Statistical Analysis of Displacement and Length Relation for Normal Faults in the Barents Sea
Abstract
:1. Introduction
2. Methodology
2.1. Fault Data Extraction from Seismic Data
2.2. Statistical Analysis
3. Results
3.1. The Dependence of Segment Length on Displacement
3.2. The Dependence of Accumulated Length on Displacement
4. Discussion
5. Conclusions
- Utilizing seismic coherence attributes, we are able to extract segment lengths of a single fault at different depths.
- All considered L-D relations are analyzed using the Bayesian information criterion and Akaike information criterion. In all considered cases, statistical analysis using the AIC shows that optimal statistical approximation in logarithmic scale is the simple linear regression (k = 1), whereas optimal statistical approximation for the dependence of accumulated length on displacement obtained using the BIC is achieved for k = 2.
- L-D relation for individual segment length versus maximum displacement significantly differs for different faults.
- When comparing our result with the analysis of previously published data, in general, they are in qualitative agreement. However, the slope value is greater for the new data. This difference could be related to including detailed measurements from each fault segment in the current datasets.
Author Contributions
Funding
Conflicts of Interest
References
- Clark, R.M.; Cox, S.J. A modern regression approach to determining fault displacement- length scaling relationships. J. Struct. Geol. 1996, 18, 147–152. [Google Scholar] [CrossRef]
- Watterson, J.; Walsh, J.J.; Gillespie, P.A.; Easton, S. Scaling systematics of fault sizes on a large scale range fault map. J. Struct. Geol. 1996, 18, 199–214. [Google Scholar] [CrossRef]
- Walsh, J.J.; Nicol, A.; Childs, C. An alternative model for the growth of faults. J. Struct. Geol. 2002, 24, 1669–1675. [Google Scholar] [CrossRef]
- Kim, Y.-S.; Sanderson, D.J. The relationship between displacement and length of faults. Earth-Sci. Rev. 2005, 68, 317–334. [Google Scholar] [CrossRef]
- Schultz, R.A.; Soliva, R.; Fossen, H.; Okubo, C.H.; Reeves, D.M. Dependence of displacement-length scaling relations for fractures and deformation bands on the volumetric changes across them. J. Struct. Geol. 2008, 30, 1405–1411. [Google Scholar] [CrossRef]
- Torabi, A.; Berg, S. Scaling of fault attributes: A review. Mar. Petrol. Geol. 2011, 28, 1444–1460. [Google Scholar] [CrossRef]
- Kolyukhin, D.; Torabi, A. Statistical analysis of the relationships between faults attributes. J. Geophys. Res. 2012, 117, B05406. [Google Scholar] [CrossRef]
- Childs, C.; Manzocchi, T.; Walsh, J.J.; Bonson, C.G.; Nicol, A.; Schöpfer, M.P.J. A geometric model of fault zone and fault rock thickness variations. J. Struct. Geol. 2009, 31, 117–127. [Google Scholar] [CrossRef]
- Libak, A.; Alaei, B.; Torabi, A. Fault visualization and identification in fault seismic attribute volumes: Implications for fault geometric characterization. Interpretation 2017, 5, B1–B16. [Google Scholar] [CrossRef]
- Torabi, A.; Alaei, B.; Kolyukhin, D. Analysis of fault scaling relations using fault seismic attributes. Geophys. Prospect. 2017, 65, 581–595. [Google Scholar] [CrossRef]
- Hatton, C.G.; Main, I.G.; Meredith, P.G. Non-universal scaling of fracture length and opening displacement. Nature 1994, 367, 160–162. [Google Scholar] [CrossRef]
- Renshaw, C.E.; Park, J.C. Effect of mechanical interactions on the scaling of fracture length and aperture. Nature 1997, 386, 482–484. [Google Scholar] [CrossRef]
- Scholz, C.H.; Cowie, P.A. Determination of geologic strain from fault slip data. Nature 1990, 346, 837–839. [Google Scholar] [CrossRef]
- Chopra, S.; Marfurt, K.J. Seismic attributes for prospect identification and reservoir characterization. SEG Geophys. Dev. Ser. 2007. [Google Scholar] [CrossRef]
- Bulteel, K.; Wilderjans, T.F.; Tuerlinckx, F.; Ceulemans, E. CHull as an alternative to AIC and BIC in the context of mixtures of factor analyzers. Behav. Res. Methods 2013, 45, 782–791. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Main, I.G.; Leonard, T.; Papasouliotis, O.; Hatton, C.G.; Meredith, P.G. One slope or two? Detecting statistically significant breaks of slope in geophysical data, with application to fracture scaling relationships. Geophys. Res. Lett. 1999, 26, 2801–2804. [Google Scholar] [CrossRef] [Green Version]
- Marfurt, K.J.; Kirlin, R.L.; Farmer, S.L.; Bahorich, M.S. 3-D seismic attributes using a semblance-based coherency algorithm. Geophysics 1998, 63, 1150–1165. [Google Scholar] [CrossRef]
- Torabi, A.; Alaei, B.; Libak, A. Normal fault 3D geometry and displacement revisited: Insights from faults in the Norwegian Barents Sea. Mar. Petrol. Geol. 2019, 99, 135–155. [Google Scholar] [CrossRef]
- Johnson, R.A.; Wichern, D.W. Applied Multivariate Statistical Analysis, 6th ed.; Pearson Prentice Hall: Upper Saddle River, NJ, USA, 2007; p. 773. ISBN 0131877151. [Google Scholar]
- Jarque, C.M.; Bera, A.K. A test for normality of observations and regression residuals. Int. Stat. Rev. 1987, 55, 1–10. [Google Scholar] [CrossRef]
- Schwarz, G. Estimating the dimension of a model. Ann. Stat. 1978, 6, 461–464. [Google Scholar] [CrossRef]
- Koehler, A.B.; Murphree, E.S. A Comparison of the Akaike and Schwarz Criteria for Selecting Model Order. J. R. Stat. Soc. Ser. C (Appl. Stat.) 1988, 37, 187–195. [Google Scholar] [CrossRef]
Survey Name | Fault Name | Number of Segments | Number of Depths | Maximum Displacement (m) | Maximum Accumulated Length (m) | |
---|---|---|---|---|---|---|
NH608 | 1 | 63 | 25 | 1.11 ± 0.29 | 105.9 | 16,054 |
NH608 | 2 | 16 | 9 | 2.07 ± 1.74 | 20 | 3516.6 |
NH608 | 3 | 6 | 6 | 0.7 ± 1.68 | 13.2 | 1754.5 |
ST10012 | 4 | 78 | 14 | 0.51 ± 0.38 | 69 | 9581.1 |
ST10012 | 5 | 29 | 12 | 1.43 ± 0.7 | 27.6 | 4206.2 |
BG0804 | 6 | 44 | 18 | 0.12 ± 0.57 | 66.7 | 4342.3 |
SG9810 | 7 | 61 | 20 | 2.35 ± 0.41 | 30 | 8591.1 |
SG9810 | 8 | 14 | 9 | 1.95 ± 0.88 | 21 | 3045.1 |
SG9803 | 9 | 18 | 6 | 1.93 ± 0.73 | 22.7 | 7144.8 |
SG9804 | 10 | 46 | 17 | 1.18 ± 0.48 | 63.1 | 12,604 |
SG9804 | 11 | 5 | 5 | 0.67 ± 1.03 | 22.5 | 2757 |
NA9801 | 12 | 9 | 9 | 1.04 ± 0.8 | 20 | 1480.6 |
NA9801 | 13 | 3 | 3 | 0 ± 2.88 | 10.3 | 238.2 |
NA9801 | 14 | 3 | 3 | 1.25 ± 5 | 10.2 | 352.9 |
DG0901 | 15 | 7 | 5 | 1.42 ± 1.9 | 17.3 | 1566.8 |
ST0828 | 16 | 6 | 5 | 1.27 ± 1.72 | 43.6 | 2204.2 |
NH0372 | 17 | 6 | 6 | 0.42 ± 0.41 | 6 | 741.5 |
MFZ02 | 18 | 125 | 32 | 1.04 ± 0.26 | 53.3 | 16,721.6 |
WIN12003 | 19 | 29 | 10 | 1.63 ± 0.98 | 63.1 | 23,255.7 |
WIN12003 | 20 | 8 | 5 | 6.76 ± 3.85 | 17.2 | 7317.9 |
NA9801 | 21 | 6 | 4 | 0.7 ± 2.28 | 7 | 514.3 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kolyukhin, D.; Torabi, A.; Libak, A.; Alaei, B.; Khachkova, T. Statistical Analysis of Displacement and Length Relation for Normal Faults in the Barents Sea. Geosciences 2018, 8, 421. https://doi.org/10.3390/geosciences8110421
Kolyukhin D, Torabi A, Libak A, Alaei B, Khachkova T. Statistical Analysis of Displacement and Length Relation for Normal Faults in the Barents Sea. Geosciences. 2018; 8(11):421. https://doi.org/10.3390/geosciences8110421
Chicago/Turabian StyleKolyukhin, Dmitriy, Anita Torabi, Audun Libak, Behzad Alaei, and Tatiana Khachkova. 2018. "Statistical Analysis of Displacement and Length Relation for Normal Faults in the Barents Sea" Geosciences 8, no. 11: 421. https://doi.org/10.3390/geosciences8110421
APA StyleKolyukhin, D., Torabi, A., Libak, A., Alaei, B., & Khachkova, T. (2018). Statistical Analysis of Displacement and Length Relation for Normal Faults in the Barents Sea. Geosciences, 8(11), 421. https://doi.org/10.3390/geosciences8110421