Geological Model of a Storage Complex for a CO2 Storage Operation in a Naturally-Fractured Carbonate Formation
Abstract
:1. Introduction
2. Geological Modeling
2.1. Geological Context
2.2. Geological Model
2.3. Structural Model
2.4. Petrophysical Model
2.4.1. Facies
2.4.2. Porosity
2.4.3. Permeability
3. Fracture Modeling
3.1. Fracture Characterization and Modeling
3.2. Discrete Fracture Network Modeling
3.3. Fracture Analysis
- one with an approximate North-South (N-S) orientation (strike ~176 N); and,
- one with an approximate East-West (E-W) orientation (strike ~85 N).
3.4. Discrete Fracture Network Modeling
4. Discussion
- one with an approximate North-South orientation (strike ~176 N); and,
- one with an approximate East-West orientation (strike ~85 N).
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Chadwick, A.; Arts, R.; Bernstone, C.; May, F.; Thibeau, S.F.; Zweigel, P. (Eds.) Best Practice for the Storage of CO2 in Saline Aquifers-Observations and Guidelines from the SACS and CO2STORE Projects; British Geological Survey: Nottingham, UK, 2008; pp. 15–20. ISBN 978-0-85272-610-5. Available online: https://core.ac.uk/download/pdf/63085.pdf (accessed on 14 May 2018).
- Kovacs, T.; Poulussen, D.F.; de Dios, J.C. Strategies for Injection of CO2 into Carbonate Rocks at Hontomìn; GCCSI Final Technical Report; GCCSI: Canberra, Austrilia, 2015; 66p, Available online: https://hub.globalccsinstitute.com/sites/default/files/publications/193428/strategies-injection-co2-carbonate-rocks-hontomin-final-technical-report.pdf (accessed on 14 May 2018).
- European Parliament Resolution. Implementation Report 2013: Developing and Applying Carbon Capture and Storage Technology in Europe (2013/2079(INI)). Available online: http://www.europarl.europa.eu/sides/getDoc.do?type=REPORT&reference=A7-2013-0430&language=EN (accessed on 14 May 2018).
- Whittaker, S.; Rostron, B.; Hawkes, C.; Gardner, C.; White, D.; Johnson, J.; Chalaturnyk, R.; Seeburger, D. A decade of CO2 injection into depleting oil fields: Monitoring and research activities of the IEA GHG Weyburn-Midale CO2 Monitoring and Storage Project. Energy Procedia 2011, 4, 6069–6076. [Google Scholar] [CrossRef]
- Liu, H.; Tellez, B.G.; Atallah, T.; Barghouty, M. The role of CO2 capture and storage in Saudi Arabia’s energy future. Int. J. Greenh. Gas Control 2012, 11, 163–171. [Google Scholar] [CrossRef]
- Delprat-Jannaud, F.; Pearce, J.; Akhurst, M.; Nielsen, C.M.; Neele, F.; Lothe, A.; Volpi, V.; Brunsting, S.; Vincké, O. SiteChar—Methodology for a fit-for-purpose assessment of CO2 storage sites in Europe. Oil Gas Sci. Technol. 2015, 70, 531–554. [Google Scholar] [CrossRef]
- EC Storage Directive 2009/31/EC. 2009. Available online: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2009:140:0114:0135:EN:PDF (accessed on 14 May 2018).
- Deflandre, J.P.; Estublier, A.; Baroni, A.; Daniel, J.M.; Adjémian, F. In Salah CO2 injection modeling: A preliminary approach to predict short term reservoir behavior. Energy Procedia 2011, 4, 3574–3581. [Google Scholar] [CrossRef]
- Iding, M.; Ringrose, P. Evaluating the impact of fractures on the performance of the In Salah CO2 storage site. Int. J. Greenh. Gas Control 2010, 4, 242–248. [Google Scholar] [CrossRef]
- De Joussineau, G.; Barrett, K.R.; Alessandroni, M.; Le Maux, T.; Leckie, D. Organization, flow impact and modeling of natural fracture networks in a karstified carbonate bitumen reservoir: An example in the Grosmont Formation of the Athabasca Saleski leases, Alberta, Canada. Bull. Can. Pet. Geol. 2016, 64, 291–308. [Google Scholar] [CrossRef]
- Gastine, M.; Berenblyum, R.; Czernichowski-Lauriol, I.; de Dios, J.C.; Audigane, P.; Hladik, V.; Poulsen, N.; Vercelli, S.; Vincent, C.; Wildenborg, T. Enabling onshore CO2 storage in Europe: Fostering international cooperation around pilot and test sites. Energy Procedia 2017, 114, 5905–5915. [Google Scholar] [CrossRef]
- Ray, D.S.; Al-Shammeli, A.; Verma, N.K.; Matar, S.; De Groen, V.; De Joussineau, G.; Le Maux, T.; Al-Khamees, W. Characterizing and modeling natural fracture networks in a tight carbonate reservoir in the Middle East: A methodology. Bull. Geol. Soc. Malays. 2012, 58, 29–35. [Google Scholar]
- Bourbiaux, B.; Basquet, R.; Daniel, J.M.; Hu, L.Y.; Jenni, S.; Lange, A.; Rasolofosaon, P. Fractured reservoirs modelling: A review of the challenges and some recent solutions. First Break 2005, 23, 33–40. [Google Scholar] [CrossRef]
- Rubio, F.M.; Garcia, J.; Ayala, C.; Rey, C.; García Lobón, J.L. Gravimetric characterization of the geological structure of Hontomín. In Proceedings of the Asamblea Hipano-Lusa de Geodesia y Geofísica, Évora Portugal, 29–31 January 2014. [Google Scholar]
- De Dios, J.C.; Delgado, M.A.; Marín, J.A.; Martinez, C.; Ramos, A.; Salvador, I.; Valle, L. Short-term effects of impurities in the CO2 stream injected into fractured carbonates. Int. J. Greenh. Gas Control 2016, 54, 727–736. [Google Scholar] [CrossRef]
- Kovács, T. Characterization of the Hontomín reservoir and seal formations. In Proceedings of the 4th Spanish-French Symposium on CO2 Geological Storage, Bordeaux, France, 13–14 May 2014. [Google Scholar]
- Zemanek, J.; Glenn, E.E.; Norton, L.J.; Caldwell, R.L. Formation Evaluation by inspection with the borehole Televiewer. Geophysics 1970, 35, 254–269. [Google Scholar] [CrossRef]
- De Dios, J.C.; Delgado, M.A.; Martínez, C.; Ramos, A.; Álvarez, I.; Marín, J.A.; Salvador, I. Hydraulic characterization of fractured carbonates for CO2 geological storage: Experiences and lessons learned in Hontomín Technology Development Plant. Int. J. Greenh. Gas Control 2017, 58, 185–200. [Google Scholar] [CrossRef]
- Valle, L. Hontomin reservoir condition tests. In Proceedings of the 4th Spanish-French Symposium on CO2 Geological Storage, Bordeaux, France, 13–14 May 2014. [Google Scholar]
- Alcalde, J.; Marzán, I.; Saura, E.; Martí, D.; Ayarza, P.; Juhlin, C.; Pérez-Estaún, A.; Carbonell, R. 3D geological characterization of the Hontomín CO2 storage site, Spain: Multidisciplinary approach from seismic, well-log and regional data. Tectonophysics 2014, 627, 6–25. [Google Scholar] [CrossRef]
- Dávila, G.; Luquot, L.; Soler, J.M.; Cama, J. Interaction between a fractured marl caprock and CO2-rich sulfate solution under supercritical CO2 conditions. Int. J. Greenh. Gas Control 2016, 48, 105–119. [Google Scholar] [CrossRef]
- Bennion, D.B.; Bachu, S. Permeability and relative permeability measurements at reservoir conditions for CO2-water systems in ultra-low permeability confining cap rocks. In Proceedings of the EUROPEC/EAGE Conference and Exhibition, London, UK, 11–14 June 2007. [Google Scholar] [CrossRef]
- Williams, J.H.; Johnson, C.D. Acoustic and optical borehole-wall imaging for fractured-rock aquifer studies. J. Appl. Geophys. 2004, 55, 151–159. [Google Scholar] [CrossRef]
- Collier, H.; Ridder, M. Utilization of the borehole Televiewer in fracture analysis. Ground Water Manag. 1992, 13, 765–779. [Google Scholar]
- Jing, L. A review of techniques, advances and outstanding issues in numerical modelling for rock mechanics and rock engineering. Int. J. Rock Mech. Min. Sci. 2003, 40, 283–353. [Google Scholar] [CrossRef]
- Cacas, M.C.; Ledoux, E.; Marsily, G.D.; Tillie, B.; Barbreau, A.; Durand, E.; Feuga, B.; Peaudecerf, P. Modeling fracture flow with a stochastic discrete fracture network: Calibration and validation: 1. The flow model. Water Resour. Res. 1990, 26, 479–489. [Google Scholar] [CrossRef]
- Ali, A.M.; Kumar, K.; Murty, C.R.; Lemaux, T.; Ranjan, A.; Dejoussineau, G.; Bertrano, C.; Behira, H. Integrated reservoir connectivity study of Ahmadi fractured reservoir in Bahrain Field. In Proceedings of the SPE/EAGE Reservoir Characterization & Simulation Conference, Manama, Bahrain, 15–18 March 2009. [Google Scholar] [CrossRef]
- Daniau, F.; Aug, C.; Lemaux, T.; Lalou, R.; Lemaire, O. An Innovative and Multi-disciplinary Methodology for Modelling Naturally Fractured Reservoirs. In Proceedings of the 70th EAGE Conference and Exhibition Incorporating SPE EUROPEC, Rome, Italy, 9–12 June 2008. [Google Scholar] [CrossRef]
- Lange, A.; Bruyelle, J. A multimode inversion methodology for the characterization of fractured reservoirs from well test data. In Proceedings of the SPE EUROPEC/EAGE Annual Conference and Exhibition, Vienna, Austria, 23–26 May 2011. [Google Scholar] [CrossRef]
- Alcalde, J. 3D Seismic Imaging and Geological Modeling of the Hontomin CO2 Storage Site. Ph.D. Thesis, Universitat de Barcelona, Barcelona, Spain, 2014; 171p. [Google Scholar]
- Le Gallo, Y.; de Dios, J.C.; Salvador, I.; Acosta Carballo, T. Dynamic characterization of fractured carbonates at the Hontomín CO2 storage site. In Proceedings of the EGU General Assembly Conference, Vienna, Austria, 24–28 April 2017. [Google Scholar]
- Alcalde, J.; Martí, D.; Calahorrano, A.; Marzán, I.; Ayarza, P.; Carbonell, R.; Juhlin, C.; Pérez-Estaún, A. Active seismic characterization experiments of the Hontomín research facility for geological storage of CO2, Spain. Int. J. Greenh. Gas Control 2013, 19, 785–795. [Google Scholar] [CrossRef]
- De Dios, J.C.; Le Gallo, Y.; Marín, J.A. Innovative CO2 injections in carbonates and advanced modelling for numerical investigation. Submitted to Fluids. Preprints 2018, 2018070537. [Google Scholar] [CrossRef]
Facies | Vertical Correlation Length (m) |
---|---|
Marls | Dogger: 51 |
Marly Lias: 7.5 | |
Pozazal: 1.6 | |
Shale | Dogger: 51 |
Marly Lias: 7.5 | |
Pozazal: 1.6 | |
Upper Baffle Calcareous Sopeña: 4.4 | |
Limestone | Dogger: 51 |
Marly Lias: 7.5 | |
Pozazal: 1.6 | |
Upper Calcareous Sopeña: 79.7 | |
Upper Baffle Calcareous Sopeña: 4.4 | |
Middle Calcareous Sopeña: 83.5 | |
Dolomitic Sopeña: 27.3 | |
Lower Baffle Calcareous Sopeña: 3 | |
Lower Calcareous Sopeña: 100.2 | |
Dolomitic Sopeña: 59.6 | |
Dolomite | Middle Calcareous Sopeña: 83.5 |
Lower Baffle Calcareous Sopeña: 3 | |
Lower Calcareous Sopeña: 100.2 | |
Dolomitic Sopeña: 59.6 | |
Carniolas: 13.5 | |
Anhydrite | Dolomitic Sopeña: 59.6 |
Carniolas: 13.5 |
Facies | Horizontal Permeability (m2) | Reference |
---|---|---|
Marls | 10−21 | Dávila et al. [21] |
Shale | 1.5 × 10−20 | Bennion and Bachu [22] |
Limestone | 4.9 × 10−16 | Kovács [16] |
Dolomite | 5.9 × 10−16 | Kovács [16] |
Anhydrite | 3.5 × 10−19 | Bennion and Bachu [22] |
Fracture Orientation | Number of Fractures | Strike 1 | Strike Standard Deviation | Dip 2 | Dip Standard Deviation |
---|---|---|---|---|---|
E-W | 278 | 85 | 0.5 | 84 | 0.35 |
N-S | 48 | 176 | 0.3 | 82 | 0.25 |
Fracture Orientation | Dolomite | Limestone | Marl | Shale | Anhydrite |
---|---|---|---|---|---|
E-W Orientation | 0.32 | 0.58 | 0.04 | 0.23 | 0 |
N-S Orientation | 0.98 | 0.93 | 0.09 | 0.20 | 0 |
Date of the Injection Test (de Dios et al. [18]) | Interpreted KH (m3) (de Dios et al. [18]) | Simulated KH (m3) | E-W Fracture KH (m3) | N-S Fracture KH (m3) |
---|---|---|---|---|
June 2014 | 6.9 × 10−14 | 7.5 × 10−14 | NC (*) | NC (*) |
August 2014 | 1.1 × 10−13 | 1.1 × 10−13 | 1.1 × 10−15 | 7.9 × 10−16 |
October 2014 | 1.6 × 10−13 | 1.6 × 10−13 | NC (*) | 1.4 × 10−15 |
December 2014 | 1.5 × 10−13 | 1.5 × 10−13 | NC (*) | 1.3 × 10−15 |
March 2015 | 2.4 × 10−13 | 2.4 × 10−13 | 4.9 × 10−16 | 2.4 × 10−15 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Le Gallo, Y.; De Dios, J.C. Geological Model of a Storage Complex for a CO2 Storage Operation in a Naturally-Fractured Carbonate Formation. Geosciences 2018, 8, 354. https://doi.org/10.3390/geosciences8090354
Le Gallo Y, De Dios JC. Geological Model of a Storage Complex for a CO2 Storage Operation in a Naturally-Fractured Carbonate Formation. Geosciences. 2018; 8(9):354. https://doi.org/10.3390/geosciences8090354
Chicago/Turabian StyleLe Gallo, Yann, and José Carlos De Dios. 2018. "Geological Model of a Storage Complex for a CO2 Storage Operation in a Naturally-Fractured Carbonate Formation" Geosciences 8, no. 9: 354. https://doi.org/10.3390/geosciences8090354
APA StyleLe Gallo, Y., & De Dios, J. C. (2018). Geological Model of a Storage Complex for a CO2 Storage Operation in a Naturally-Fractured Carbonate Formation. Geosciences, 8(9), 354. https://doi.org/10.3390/geosciences8090354