture mechanics model. J. Struct. Geol. 1992, 14, 1133–1148. [Google Scholar] [CrossRef]
- Cochran, E. S.; Li, Y.-G.; Shearer, P. M.; Barbot, S.; Fialko, Y.; Vidale, J. E. Seismic and geodetic evidence for extensive, long-lived fault damage zones. Geology 2009, 37, 315–318. [Google Scholar] [CrossRef]
- Johnson, K.; Nissen, E.; Saripalli, S.; Arrowsmith, J.R.; McGarey, P.; Scharer, K.; Williams, P.; Blisniuk, K. Rapid mapping of ultrafine fault zone topography with structure from motion. Geosphere 2014, 10, 969–986. [Google Scholar] [CrossRef]
- Hudnut, K.W.; Bock, Y.; Galetzka, J.E.; Webb, F.H.; Young, W.H. The southern California integrated GPS network (SCIGN). In Proceedings of the 10th FIG International Symposium on Deformation Measurements, Orange, CA, USA, 19–22 March 2001; pp. 19–22.
- Donnellan, A.; Hager, B.H.; King, R.W.; Herring, T.A. Geodetic measurement of deformation in the Ventura Basin region, Southern California. J. Geophys. Res. Solid Earth 1993, 98, 21727–21739. [Google Scholar]
- Feigl, K.L.; Agnew, D.C.; Bock, Y.; Dong, D.; Donnellan, A.; Hager, B.H.; Herring, T.A.; Jackson, D.D.; Jordan, T.H.; King, R.W. Space geodetic measurement of crustal deformation in central and southern California, 1984–1992. J. Geophys. Res. Solid Earth 1993, 98, 21677–21712. [Google Scholar] [CrossRef]
- Donnellan, A.; Hager, B.H.; King, R.W. Discrepancy between geological and geodetic deformation rates in the Ventura Basin. Nature 1993, 366, 333–336. [Google Scholar] [CrossRef]
- Hudnut, K.W.; Shen, Z.; Murray, M.; McClusky, S.; King, R.; Herring, T.; Hager, B.; Feng, Y.; Fang, P.; Donnellan, A. Co-seismic displacements of the 1994 Northridge, California, earthquake. Bull. Seismol. Soc. Am. 1996, 86, S19–S36. [Google Scholar]
- Silver, P.G.; Bock, Y.; Agnew, D.C.; Henyey, T.; Linde, A.T.; McEvilly, T.V.; Minster, J.-B.; Romanowicz, B.A.; Sachs, I.S.; Smith, R.B.; et al. A plate boundary observatory. IRIS Newsl. 1999, 16, 3. Available online: http://ftp.iris.edu/news/IRISnewsletter/EE.Fall98.web/plate.html (accessed on 14 March 2017). [Google Scholar]
- Herring, T.A.; Melbourne, T.I.; Murray, M.H.; Floyd, M.A.; Szeliga, W.M.; King, R.W.; Phillips, D.A.; Puskas, C.M.; Santillan, M.; Wang, L. Plate Boundary Observatory and Related Networks: GPS Data Analysis Methods and Geodetic Products. Rev. Geophys. 2016, 54, 759–808. [Google Scholar] [CrossRef]
- Argus, D.F.; Heflin, M.B. Plate motion and crustal deformation estimated with geodetic data from the Global Positioning System. Geophys. Res. Lett. 1995, 22, 1973–1976. [Google Scholar] [CrossRef]
- Argus, D.F.; Fu, Y.; Landerer, F.W. Seasonal variation in total water storage in California inferred from GPS observations of vertical land motion. Geophys. Res. Lett. 2014, 41, 1971–1980. [Google Scholar]
- Smith-Konter, B.R.; Sandwell, D.T.; Shearer, P. Locking depths estimated from geodesy and seismology along the San Andreas Fault System: Implications for seismic moment release. J. Geophys. Res. Solid Earth 2011, 116. [Google Scholar] [CrossRef]
- Bürgmann, R.; Rosen, P.A.; Fielding, E.J. Synthetic aperture radar interferometry to measure Earth’s surface topography and its deformation. Annu. Rev. Earth Planet. Sci. 2000, 28, 169–209. [Google Scholar]
- Jones, C.E. A practical guide to synthetic aperture radar for engineering and environmental geologists. In Applied Geology in California, Special Publication 26; Anderson, R.L., Ferriz, H., Eds.; Association of Environmental and Engineering Geologists, Star Publishing Company: Redwood City, CA, USA, 2016. [Google Scholar]
- Massonnet, D.; Rossi, M.; Carmona, C.; Adragna, F.; Peltzer, G.; Feigl, K.; Rabaute, T. The displacement field of the Landers earthquake mapped by radar interferometry. Nature 1993, 364, 138–142. [Google Scholar] [CrossRef]
- Rosen, P.A.; Kim, Y.; Hensley, S.; Shaffer, S.; Veilleux, L.; Hoffman, J.; Chuang, C.-L.; Chakraborty, M.; Sagi, V.R.; Satish, R. An L-and S-band SAR mission concept for Earth science and applications. In Proceedings of the EUSAR 2014 10th European Conference on Synthetic Aperture Radar, Berlin, Germany, 3–5 June 2014; pp. 1–4.
- Hensley, S.; Wheeler, K.; Sadowy, G.; Jones, C.; Shaffer, S.; Zebker, H.; Miller, T.; Heavey, B.; Chuang, E.; Chao, R. The UAVSAR instrument: Description and first results. In Proceedings of the 2008 IEEE Radar Conference, Rome, Italy, 26–30 May 2008; pp. 1–6.
- Hensley, S.; Zebker, H.; Jones, C.; Michel, T.; Muellerschoen, R.; Chapman, B. First deformation results using the NASA/JPL UAVSAR instrument. In Proceedings of the APSAR 2009 2nd Asian-Pacific Conference on Synthetic Aperture Radar, Xian, China, 26–30 October 2009; pp. 1051–1055.
- Rosen, P.A.; Hensley, S.; Wheeler, K.; Sadowy, G.; Miller, T.; Shaffer, S.; Muellerschoen, R.; Jones, C.; Zebker, H.; Madsen, S. UAVSAR: A new NASA airborne SAR system for science and technology research. In Proceedings of the 2006 IEEE Conference on Radar, Verona, NY, USA, 24–27 April 2006; p. 8.
- Donnellan, A.; Parker, J.; Hensley, S.; Pierce, M.; Wang, J.; Rundle, J. UAVSAR observations of triggered slip on the Imperial, Superstition Hills, and East Elmore Ranch Faults associated with the 2010 M 7.2 El Mayor-Cucapah earthquake. Geochem. Geophys. Geosyst. 2014, 15, 815–829. [Google Scholar] [CrossRef]
- Donnellan, A.; Grant Ludwig, L.; Parker, J.W.; Rundle, J.B.; Wang, J.; Pierce, M.; Blewitt, G.; Hensley, S. Potential for a large earthquake near Los Angeles inferred from the 2014 La Habra earthquake. Earth Space Sci. 2015, 2, 378–385. [Google Scholar] [CrossRef] [PubMed]
- DeLong, S.B.; Donnellan, A.; Ponti, D.J.; Rubin, R.S.; Lienkaemper, J.J.; Prentice, C.S.; Dawson, T.E.; Seitz, G.; Schwartz, D.P.; Hudnut, K.W. Tearing the terroir: Details and implications of surface rupture and deformation from the 24 August 2014 M6. 0 South Napa earthquake, California. Earth Space Sci. 2016, 3, 416–430. [Google Scholar] [CrossRef]
- Willett, S.D.; Brandon, M.T. On steady states in mountain belts. Geology 2002, 30, 175–178. [Google Scholar] [CrossRef]
- Kirby, E.; Whipple, K.X. Expression of active tectonics in erosional landscapes. J. Struct. Geol. 2012, 44, 54–75. [Google Scholar] [CrossRef]
- Gallen, S.F.; Wegmann, K.W.; Bohnenstiehl, D.R. Miocene rejuvenation of topographic relief in the southern Appalachians. GSA Today 2013, 23, 4–10. [Google Scholar]
- Arrowsmith, J.R. High Resolution Topography and Active Faulting; Grutzner, C., Choi, J.H., Edwards, P., Kim, Y.S., Eds.; Geological Society of Korea and the Korean Institute of Geoscience and Mineral Resources: Busan, Korea, 2014; Volume 5. [Google Scholar]
- Donnellan, A.; Arrowsmith, R.; Ben-Zion, Y.; Rundle, J.; Grant Ludwig, L.; Glasscoe, M.; Ansar, A.; Parker, J.; De Jong, E.; Lundgren, P.; et al. Connecting Plate Boundary Processes to Earthquake Faults Using Geodetic and Topographic Imaging. Available online: http://surveygizmoresponseuploads.s3.amazonaws.com/fileuploads/15647/2604456/105-57af35cccc6e67b33cf5caed44ad11e6_DonnellanAndrea.pdf (accessed 17 March 2017).
- Milliner, C.W.; Dolan, J.F.; Hollingsworth, J.; Leprince, S.; Ayoub, F.; Sammis, C.G. Quantifying near-field and off-fault deformation patterns of the 1992 Mw 7.3 Landers earthquake. Geochem. Geophys. Geosyst. 2015, 16, 1577–1598. [Google Scholar] [CrossRef]
- Farr, T.G.; Kobrick, M. Shuttle Radar Topography Mission produces a wealth of data. Eos Trans. Am. Geophys. Union 2000, 81, 583–585. [Google Scholar] [CrossRef]
- Reuter, H.I.; Neison, A.; Strobl, P.; Mehl, W.; Jarvis, A. A first assessment of ASTER GDEM tiles for absolute accuracy, relative accuracy and terrain parameters. In Proceedings of the 2009 IEEE International Geoscience and Remote Sensing Symposium, Cape Town, South Africa, 12–17 July 2009; Volume 5, pp. V240–V243.
- Tachikawa, T.; Hato, M.; Kaku, M.; Iwasaki, A. Characteristics of ASTER GDEM version 2. In Proceedings of the 2011 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Vancouver, BC, Canada, 24–29 July 2011; pp. 3657–3660.
- Ryan, W.B.; Carbotte, S.M.; Coplan, J.O.; O’Hara, S.; Melkonian, A.; Arko, R.; Weissel, R.A.; Ferrini, V.; Goodwillie, A.; Nitsche, F. Global multi-resolution topography synthesis. Geochem. Geophys. Geosyst. 2009, 10. [Google Scholar] [CrossRef]
- Krieger, G.; Moreira, A.; Fiedler, H.; Hajnsek, I.; Werner, M.; Younis, M.; Zink, M. TanDEM-X: A satellite formation for high-resolution SAR interferometry. IEEE Trans. Geosci. Remote Sens. 2007, 45, 3317–3341. [Google Scholar] [CrossRef] [Green Version]
- Crosby, C.J.; Arrowsmith, R.; Nandigam, V.; Baru, C. Online Access and Processing of LiDAR Topography Data; Cambridge University Press: Cambridge, UK, 2011. [Google Scholar]
- Passalacqua, P.; Belmont, P.; Staley, D.M.; Simley, J.D.; Arrowsmith, J.R.; Bode, C.A.; Crosby, C.; DeLong, S.B.; Glenn, N.F.; Kelly, S.A. Analyzing high resolution topography for advancing the understanding of mass and energy transfer through landscapes: A review. Earth Sci. Rev. 2015, 148, 174–193. [Google Scholar] [CrossRef] [Green Version]
- Prentice, C.S.; Crosby, C.J.; Whitehill, C.S.; Arrowsmith, J.R.; Furlong, K.P.; Phillips, D.A. Illuminating Northern California’s active faults. Eos Trans. Am. Geophys. Union 2009, 90, 55. [Google Scholar]
- Prentice, C.S. Coastal Marine Terraces of Northern California: A Datum for Estimating Pleistocene Slip Rate across the Northern San Andreas Fault. In Proceedings of the 2008 Joint Meeting of the Geological Society of America, Soil Science Society of America, American Society of Agronomy, Crop Science Society of America, Gulf Coast Association of Geological Societies with the Gulf Coast Section of SEPM, Houston, TX, USA, 5–9 October 2008.
- Snyder, G.I.; Sugarbaker, L.J.; Jason, A.L.; Maune, D.F. National Requirements for Enhanced Elevation Data; Open File Report; US Geological Survey: Reston, VA, USA, 2013; Volume 1237, p. 371.
- Oskin, M.E.; Arrowsmith, J.R.; Corona, A.H.; Elliott, A.J.; Fletcher, J.M.; Fielding, E.J.; Gold, P.O.; Garcia, J.J.G.; Hudnut, K.W.; Liu-Zeng, J. Near-field deformation from the El Mayor–Cucapah earthquake revealed by differential LIDAR. Science 2012, 335, 702–705. [Google Scholar] [CrossRef] [PubMed]
- Glennie, C.L.; Hinojosa-Corona, A.; Nissen, E.; Kusari, A.; Oskin, M.E.; Arrowsmith, J.R.; Borsa, A. Optimization of legacy lidar data sets for measuring near-field earthquake displacements. Geophys. Res. Lett. 2014, 41, 3494–3501. [Google Scholar] [CrossRef]
- Nissen, E.; Maruyama, T.; Arrowsmith, J.R.; Elliott, J.R.; Krishnan, A.K.; Oskin, M.E.; Saripalli, S. Coseismic fault zone deformation revealed with differential LiDAR: Examples from Japanese Mw∼7 intraplate earthquakes. Earth Planet. Sci. Lett. 2014, 405, 244–256. [Google Scholar] [CrossRef]
- Duffy, B.; Quigley, M.; Barrell, D.J.; Van Dissen, R.; Stahl, T.; Leprince, S.; McInnes, C.; Bilderback, E. Fault kinematics and surface deformation across a releasing bend during the 2010 Mw 7.1 Darfield, New Zealand, earthquake revealed by differential LiDAR and cadastral surveying. Geol. Soc. Am. Bull. 2013, 125, 420–431. [Google Scholar]
- Brooks, B.A.; Glennie, C.; Hudnut, K.W.; Ericksen, T.; Hauser, D. Mobile laser scanning applied to the earth sciences. Eos Trans. Am. Geophys. Union 2013, 94, 313–315. [Google Scholar] [CrossRef]
- Kayen, R.; Pack, R.T.; Bay, J.; Sugimoto, S.; Tanaka, H. Terrestrial-LIDAR visualization of surface and structural deformations of the 2004 Niigata Ken Chuetsu, Japan, earthquake. Earthq. Spectra 2006, 22, 147–162. [Google Scholar]
- Gold, P.O.; Oskin, M.E.; Elliott, A.J.; Hinojosa-Corona, A.; Taylor, M.H.; Kreylos, O.; Cowgill, E. Coseismic slip variation assessed from terrestrial LiDAR scans of the El Mayor–Cucapah surface rupture. Earth Planet. Sci. Lett. 2013, 366, 151–162. [Google Scholar]
- Wilkinson, M.; McCaffrey, K.J.W.; Roberts, G.; Cowie, P.A.; Phillips, R.J.; Michetti, A.M.; Vittori, E.; Guerrieri, L.; Blumetti, A.M.; Bubeck, A. Partitioned postseismic deformation associated with the 2009 Mw 6.3 L’Aquila earthquake surface rupture measured using a terrestrial laser scanner. Geophys. Res. Lett. 2010, 37. [Google Scholar] [CrossRef]
- DeLong, S.B.; Lienkaemper, J.J.; Pickering, A.J.; Avdievitch, N.N. Rates and patterns of surface deformation from laser scanning following the South Napa earthquake, California. Geosphere 2015, 11. [Google Scholar] [CrossRef]
- McClusky, S.C.; Bjornstad, S.C.; Hager, B.H.; King, R.W.; Meade, B.J.; Miller, M.M.; Monastero, F.C.; Souter, B.J. Present day kinematics of the eastern California shear zone from a geodetically constrained block model. Geophys. Res. Lett. 2001, 28, 3369–3372. [Google Scholar] [CrossRef]
- Dixon, T.H.; Miller, M.; Farina, F.; Wang, H.; Johnson, D. Present-day motion of the Sierra Nevada block and some tectonic implications for the Basin and Range province, North American Cordillera. Tectonics 2000, 19, 1–24. [Google Scholar] [CrossRef]
- Hearn, E.H.; Humphreys, E.D. Kinematics of the southern Walker Lane Belt and motion of the Sierra Nevada block, California. J. Geophys. Res. Solid Earth 1998, 103, 27033–27049. [Google Scholar]
- GeoGateway Tools for Modeling, Analysis, and Response. Available online: http://geo-gateway.org (accessed on 17 March 2017).
- Donnellan, A.; Parker, J.; Glasscoe, M.; Granat, R.; Pierce, M.; Wang, J.; Ma, Y.; Ludwig, L.G.; Rundle, J. GeoGateway: A system for analysis of UAVSAR data products. In Proceedings of the 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 10–15 July 2016; pp. 210–213.
- Jet Propulsion Laboratory GPS Time Series. Available online: http://sideshow.jpl.nasa.gov/post/series.html (accessed on 17 March 2017).
- Hudnut, K.W.; Brocher, T.M.; Prentice, C.S.; Boatwright, J.; Brooks, B.A.; Aagaard, B.T.; Blair, J.L.; Fletcher, J.B.; Erdem, J.E.; Wicks, C.W. Key Recovery Factors for the August 24, 2014, South Napa Earthquake; Open File Report; US Geological Survey: Reston, VA, USA, 2014; Volume 1249, p. 51.
- Lydaa, A.W.; Zhanga, X.; Glenniea, C.L.; Hudnutb, K.; Brooksc, B.A. Airborne Light Detection and Ranging (LIDAR) Derived Deformation from the Mw 6.0 24 August, 2014 South Napa Earthquake Estimated by Two and Three Dimensional Point Cloud Change Detection Techniques. In Proceedings of the International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Prague, Czech Republic, 12–19 July 2016; pp. 35–42.
- DeLong, S.B. 3D Point Cloud Data from Laser Scanning along the 2014 South Napa Earthquake Surface Rupture, California, USA. Available online: https://www.sciencebase.gov/catalog/item/57f26aebe4b0bc0bebfff915 (accessed on 14 March 2017).
- Graymer, R.W.; Brabb, E.E.; Jones, D.J.; Barnes, J.; Nicholson, R.S.; Stamski, R.E. Geologic Map and Map Database of Eastern Sonoma and Western Napa Counties, California; Geological Survey: Reston, VA, USA, 2007.
- Jolivet, R.; Simons, M.; Agram, P.S.; Duputel, Z.; Shen, Z.-K. Aseismic slip and seismogenic coupling along the central San Andreas Fault. Geophys. Res. Lett. 2015, 42, 297–306. [Google Scholar] [Green Version]
- Maurer, J.; Johnson, K. Fault coupling and potential for earthquakes on the creeping section of the central San Andreas Fault. J. Geophys. Res. Solid Earth 2014, 119, 4414–4428. [Google Scholar] [CrossRef]
- Burford, R.O.; Harsh, P.W. Slip on the San Andreas fault in central California from alinement array surveys. Bull. Seismol. Soc. Am. 1980, 70, 1233–1261. [Google Scholar]
- Lisowski, M.; Prescott, W.H. Short-range distance measurements along the San Andreas fault system in central California, 1975 to 1979. Bull. Seismol. Soc. Am. 1981, 71, 1607–1624. [Google Scholar]
- Titus, S.J.; DeMets, C.; Tikoff, B. Thirty-five-year creep rates for the creeping segment of the San Andreas fault and the effects of the 2004 Parkfield earthquake: Constraints from alignment arrays, continuous global positioning system, and creepmeters. Bull. Seismol. Soc. Am. 2006, 96, S250–S268. [Google Scholar]
- Rymer, M.J.; Lisowski, M.; Burford, R.O. Structural explanation for low creep rates on the San Andreas fault near Monarch Peak, central California. Bull. Seismol. Soc. Am. 1984, 74, 925–931. [Google Scholar]
- DeLong, S.B.; Hilley, G.E.; Rymer, M.J.; Prentice, C. Fault zone structure from topography: Signatures of en echelon fault slip at Mustang Ridge on the San Andreas fault, Monterey County, California. Tectonics 2010, 29. [Google Scholar] [CrossRef]
- Hilley, G.E.; DeLong, S.; Prentice, C.; Blisniuk, K.; Arrowsmith, J.R. Morphologic dating of fault scarps using airborne laser swath mapping (ALSM) data. Geophys. Res. Lett. 2010, 37, L04301. [Google Scholar]
- Liu, Z.; Lundgren, P.; Fielding, E.J.; Hensley, S. Imaging fault slip variation along the central San Andreas fault from satellite, airborne InSAR and GPS. Available online: http://abstractsearch.agu.org/meetings/2011/FM/T43I-06.html (accessed on 17 March 2017).
- Page, B.M. Evolution and complexities of the transform system in California, USA. Ann. Tecton. 1990, 4, 53–69. [Google Scholar]
- Lawson, A.C.; Reid, H.F. The California Earthquake of April 18, 1906: Report of the State Earthquake Investigation Commission; Carnegie Institution of Washington: Washington, DC, USA, 1908. [Google Scholar]
- Wood, H.O.; Buwalda, J.P. Horizontal displacement along the San Andreas fault in the Carrizo Plain, California. Bull. Geol. Soc. Am. 1931, 42, 298–299. [Google Scholar]
- Sieh, K.E.; Jahns, R.H. Holocene activity of the San Andreas fault at Wallace creek, California. Geol. Soc. Am. Bull. 1984, 95, 883–896. [Google Scholar]
- Wallace, R.E. The San Andreas Fault System, California; US Government Printing Office: Washington, DC, USA, 1990.
- Hilley, G.E.; Arrowsmith, J.R. Geomorphic response to uplift along the Dragon’s Back pressure ridge, Carrizo Plain, California. Geology 2008, 36, 367–370. [Google Scholar]
- Akçiz, S.O.; Arrowsmith, J.R. New views on the evolution of the San Andreas fault zone in central California and the Carrizo Plain. Field Guid. 2013, 32, 1–12. [Google Scholar]
- Sieh, K.E. Slip along the San Andreas fault associated with the great 1857 earthquake. Bull. Seismol. Soc. Am. 1978, 68, 1421–1448. [Google Scholar]
- Zielke, O.; Arrowsmith, J.R.; Ludwig, L.G.; Akçiz, S.O. Slip in the 1857 and earlier large earthquakes along the Carrizo Plain, San Andreas fault. Science 2010, 327, 1119–1122. [Google Scholar]
- Zielke, O.; Arrowsmith, J.R.; Ludwig, L.G.; Akciz, S.O. High-Resolution Topography-Derived Offsets along the 1857 Fort Tejon Earthquake Rupture Trace, San Andreas Fault. Bull. Seismol. Soc. Am. 2012, 102, 1135–1154. [Google Scholar]
- Akçiz, S.O.; Ludwig, L.G.; Arrowsmith, J.R.; Zielke, O. Century-long average time intervals between earthquake ruptures of the San Andreas fault in the Carrizo Plain, California. Geology 2010, 38, 787–790. [Google Scholar]
- Schmalzle, G.; Dixon, T.; Malservisi, R.; Govers, R. Strain accumulation across the Carrizo segment of the San Andreas Fault, California: Impact of laterally varying crustal properties. J. Geophys. Res. Solid Earth 2006, 111, B05403. [Google Scholar] [CrossRef]
- Noriega, G.R.; Arrowsmith, J.R.; Grant, L.B.; Young, J.J. Stream channel offset and late Holocene slip rate of the San Andreas fault at the Van Matre ranch site, Carrizo Plain, California. Bull. Seismol. Soc. Am. 2006, 96, 33–47. [Google Scholar]
- Salisbury, J.B. Coupling Tectonic Geomorphology and Paleoseismology for Understanding of Earthquake Recurrence. Ph.D. Dissertation, Arizona State University, Tempe, AZ, USA, 2016. [Google Scholar]
- Bevis, M.; Hudnut, K.; Sanchez, R.; Toth, C.; Grejner-Brzezinska, D.; Kendrick, E.; Caccamise, D.; Raleigh, D.; Zhou, H.; Shan, S.; et al. The B4 Project: Scanning the San Andreas and San Jacinto Fault Zones. Available online: http://abstractsearch.agu.org/meetings/2005/FM/H34B-01.html (accessed on 17 March 2017).
- U.S. Geological Survey and California Geological Survey, Quaternary Fault and Fold Database for the United States. Available online: https://earthquake.usgs.gov/hazards/qfaults/ (accessed 17 March 2017).
- Sims, J.D. Stream channel offset and abandonment and a 200-year average recurrence interval of earthquakes on the San Andreas fault at Phelan Creeks, Carrizo Plain, California. In Proceedings of the Workshop on Paleoseismology, Marshall, CA, USA, 18–22 September 1994; pp. 170–172.
- Zielke, O.; Klinger, Y.; Arrowsmith, J.R. Fault slip and earthquake recurrence along strike-slip faults—Contributions of high-resolution geomorphic data. Tectonophysics 2015, 638, 43–62. [Google Scholar]
- Arrowsmith, J.R.; Zielke, O. Tectonic geomorphology of the San Andreas Fault zone from high resolution topography: An example from the Cholame segment. Geomorphology 2009, 113, 70–81. [Google Scholar] [CrossRef]
- Arrowsmith, J.R.; Rhodes, D.D. Original forms and initial modifications of the Galway Lake Road scarp formed along the Emerson fault during the 28 June 1992 Landers, California, earthquake. Bull. Seismol. Soc. Am. 1994, 84, 511–527. [Google Scholar]
- Haddad, D.E.; Akçiz, S.O.; Arrowsmith, J.R.; Rhodes, D.D.; Oldow, J.S.; Zielke, O.; Toké, N.A.; Haddad, A.G.; Mauer, J.; Shilpakar, P. Applications of airborne and terrestrial laser scanning to paleoseismology. Geosphere 2012, 8, 771–786. [Google Scholar]
- Landers Surface Rupture Terrestrial Laser Scanning Dataset. Available online: https://doi.org/10.5069/G91Z4298 (accessed on 17 March 2017).
- Listing of /v1/AUTH_opentopography/hosted_data/SfM_GalwayLakeRd_1.23.2014/. Available online: https://cloud.sdsc.edu/v1/AUTH_opentopography/hosted_data/SfM_GalwayLakeRd_1.23.2014/ (accessed on 17 March 2017).
- Rubin, C.M.; Sieh, K. Long dormancy, low slip rate, and similar slip-per-event for the Emerson fault, eastern California shear zone. J. Geophys. Res. Solid Earth 1997, 102, 15319–15333. [Google Scholar]
- Ludwig, L.G.; Brune, J.N.; Anooshehpoor, A.; Purvance, M.D.; Brune, R.J.; Lozos, J.C. Reconciling precariously balanced rocks (PBRs) with large earthquakes on the San Andreas fault system. Seismol. Res. Lett. 2015. [Google Scholar] [CrossRef]
- Thatcher, W.; Savage, J.C.; Simpson, R.W. The Eastern California Shear Zone as the northward extension of the southern San Andreas fault. J. Geophys. Res. Solid Earth 2016. [Google Scholar] [CrossRef]
- Hauksson, E.; Stock, J.; Hutton, K.; Yang, W.; Vidal-Villegas, J.A.; Kanamori, H. The 2010 Mw 7.2 El Mayor-Cucapah Earthquake Sequence, Baja California, Mexico and Southernmost California, USA: Active Seismotectonics along the Mexican Pacific Margin. Pure Appl. Geophys. 2011, 168, 1255–1277. [Google Scholar]
- Rymer, M.J.; Treiman, J.A.; Kendrick, K.J.; Lienkaemper, J.J.; Weldon, R.J.; Bilham, R.; Wei, M.; Fielding, E.J.; Hernandez, J.L.; Olson, B.P. Triggered Surface Slips in Southern California Associated with the 2010 El Mayor-Cucapah, Baja California, Mexico, Earthquake; US Geological Survey: Reston, VA, USA, 2011.
- Gonzalez-Ortega, A.; Fialko, Y.; Sandwell, D.; Alejandro Nava-Pichardo, F.; Fletcher, J.; Gonzalez-Garcia, J.; Lipovsky, B.; Floyd, M.; Funning, G. El Mayor-Cucapah (Mw 7.2) earthquake: Early near-field postseismic deformation from InSAR and GPS observations. J. Geophys. Res. Solid Earth 2014, 119, 1482–1497. [Google Scholar]
- Hauksson, E.; Stock, J.; Bilham, R.; Boese, M.; Chen, X.; Fielding, E.J.; Galetzka, J.; Hudnut, K.W.; Hutton, K.; Jones, L.M. Report on the August 2012 Brawley earthquake swarm in Imperial Valley, Southern California. Seismol. Res. Lett. 2013, 84, 177–189. [Google Scholar]
- Lohman, R.B.; McGuire, J.J. Earthquake swarms driven by aseismic creep in the Salton Trough, California. J. Geophys. Res. Solid Earth 2007, 112, B04405. [Google Scholar]
- Wei, S.; Avouac, J.-P.; Hudnut, K.W.; Donnellan, A.; Parker, J.W.; Graves, R.W.; Helmberger, D.; Fielding, E.; Liu, Z.; Cappa, F. The 2012 Brawley swarm triggered by injection-induced aseismic slip. Earth Planet. Sci. Lett. 2015, 422, 115–125. [Google Scholar]
- Sieh, K.; Williams, P.L. Behavior of the southernmost San Andreas fault during the past 300 years. J. Geophys. Res. 1990. [Google Scholar] [CrossRef]
- Rymer, M.J. Triggered surface slips in the Coachella Valley area associated with the 1992 Joshua Tree and Landers, California, earthquakes. Bull. Seismol. Soc. Am. 2000, 90, 832–848. [Google Scholar] [CrossRef]
- Vincent, P. Aseismic slip events along the southern San Andreas fault system captured by radar interferometry. In Proceedings of the 3rd Conference on Tectonic Problems of the San Andreas Faul System, Stanford, CA, USA, 6–8 September 2000; Bokelmann, G., Kovach, R.L., Eds.; 2000; p. 193. [Google Scholar]
- Behr, J.; Bilham, R.; Bodin, P.; Gross, S. Eureka peak fault afterslip following the 28 June 1992 Landers earthquake. Bull. Seismol. Soc. Am. 1994, 84, 826–834. [Google Scholar]
- DeLong, S.B.; Prentice, C.S.; Hilley, G.E.; Ebert, Y. Multitemporal ALSM change detection, sediment delivery, and process mapping at an active earthflow. Earth Surf. Process. Landf. 2012, 37, 262–272. [Google Scholar] [CrossRef]
- Rundle, P.B.; Rundle, J.B.; Tiampo, K.F.; Donnellan, A.; Turcotte, D.L. Virtual California: Fault model, frictional parameters, applications. Pure Appl. Geophys. 2006, 163, 1819–1846. [Google Scholar] [CrossRef]
- Grieve, S.W.; Mudd, S.M.; Milodowski, D.T.; Clubb, F.J.; Furbish, D.J. How does grid-resolution modulate the topographic expression of geomorphic processes? Earth Surf. Dyn. 2016, 4, 627–653. [Google Scholar]
- Hurst, M.D.; Mudd, S.M.; Attal, M.; Hilley, G. Hillslopes record the growth and decay of landscapes. Science 2013, 341, 868–871. [Google Scholar] [CrossRef]
- Donnellan, A.; Lyzenga, G.A. GPS observations of fault afterslip and upper crustal deformation following the Northridge earthquake. J. Geophys. Res. Solid Earth 1998, 103, 21285–21297. [Google Scholar]
- Azúa, B.M.; DeMets, C.; Masterlark, T. Strong interseismic coupling, fault afterslip, and viscoelastic flow before and after the Oct. 9, 1995 Colima-Jalisco earthquake: Continuous GPS measurements from Colima, Mexico. Geophys. Res. Lett. 2002, 29. [Google Scholar] [CrossRef]
- Grant, L.B.; Donnellan, A. 1855 and 1991 surveys of the San Andreas fault: Implications for fault mechanics. Bull. Seismol. Soc. Am. 1994, 84, 241–246. [Google Scholar]
- Davis, J.L.; Kellogg, L.H.; Arrowsmith, J.R.; Buffett, B.A.; Constable, C.G.; Donnellan, A.; Ivins, E.R.; Mattioli, G.S.; Owen, S.E.; Pritchard, M.E.; et al. Challenges and Opportunities for Research in ESI (CORE). Available online: https://smd-prod.s3.amazonaws.com/science-green/s3fs-public/atoms/files/CORE2016.pdf (accessed on 14 March 2017).
Objective | Measurement | Technique | Resolution |
---|---|---|---|
Measure distribution of deformation across the plate boundary | Crustal Deformation | GPS | 10 km spacing |
500 km × 1500 km field of view | |||
1 mm/year | |||
UAVSAR | 10 m pixel spacing | ||
10 km × 10 km field of view | |||
1 cm/year | |||
Airborne lidar | 1 m spacing | ||
10 km × 10 km field of view | |||
1 cm/year | |||
Determine interactions between faults within the plate boundary | Fault Traces | GPS | 10 km spacing |
50 km × 50 km field of view | |||
1 cm/day time dependent rates | |||
UAVSAR | ≤10 m posting | ||
5 km × 5 km field of view | |||
1 cm | |||
Airborne lidar | 2 km × 2 km field of view | ||
≤1 m | |||
Structure from motion (SfM) from ground or near surface | 1 m posting | ||
2 km × 2 km field of view | |||
Assess what fraction of strain accumulation is released aseismically | Fault zone landforms | UAVSAR | ≤10 m posting |
5 km × 5 km field of view | |||
1 cm | |||
Ground and airborne lidar | 2 km × 2 km field of view | ||
≤1 m | |||
Structure from motion (SfM) from ground or near surface | 1 m posting | ||
2 km × 2 km field of view |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Donnellan, A.; Arrowsmith, R.; DeLong, S. Spatio-Temporal Mapping of Plate Boundary Faults in California Using Geodetic Imaging. Geosciences 2017, 7, 15. https://doi.org/10.3390/geosciences7010015
Donnellan A, Arrowsmith R, DeLong S. Spatio-Temporal Mapping of Plate Boundary Faults in California Using Geodetic Imaging. Geosciences. 2017; 7(1):15. https://doi.org/10.3390/geosciences7010015
Chicago/Turabian StyleDonnellan, Andrea, Ramón Arrowsmith, and Stephen DeLong. 2017. "Spatio-Temporal Mapping of Plate Boundary Faults in California Using Geodetic Imaging" Geosciences 7, no. 1: 15. https://doi.org/10.3390/geosciences7010015
APA StyleDonnellan, A., Arrowsmith, R., & DeLong, S. (2017). Spatio-Temporal Mapping of Plate Boundary Faults in California Using Geodetic Imaging. Geosciences, 7(1), 15. https://doi.org/10.3390/geosciences7010015