Geochemical Features of Fallow Land in Ancient Plots in the Chora of Chersonesos
Abstract
:1. Introduction
2. Materials and Methods
2.1. Objects of Soil-Genetic Research
2.2. Experimental Treatments
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Riccioli, F.; El Asmar, T.; El Asmar, J.-P.; Fratini, R. Use of cellular automata in the study of variables involved in land use changes: An application in the wine production sector. Environ. Monit. Assess. 2013, 185, 5361–5374. [Google Scholar] [CrossRef] [PubMed]
- Tana, C.M.; Marginean, M.C.; Tita, O. Characterization vineyard soil agrochemical Tarnave. In Proceedings of the 13th International Multidisciplinary Scientific GeoConference & EXPO SGEM, Albena, Bulgaria, 16–22 June 2013; pp. 521–526. [Google Scholar] [CrossRef]
- Marginean, M.C.; Tana, C.M.; Tiţa, O. Soil characteristics from Tarnave vineyard. In Proceedings of the 13th International Multidisciplinary Scientific GeoConference & EXPO SGEM, Albena, Bulgaria, 16–22 June 2013; pp. 663–668. [Google Scholar] [CrossRef]
- Ash, C.; Vacek, O.; Jakšík, O.; Tejnecký, V.; Drábek, O. Elevated soil copper content in a Bohemian vineyard as a result of fungicide application. Soil Water Res. 2012, 7, 151–158. [Google Scholar] [CrossRef] [Green Version]
- Bažon, I.; Bakić, H.; Romić, M. Soil geochemistry as a component of terroir of the wine-growing station Jazbina, Zagreb. Agric. Conspectus Sci. 2013, 78, 95–106. [Google Scholar]
- Huzum, R.; Sirbu-Radasanu, D.S.; Iftode, S.P.; Buzgar, N.; Iancu, G.O. Soil surface geochemistry for environment monitoring in vineyard soil of HuŞi area, Romania. In Proceedings of the International Multidisciplinary Scientific GeoConference & EXPO SGEM, Albena, Bulgaria, 18–24 June 2015; Volume 2, pp. 295–302. [Google Scholar] [CrossRef]
- Sandor, J.A.; Homburg, J.A. Anthropogenic soil change in ancient and traditional agricultural fields in arid to semiarid regions of the Americas. J. Ethnobiol. 2017, 37, 196–217. [Google Scholar] [CrossRef]
- Negrul, A.M.; Krylatov, A.K. Selection of Lands and Varieties for Vineyards; Selkhozizdat: Moscow, Russia, 1964. [Google Scholar]
- Preston, W.; do Nascimento, C.W.A.; da Silva, Y.J.A.B.; Silva, D.J.; Ferreira, H.A. Soil fertility changes in vineyards of a semiarid region in Brazil. J. Soil Sci. Plant Nutr. 2017, 17, 672–685. [Google Scholar] [CrossRef]
- Protano, G.; Rossi, S. Relationship between soil geochemistry and grape composition in Tuscany (Italy). J. Plant Nutr. Soil Sci. 2014, 177, 500–508. [Google Scholar] [CrossRef]
- Jones, G.V.; Snead, N.; Nelson, P. Geology and wine 8. Modeling viticultural landscapes: A GIS analysis of the terroir potential in the Umpqua Valley of Oregon. Geosci. Can. 2004, 31, 167–178. [Google Scholar]
- Van Leeuwen, C.; Seguin, G. The concept of terroir in viticulture. J. Wine Res. 2006, 17, 1–10. [Google Scholar] [CrossRef]
- Bodin, F.; Morlat, R. Characterization of viticultural terroirs using a simple field model based on soil depth I. Validation of the water supply regime, phenology and vine vigour, in the Anjou vineyard (France). Plant Soil 2006, 281, 37–54. [Google Scholar] [CrossRef]
- Kiriliuk, V.P. Microelements in the Components of the Biosphere of Moldova; Pontos: Chisinau, Moldova, 2006. [Google Scholar]
- Schwab, A.P.; Zhu, D.S.; Banks, M.K. Influence of organic acids on the transport of heavy metals in soil. Chemosphere 2008, 72, 986–994. [Google Scholar] [CrossRef] [PubMed]
- Navarro, F.J.G.; Ortiz-Villajos, J.A.A.; Jiménez, C.J.S.; Ballesta, R.J. Red soil geochemistry in a semiarid Mediterranean environment and its suitability for vineyards. Environ. Geochem. Health 2011, 33, 279–289. [Google Scholar] [CrossRef] [PubMed]
- Amorós, J.A.; Pérez-de-los Reyes, C.; García Navarro, F.J.; Bravo, S.; Chacón, J.L.; Martínez, J.; Jiménez Ballesta, R. Bioaccumulation of mineral elements in grapevine varieties cultivated in “La Mancha”. J. Plant Nutr. Soil Sci. 2013, 176, 843–850. [Google Scholar] [CrossRef]
- Kalinitchenko, V.P. Status of the Earth’s geochemical cycle in the standard technologies and waste recycling, and the possibilities of its correction by Biogeosystem Technique method (problem-analytical review). Biogeosyst. Tech. 2016, 8, 115–144. [Google Scholar] [CrossRef]
- Batukaev, A.-M.A.; Endovitsky, A.P.; Andreev, A.G.; Kalinichenko, V.P.; Minkina, T.M.; Dikaev, Z.S.; Mandzhieva, S.S.; Sushkova, S.N. Ion association in water solution of soil and vadose zone of chestnut saline solonetz as a driver of terrestrial carbon sink. Solid Earth 2016, 7, 415–423. [Google Scholar] [CrossRef] [Green Version]
- Prikhodko, V.E.; Manakhov, D.V. Soil processes at different structural levels of organization and diagnosis of their changes under irrigation. Moscow Univ. Soil Sci. Bull. 2009, 65, 52–60. [Google Scholar] [CrossRef]
- Prikhod’ko, V.E.; Ivanov, I.V.; Manakhov, D.V.; Gerasimenko, N.P.; Inubushi, K.; Kawahigashi, M.; Nagano, K.; Sugihara, S. Soils, vegetation, and climate of the southern Transural region in the Middle Bronze Age (by the example of the Arkaim fortress). Eur. Soil Sci. 2013, 46, 925–934. [Google Scholar] [CrossRef]
- Bu, K.; Freile, D.; Cizdziel, J.V.; Richards, J.; Sidhu, V.; Duzgoren-Aydin, N.S. Geochemical characteristics of soils on Ellis Island, New York-New Jersey, sixty years after the abandonment of the hospital complex. Geosciences 2018, 8, 13. [Google Scholar] [CrossRef]
- Pardini, G.; Gispert, M.; Dunjó, G. Distribution patterns of soil properties in a rural Mediterranean area in north-eastern Spain. Mountain Res. Dev. 2004, 24, 44–51. [Google Scholar] [CrossRef]
- Akimtsev, V.V. Soil and quality of wines. Pochvovedenie 1950, 5, 296–302. [Google Scholar]
- Cordova, C.E.; Lehman, P.H. Archaeopalynology of synanthropic vegetation in the chora of Chersonesos, Crimea, Ukraine. J. Archaeol. Sci. 2003, 30, 1483–1501. [Google Scholar] [CrossRef]
- Kashirskaya, N.N.; Khomutova, T.E.; Kuznetsova, T.V.; Shishlina, N.I.; Borisov, A.V. Dynamics of Chemical and Microbiological Soil Properties in the Desert–Steppe Zone of the Southeast Russian Plain during the Second Part of the Holocene (4000 BC–XIII century AC). Arid Ecosyst. 2018, 8, 38–46. [Google Scholar] [CrossRef]
- Kerzhentsev, A.S. New Book on the Structural-Functional Role of Soils in the Biosphere. Eur. Soil Sci. 2006, 39, 95–102. [Google Scholar] [CrossRef]
- Prikhod’ko, V.E. Changes in soil properties at different levels of soil structural arrangement under the impact of irrigation. Eur. Soil Sci. 2008, 41, 114–124. [Google Scholar] [CrossRef]
- Vinokurov, N.I. Viticulture and wine production in the antique states of the Northern Black Sea area. Bosporos Stud. 2007, 3, 22–39. [Google Scholar]
- Smekalova, T.N.; Bevan, B.W.; Chudin, A.V.; Garipov, A.S. The discovery of an ancient Greek vineyard. Archaeol. Prospect. 2016, 23, 15–23. [Google Scholar] [CrossRef]
- Ivanov, I.V.; Lisetskiy, F.N. Correlation of soil formation rhythms with periodicity of solar activity over the last 5000 years. Trans. Russ. Acad. Sci. Earth Sci. Sect. 1996, 340, 189–194. [Google Scholar]
- Saprykin, S.J. Ancient Farms and Land Plots on the Khora of Khersonesos Taurike; Brill Academic Publishers: Amsterdam, The Netherlands, 1994. [Google Scholar]
- Lisetskii, F.N.; Goleusov, P.V.; Chepelev, O.A. The development of Chernozems on the Dniester–Prut interfluve in the Holocene. Eur. Soil Sci. 2013, 46, 491–504. [Google Scholar] [CrossRef]
- Valkó, O.; Deák, B.; Török, P.; Kelemen, A.; Miglécz, T.; Tóth, K.; Tóthmérész, B. Abandonment of croplands: Problem or chance for grassland restoration? Case studies from Hungary. Ecosyst. Health Sustain. 2016, 2, e01208. [Google Scholar] [CrossRef]
- Bagrova, L.A.; Bokov, V.A.; Bagrov, N.V. Geografija Kryma; Lybid: Kyiv, Ukraine, 2001. [Google Scholar]
- Korsakova, S. Impact of climate change on the grape productivity in the Southern coast of the Crimea. In Challenges and Opportunities in Agrometeorology; Attri, S.D., Rathore, L.S., Sivakumar, M.V.K., Dash, S.K., Eds.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 385–396. [Google Scholar]
- Lisetskii, F.N.; Stolba, V.F.; Pichura, V.I. Late-Holocene palaeoenvironments of Southern Crimea: Soils, soil-climate relationship and human impact. Holocene 2017, 27, 1859–1875. [Google Scholar] [CrossRef] [Green Version]
- Lisetskii, F.; Stolba, V.; Ergina, E.; Rodionova, M.; Terekhin, E. Post-agrogenic evolution of soils in ancient Greek land use areas in the Herakleian Peninsula, South-West Crimea. Holocene 2013, 4, 504–514. [Google Scholar] [CrossRef]
- Golyeva, A.; Khokhlova, O.; Lebedeva, M.; Shcherbakov, N.; Shuteleva, I. Micromorphological and chemical features of soils as evidence of bronze age ancient anthropogenic impact (Late Bronze Age Muradymovo settlement, Ural region, Russia). Geosciences 2018, 8, 313. [Google Scholar] [CrossRef]
- Marken, B. Instrumental Element and Multi-Element Analysis of Plant Samples; John Wiley and Sons: New York, NY, USA, 1996. [Google Scholar]
- Taylor, G.; Pain, C.F.; Ryan, P.J. Geology, geomorphology and regolith. In Guidelines for Surveying Soil and Land Resources; McKenzie, N.J., Grundy, M.J., Webster, R., Ringrose-Voase, A.J., Eds.; Csiro: Melbourne, Australia, 2008; pp. 45–60. [Google Scholar]
- Liu, G.; Li, L.; Wu, L.; Wang, G.; Zhou, Z.; Du, S. Determination of soil loss tolerance of an Entisol in Southwest China. Soil Sci. Soc. Am. J. 2009, 73, 412–417. [Google Scholar] [CrossRef]
- Shaw, D.M. Interprétation Geochimique des Éléments en Traces Dans les Roches Cristallines; Masson: Paris, France, 1964. [Google Scholar]
Soils | Ca | Al | Fe | Si | Mg | P | Ni | Cu | Zn | Sr | Pb | Cr | V |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
% | mg kg−1 | ||||||||||||
OR | 17.7 | 4.4 | 1.5 | 7.10 | 0.7 | 4.0 | 35.2 | 27.5 | 69.3 | 259.5 | 13.3 | 75.1 | 59.6 |
MT | 22.5 | 3.8 | 1.2 | 5.32 | 0.9 | 4.5 | 24.9 | 12.4 | 93.3 | 280.3 | 10.0 | 65.8 | 49.1 |
K–L | 18.4 | 4.1 | 1.4 | 6.31 | 1.2 | 0.1 | 31.9 | 15.4 | 66.3 | 284.9 | 18.9 | 74.4 | 60.1 |
OT | 20.1 | 3.9 | 1.3 | 4.53 | 1.0 | 1.0 | 31.0 | 11.9 | 63.5 | 241.7 | 13.9 | 75.1 | 53.6 |
CN 3 | 16.6 | 4.5 | 2.3 | 15.0 | 2.8 | 0.1 | 56.4 | 46.2 | 115.1 | 355.1 | 23.5 | 64.4 | 66.5 |
CN 49 | 17.7 | 5.5 | 2.5 | 15.3 | 3.1 | 6.2 | 56.3 | 54.3 | 86.2 | 170.7 | 7.2 | 63.2 | 67.3 |
CN 62 | 8.1 | 5.1 | 2.9 | 20.9 | 1.6 | 6.7 | 59.1 | 36.8 | 81.6 | 91.7 | 45.3 | 72.9 | 83.1 |
CN 68 | 18.6 | 5.6 | 2.3 | 14.8 | 3.0 | 9.0 | 60.0 | 39.6 | 108.1 | 152.7 | <QL | 65.7 | 71.4 |
CN 130–1 | 18.9 | 9.9 | 2.8 | 10.2 | 1.2 | 0.04 | 53.1 | 50.0 | 92.0 | 137.5 | 22.2 | 81.0 | 64.9 |
CN 130–2 | 19.8 | 10.0 | 2.7 | 11.0 | 1.3 | 0.1 | 49.7 | 47.1 | 89.1 | 157.3 | 22.5 | 78.7 | 70.8 |
CN 387 | 2.9 | 5.7 | 4.1 | 24.1 | 0.9 | 0.04 | 68.1 | 51.6 | 83.6 | 77.6 | 44.9 | 103.1 | 104.5 |
CN 389 | 9.7 | 5.1 | 3.1 | 19.5 | 1.8 | 4.3 | 62.2 | 48.9 | 99.3 | 216.4 | <QL | 83.8 | 85.5 |
CN 391–1 | 18.3 | 8.4 | 2.0 | 11.2 | 1.1 | 0.1 | 43.1 | 50.0 | 81.8 | 63.3 | 16.1 | 69.6 | 50.5 |
CN 391–2 | 14.7 | 9.3 | 1.9 | 16.6 | 0.9 | 0.1 | 25.8 | 27.9 | 92.9 | 72.3 | 14.7 | 69.9 | 57.0 |
CN 395 | 7.5 | 9.5 | 2.9 | 14.7 | 0.5 | 0.1 | 45.8 | 48.5 | 110.4 | 47.0 | 26.7 | 74.3 | 78.5 |
Soils | Rb/Sr | Ke | FI | Km | (Fe + Al)/(Ca + Na + Mg) | Ka | KS |
---|---|---|---|---|---|---|---|
OR | 0.22 | 0.71 | 7.26 | 4.80 | 0.29 | 1.10 | 1.28 |
MT | 0.18 | 0.42 | 11.24 | 8.60 | 0.19 | 0.92 | 1.12 |
K–L | 0.17 | 0.57 | 1.68 | 5.30 | 0.24 | 1.26 | 1.68 |
OT | 0.16 | 0.38 | 3.83 | 6.78 | 0.20 | 1.14 | 1.40 |
average | 0.18 | 0.52 | 6.00 | 6.37 | 0.23 | 1.10 | 1.37 |
CN 3 | 0.17 | 1.25 | 0.72 | 3.86 | 0.28 | 0.65 | 0.92 |
CN 49 | 0.40 | 1.20 | 0.77 | 2.92 | 0.32 | 0.59 | 0.44 |
CN 62 | 0.72 | 3.20 | 0.27 | 1.95 | 0.63 | 0.59 | 0.51 |
CN 68 | 0.38 | 1.10 | 0.82 | 3.74 | 0.29 | 0.61 | 0.48 |
CN 387 | 1.07 | 6.91 | 0.11 | 1.71 | 1.62 | 0.33 | 0.98 |
CN 389 | 0.34 | 2.60 | 0.34 | 2.52 | 0.57 | 0.63 | 0.51 |
average | 0.51 | 2.71 | 0.51 | 2.78 | 0.62 | 0.56 | 0.64 |
CN 130–1 | 0.53 | 0.91 | 1.02 | 4.43 | 0.57 | 0.71 | 0.79 |
CN 130–2 | 0.43 | 0.93 | 0.99 | 4.01 | 0.53 | 0.83 | 0.82 |
CN 391–1 | 0.53 | 1.06 | 0.90 | 3.60 | 0.49 | 0.89 | 0.87 |
CN 391–2 | 0.44 | 1.93 | 0.50 | 2.72 | 0.64 | 0.76 | 0.75 |
CN 395 | 1.26 | 2.93 | 0.31 | 3.61 | 1.32 | 0.74 | 0.77 |
average | 0.64 | 1.55 | 0.75 | 3.67 | 0.71 | 0.78 | 0.80 |
Soils | Al | Fe | Si | P | K | Ni | Cu | Zn | Mn | Co |
---|---|---|---|---|---|---|---|---|---|---|
OR | 0.58 | 0.80 | 0.50 | 5.35 | 1.01 | 1.16 | 1.77 | 1.10 | 1.07 | 1.50 |
MT | 0.56 | 0.72 | 0.56 | 4.20 | 0.89 | 1.02 | 0.76 | 1.41 | 0.76 | 1.03 |
K–L | 0.65 | 0.94 | 0.77 | 1.51 | 1.20 | 1.33 | 1.29 | 1.16 | 1.24 | 0.70 |
OT | 0.48 | 0.81 | 0.39 | 7.61 | 0.89 | 1.13 | 0.78 | 1.08 | 0.89 | 1.30 |
CN 3 | 0.42 | 0.52 | 0.82 | 1.08 | 1.13 | 0.75 | 0.73 | 1.24 | 0.60 | 0.10 |
CN 49 | 0.78 | 0.98 | 1.14 | 1.19 | 1.29 | 1.23 | 1.43 | 1.47 | 1.65 | 0.10 |
CN 62 | 0.66 | 1.15 | 1.65 | 1.08 | 0.94 | 1.08 | 0.69 | 1.25 | 1.38 | 0.10 |
CN 68 | 0.52 | 0.53 | 0.80 | 1.22 | 1.03 | 0.80 | 0.63 | 1.16 | 0.67 | 0.10 |
CN 130–1 | 1.60 | 1.96 | 3.66 | 0.96 | 1.84 | 1.98 | 1.63 | 1.30 | 1.70 | 2.69 |
CN 130–2 | 1.48 | 1.67 | 3.53 | 1.03 | 1.54 | 1.26 | 1.57 | 1.26 | 1.58 | 2.53 |
CN 387 | 0.53 | 0.93 | 1.31 | 0.82 | 0.98 | 0.91 | 0.82 | 0.90 | 1.05 | 0.21 |
CN 389 | 0.47 | 0.73 | 1.06 | 0.95 | 1.05 | 0.83 | 0.78 | 1.07 | 0.82 | 0.10 |
CN 391–1 | 0.86 | 0.83 | 1.30 | 1.39 | 1.19 | 1.13 | 1.88 | 1.10 | 1.57 | 1.78 |
CN 391–2 | 0.95 | 0.79 | 1.93 | 1.45 | 1.29 | 0.68 | 1.05 | 1.25 | 1.50 | 0.87 |
CN 395 | 0.97 | 1.24 | 1.71 | 1.40 | 1.58 | 1.21 | 1.82 | 1.48 | 1.21 | 1.40 |
Soils | Color (Dry) | Layer, cm | pH (H2O) | Corg | CO2 Carbonates | Available | CEC, cmol kg−1 | |||
---|---|---|---|---|---|---|---|---|---|---|
P | K | |||||||||
% | mg kg−1 | Mg2+ | Ca2+ | Na+ | ||||||
OT | 10YR 6/3 | 5–21 | 8.5 | 2.4 | 25.1 | 1.5 | 366.6 | 4.4 | 19.8 | 1.6 |
K–L | 10YR 6/3 | 0–24 | 8.3 | 2.0 | 18.9 | 0.2 | 128.0 | 7.7 | 34.1 | 2.4 |
MT | 10YR 6/3 | 0–20 | 8.8 | 1.9 | 26.8 | 10.4 | 290.1 | 2.1 | 18.6 | 0.2 |
OR | 10YR 5/3 | 0–21 | 8.1 | 1.5 | 19.5 | 9.2 | 221.5 | 2.2 | 27.5 | 0.1 |
CN 3 | 10YR 5/6 | 0–16 | 7.9 | 2.6 | 23.3 | 12.2 | 12.0 | 2.4 | 16.8 | 0.1 |
CN 387 | 7.5YR 3/4 | 0–16 | 7.8 | 3.2 | 3.2 | 8.5 | 8.0 | 1.6 | 38.8 | 0.1 |
CN 49 | 10YR 6/4 | 0–16 | 7.9 | 3.0 | 21.2 | 14.2 | 11.0 | 1.8 | 21.6 | 0.1 |
CN 389 | 10YR 5/4 | 4–16 | 7.8 | 2.5 | 10.1 | 9.8 | 13.0 | 1.6 | 29.2 | 0.1 |
CN 62 | 5YR 5/6 | 0–16 | 7.9 | 2.5 | 21.7 | 15.4 | 10.0 | 1.6 | 17.0 | 0.1 |
CN 68 | 7.5YR 5/7 | 0–16 | 7.9 | 3.1 | 20.6 | 20.6 | 15.0 | 1.6 | 19.6 | 0.1 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lisetskii, F.; Zelenskaya, E.; Rodionova, M. Geochemical Features of Fallow Land in Ancient Plots in the Chora of Chersonesos. Geosciences 2018, 8, 410. https://doi.org/10.3390/geosciences8110410
Lisetskii F, Zelenskaya E, Rodionova M. Geochemical Features of Fallow Land in Ancient Plots in the Chora of Chersonesos. Geosciences. 2018; 8(11):410. https://doi.org/10.3390/geosciences8110410
Chicago/Turabian StyleLisetskii, Fedor, Eugenia Zelenskaya, and Maria Rodionova. 2018. "Geochemical Features of Fallow Land in Ancient Plots in the Chora of Chersonesos" Geosciences 8, no. 11: 410. https://doi.org/10.3390/geosciences8110410
APA StyleLisetskii, F., Zelenskaya, E., & Rodionova, M. (2018). Geochemical Features of Fallow Land in Ancient Plots in the Chora of Chersonesos. Geosciences, 8(11), 410. https://doi.org/10.3390/geosciences8110410