Fluid Inclusions at the Plavica Au-Ag-Cu Telescoped Porphyry–Epithermal System, Former Yugoslavian Republic of Macedonia (FYROM)
Abstract
:1. Introduction
2. Geological Setting
3. Sampling and Methods of Analyses
4. Fluid Inclusions Data
4.1. Previous Fluid Inclusion Studies
4.2. Morphology and Types of Fluid Inclusions
5. Microthermometry
5.1. Microthermometric Data for the Telescoped Porphyry–Epithermal Style Mineralization
5.2. Microthermometric Data for the HS Epithermal Style Mineralization Proximal to the Porphyry Style Mineralization
5.3. Microthermometric Data for the HS Epithermal Style Mineralization Distal to the Porphyry Style Mineralization
6. Discussion
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Arribas, A. Characteristics of high sulfidation epithermal deposits, and their relation to magmatic fluid. Mineral. Assoc. Can. Short Course 1995, 23, 419–455. [Google Scholar]
- Heinrich, C.A.; Driesner, T.; Stefánsson, A.; Seward, T.M. Magmatic vapor contraction and the transport of gold from the porphyry environment to epithermal ore deposits. Geology 2004, 32, 761–764. [Google Scholar] [CrossRef]
- Sillitoe, R.H. Porphyry copper systems. Econ. Geol. 2010, 105, 3–41. [Google Scholar] [CrossRef]
- Chang, Z.; Hedenquist, J.W.; White, N.C.; Cooke, D.R.; Roach, M.; Deyell, C.L.; Garcia, J., Jr.; Gemmell, J.B.; McKnight, S.; Cuison, A.L. Exploration tools for linked porphyry and epithermal deposits: Example from the Mankayan intrusion-centered Cu-Au district, Luzon, Philippines. Econ. Geol. 2011, 106, 1365–1398. [Google Scholar] [CrossRef]
- Seedorff, E.; Dilles, J.H.; Proffett, J.M., Jr.; Einaudi, M.T.; Zurcher, L.; Stavast, W.J.A.; Johnson, D.A.; Barton, M.D. Porphyry deposits: Characteristics and origin of hypogene features. Econ. Geol. 2005, 100, 251–298. [Google Scholar]
- Richards, J.P. Magmatic to hydrothermal metal fluxes in convergent and collided margins. Ore Geol. Rev. 2011, 40, 1–26. [Google Scholar] [CrossRef]
- Sillitoe, R.H. Gold deposits in western Pacific island arcs: The magmatic connection. Econ. Geol. Monogr. 1989, 6, 266–283. [Google Scholar]
- Sillitoe, R.H. Gold-rich porphyry deposits: Descriptive and genetic models and their role in exploration and discovery. Rev. Econ. Geol. 2000, 13, 315–345. [Google Scholar]
- Serafimovski, T. Metallogeny of the zone Lece-Chalkidiki. Ph.D. Thesis, Faculty of Mining and Geology-Štip, Štip, Macedonia, 1990; p. 380. (In Macedonian). [Google Scholar]
- Serafimovski, T. Structural-Metallogenic Features of the Lece-Chalkidiki Zone: Types of Mineral Deposit and Distribution; Special Issue 2; University of St Cyril and Methodius: Štip, Macedonia, 1993; p. 325. [Google Scholar]
- Alderton, H.M.D.; Serafimovski, T. The geology and genesis of the Plavica copper–gold deposit, Macedonia. Appl. Earth Sci. (Trans. Inst. Min. Metall. B) 2007, 116, 94–105. [Google Scholar] [CrossRef]
- Serafimovski, T.; Tasev, G. Ore-Microscopic Study of Samples from the Plavica Deposit; Department of Mineral Deposits, Faculty of Natural and Technical Sciences, University “Goce Delčev”: Štip, Macedonia, 2013; p. 411. (In Macedonian) [Google Scholar]
- Stefanova, V.; Volkov, A.V.; Serafimovski, T.; Sidorov, A.A. Native Gold from the Plavica Epithermal Deposit, Republic of Macedonia. Dokl. Earth Sci. 2013, 451, 818–823. [Google Scholar] [CrossRef]
- Zlatkov, G.; Tasev, G.; Stefanova, V.; Bogdanov, K.; Serafimovski, T. Composition of some major mineral phases from the Plavica epithermal gold deposit, eastern Macedonia. Geol. Maced. 2014, 28, 149–163. [Google Scholar]
- Ivanovski, I.; Serafimovski, D.; Tasev, G.; Serafimovski, T. 3D modeling of the Plavica Au-Cu molymetallic deposit, Republic of Macedonia. Geol. Maced. 2015, 29, 63–74. [Google Scholar]
- Serafimovski, T.; Zlatkov, G.; Tasev, G.; Stefanova, V. Cu-Au minerals and transformed mineral phases in the oxidation zone of the Plavica ore deposit, Eastern Macedonia. Geol. Maced. 2016, 30, 5–21. [Google Scholar]
- Serafimovski, Т.; Volkov, V.А.; Serafimovski, D.; Tasev, G.; Ivanovski, I.Y.; Murashov, K. Plavica Epithermal Au-Ag-Cu Deposit in Eastern Macedonia: Geology and 3D Model of Valuable Component Distribution in Ore. Geol. Ore Depos. 2017, 59, 296–304. [Google Scholar] [CrossRef]
- Draganov, D. The Coins of Macedonian Kings I: From Alexander I to Alexander III; Ya: Yambol, Bulgaria, 2000; p. 220. (In Bulgarian) [Google Scholar]
- Terzić, M.; Pavlović, D.; Kuzmanović, M.; Obradović, S. Calculation of ore Reserves within the Polymetallic Deposit Plavica-Zlatica; SOUR RTB Bor RO Copper Institute: Bor, Serbia, 1986; p. 66. (In Serbian) [Google Scholar]
- Gaze, R. Plavica Gold Project: Mineral Resource Estimate; Annual Report; Golder Associates: London, UK, 2017; p. 78. [Google Scholar]
- Mijalković, N.; Pešić, D. Geological and petrological features of the NE part of the Kratovo-Zletovo area. In Proceedings of the VI Counseling of Geologists of Yugoslavia, Ohrid, Macedonia; 1966; pp. 158–170. (In Serbian). [Google Scholar]
- Marković, M. Contribution to the Knowledge of Volcanic Morphology of the Kratovo-Zletovo Area; Annales Géologiques de la Peninsule Balkanique: Belgrade, Serbia, 1971; p. 36. (In Serbian) [Google Scholar]
- Ivanov, T.; Denkovski, Đ. Geology of the Plavica-Zlatica deposit, Kratovo-Zletovo. In Proceedings of the 9th Congress of Geologists of Yugoslavia, Sarajevo, Bosnia and Herzegovina, October 1978; pp. 767–777. (In Macedonian). [Google Scholar]
- Drovenik, M.; Pezdic, J.; Rakić, S. The sulfur isotopic composition of pyrite from borehole ZB-24 Plavica, Zletovo-Kratovo volcanic area. Rud. Metal. Zb. 1983, 30, 69–76, (In Slovenian, with English Summary). [Google Scholar]
- Serafimovski, T.; Rakic, S. New Geochemical data concerning gold related to silification zones in the Plavica volcanic structure, Eastern Macedonia. In Proceedings of the 5th Biennial of the SGA Meeting, London, UK, 22–25 August 1999; pp. 585–588. [Google Scholar]
- Ivanov, T.; Denkovski, Đ. Hydrothermal alterations in the Plavica-Zlatica porphyry copper deposit in the Kratovo-Zletovo volcanic area. In Symposia of Alteration of Rocks and Minerals, 100 years of Geological School and Science in Serbia; Faculty of Mining and Geology, University of Belgrade: Beograd, Serbia, 1980; pp. 291–302. (In Macedonian) [Google Scholar]
- Stojanov, R. Volcanic cupola Plavica and polymetallic mineralizations and alterations within. In Symposia of alteration of rocks and minerals, 100 years of Geological School and Science in Serbia; Faculty of Mining and Geology, University of Belgrade: Beograd, Serbia, 1980; pp. 139–162. (In Macedonian) [Google Scholar]
- Serafimovski, T.; Zlatkov, G.; Tasev, G.; Ivanovski, I. Polymetallic ore paragenesis in the Plavica ore deposit, Eastern Macedonia. In Proceedings of the 15th International Multidisciplinary Scientific Geoconference SGEM 2015, Albena, Bulgaria, 16–25 June 2015; pp. 369–376. [Google Scholar]
- Serafimovski, T. Elaborate of Detailed Geological Exploration with Calculation of Geological Ore Reserves of Mineral Components Copper and Gold at the Plavica Locality, Kratovo; University “Goce Delcev”-Štip, Faculty of Natural and Technical Sciences for Investor Genesis Resources International Ltd.: Štip, Macedonia, 2014; p. 431. [Google Scholar]
- Serafimovski, T. Annex to Elaborate of Detailed Geological Exploration with Calculation of Geological Ore Reserves of Mineral Components Copper and Gold at the Plavica Locality, Kratovo; University “Goce Delcev”-Štip, Faculty of Natural and Technical Sciences for Investor Genesis Resources International Ltd.: Štip, Macedonia, 2014; p. 249. [Google Scholar]
- Melfos, V.; Voudouris, P. Fluid evolution in Tertiary magmatic-hydrothermal ore systems at the Rhodope metallogenic province, NE Greece. A review. Geol. Croat. 2016, 69, 157–167. [Google Scholar] [CrossRef]
- Tsirambides, A.; Filippidis, A. Gold metallogeny of the Serbomacedonian-Rhodope metallogenic belt (SRMB). Bull. Geol. Soc. Greece 2016, 50, 2037–2046. [Google Scholar] [CrossRef]
- Melfos, V.; Voudouris, P. Cenozoic metallogeny of Greece and potential for precious, critical and rare metals exploration. Ore Geol. Rev. 2017, 89, 1030–1057. [Google Scholar] [CrossRef]
- Menant, A.; Jolivet, L.; Tuduri, J.; Loiselet, C.; Bertrand, G.; Guillou-Frottier, L. 3D subduction dynamics: A first-order parameter of the transition from copper-to gold-rich deposits in the eastern Mediterranean region. Ore Geol. Rev. 2018, 94, 118–135. [Google Scholar] [CrossRef]
- Serafimovski, T.; Boev, B. Metallogeny of the Kratovo-Zletovo volcano-intrusive complex. In The Formation of the Geologic Framework of Serbia and the Adjacent Regions; Knezevic, D., Krstic, B.D., Eds.; Faculty of Mining and Geology of the University of Belgrade and Committee for Geodynamics of the Serbian Academy of Sciences and Arts: Belgarde, Serbia, 1996; pp. 347–352. [Google Scholar]
- Boev, B.; Yanev, Y. Tertiary magmatism within the Republic of Macedonia: A review. Acta Vulcuanologica 2001, 13, 57–71. [Google Scholar]
- Petkovic, M.; Romic, K. Structural-Volcanological Study with Determination of the Plavica’s Erosion Level; Professional Fund of RIK-Sileks: Kratovo, Yugoslavia, 1977; p. 81. (In Serbian) [Google Scholar]
- Reid, D.; Patterson, J.; McLeod, A. Mineral Resources Estimate Report, Plavica Project, Macedonia. Report of Genesis Resources Ltd.. Available online: https://genesisresourcesltd.com.au/attachments/investor-information/resource-reports/201612%20-%20Ravensgate%20Plavica%20Report.pdf (accessed on 13 February 2019).
- Serafimovski, T.; Rakic, S. The secondary quartzites hosting gold mineralization in the Crn Vrv-Plavica volcanic area. Geol. Maced. 1998, 12, 9–21. [Google Scholar]
- Deen, J.A.; Rye, R.O.; Munoz, J.L.; Drexler, J.W. The magmatic hydrothermal system at Julcani, Peru: Evidence from fluid inclusions and hydrogen and oxygen isotopes. Econ. Geol. 1994, 89, 1924–1938. [Google Scholar] [CrossRef]
- Hedenquist, J.W.; Matsuhisa, Y.; Izawa, E.; White, N.C.; Giggenbach, W.F.; Aoki, M. Geology, geochemistry, and origin of high sulfidation Cu-Au mineralization in the Nansatsu district, Japan. Econ. Geol. 1994, 89, 1–30. [Google Scholar] [CrossRef]
- Brown, P.E. FLINCOR; a microcomputer program for the reduction and investigation of fluid-inclusion data. Am. Mineral. 1989, 74, 1390–1393. [Google Scholar]
- Bodnar, R.J. Revised equation and table for determining the freezing point depression of H2O-NaCl solutions. Geochim. Et Cosmochim. Acta 1993, 57, 683–684. [Google Scholar] [CrossRef]
- Roedder, E. Fluid Inclusions; Reviews in Mineralogy; Mineralogical Society of America: Chantilly, VA, USA, 1984; Volume 12, p. 646. [Google Scholar]
- Bodnar, R.J. Introduction to fluid inclusions. In: Fluid inclusions: Analysis and interpretation. Mineral. Assoc. Can. Short Course 2003, 32, 1–8. [Google Scholar]
- Shepherd, T.; Rankin, A.; Alderton, D. A Practical Guide to Fluid Inclusion Studies; Blackie and Son: Glasgow, UK, 1985; p. 239. [Google Scholar]
- Potter, R.W.; Clynne, M.A.; Brown, D.L. Freezing point depression of aqueous sodium chloride solutions. Econ. Geol. 1978, 73, 284–285. [Google Scholar] [CrossRef]
- Bodnar, R.J. Fluid-inclusion evidence for a magmatic source of metals in porphyry copper deposits. Mineral. Assoc. Can. Short Course 1995, 23, 139–152. [Google Scholar]
- Archer, D.G. Thermodynamic properties of the NaCl+H2O system. II. Thermodynamic properties of NaCl (aq), NaCl·2H2 (cr), and phase equilibria. J. Phys. Chem. Ref. Data 1992, 21, 793–829. [Google Scholar] [CrossRef]
- Burnham, C.W. Magmas and hydrothermal systems. In Geochemistry of Hydrothermal Ore Deposits; Barnes, H.L., Ed.; John Wiley & Sons, Inc.: New York, NY, USA, 1997; pp. 63–123. [Google Scholar]
- Audétat, A.; Pettke, T.; Heinrich, C.A.; Bodnar, R.J. Special paper: The composition of magmatic-hydrothermal fluids in barren and mineralized intrusions. Econ. Geol. 2008, 103, 877–908. [Google Scholar] [CrossRef]
- Zarasvandi, A.; Rezaei, M.; Raith, J.; Lentz, D.; Azimzadeh, A.M.; Pourkaseb, H. Geochemistry and fluid characteristics of the Dalli porphyry Cu–Au deposit, Central Iran. J. Asian Earth Sci. 2015, 111, 175–191. [Google Scholar] [CrossRef]
- Masterman, G.J.; Cooke, D.R.; Berry, R.F.; Walshe, J.L.; Lee, A.W.; Clark, A.H. Fluid chemistry, structural setting, and emplacement history of the Rosario Cu-Mo porphyry and Cu-Ag-Au epithermal veins, Collahuasi district, northern Chile. Econ. Geol. 2005, 100, 835–862. [Google Scholar] [CrossRef]
- Zhou, Y.; Lai, Y.; Shu, Q.; Sun, Y.; Xu, J.; Liang, Y. Geochronology and fluid inclusion study of the Shabutai porphyry Mo deposit, Inner Mongolia. Ore Geol. Rev. 2017, 81, 745–759. [Google Scholar] [CrossRef]
- Brathwaite, R.L.; Simpson, M.; Faure, K.; Skinner, D. Telescoped porphyry Cu-Mo-Au mineralisation, advanced argillic alteration and quartz-sulphide-gold-anhydrite veins in the Thames District, New Zealand. Miner. Depos. 2001, 36, 623–640. [Google Scholar] [CrossRef]
- Bodnar, R.J.; Lecumberri-Sanchez, P.; Moncada, D.; Steele-MacInnis, M. Fluid inclusions in hydrothermal ore deposits. In Treatise on Geochemistry, 2nd ed.; Elsevier: Oxford, UK, 2014; pp. 119–142. [Google Scholar]
- Bodnar, R.J.; Reynolds, T.J.; Kuehn, C.A. Fluid-Inclusion systematics in epithermal systems. Rev. Econ. Geol. 1985, 2, 73–97. [Google Scholar]
- Sillitoe, R.H.; Hedenquist, J.W. Linkages between volcanotectonic settings, ore-fluid compositions, and epithermal precious metal deposits. Soc. Econ. Geol. Spec. Publ. 2003, 10, 315–343. [Google Scholar]
- Henley, R.W.; Berger, B.R. Magmatic-vapor expansion and the formation of high sulfidation gold deposits: Chemical controls on alteration and mineralization. Ore Geol. Rev. 2011, 39, 53–74. [Google Scholar] [CrossRef]
Sample | Drill hole (Elevation) | Host Mineral | Ore Style | Fluid Inclusions Character | Fluid Inclusion Type (Homogenize to Phase) | Homogenization Temperature (°C) Range | Final Melting Temperature (°C) Range | Salinity (wt% NaCl Equiv.) Range |
---|---|---|---|---|---|---|---|---|
PLV 3586 | MRDD005 (40.6 m) | Qtz | D-HS sulfidation epithermal | Primary | 1 L+ V → L | 200–294 (n = 46) | −3.82 to −2.03 (n = 46) | 3.33–6.11 |
PLV 3590 | PNDD007 (238.9 m) | Qtz | P-HS sulfidation epithermal | Primary | 1 L + V → L | 208–251 (n = 33) | −9.67 to −5.49 (n = 33) | 8.50–13.59 |
PLV 3591 | PNDD007 (265 m) | Qtz | P-HS sulfidation epithermal | Primary | 1 L + V → L | 208–258 (n = 30) | −9.02 to −6.42 (n = 30) | 9.74–12.88 |
PLV 3581 | PNDD014 (126 m) | Qtz | T-HS sulfidation epithermal | Primary | 1 L + V → L | 240–307 (n = 22) | −9.35 to −4.60 (n = 22) | 7.25–13.24 |
PLV 3583 | PNDD014 (460 m) | Qtz | Porphyry | Primary | 1 L + V → L | 358–515 (n = 47) | −16.78 to −9.67 (n = 36) | 13.59–19.9 |
2 L + V + S → L | 337–476 (n = 57) | 223–413 (n = 57) | 33–51 | |||||
3 L+ V → V | 340–522 (n = 32) | −16.57 to −11.63 (n = 9) | 15.60–19.87 | |||||
4 L + V + S → V | 457–485 (n = 4) | 423–461 (n = 4) | 50–57 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Melfos, V.; Voudouris, P.; Serafimovski, T.; Tasev, G. Fluid Inclusions at the Plavica Au-Ag-Cu Telescoped Porphyry–Epithermal System, Former Yugoslavian Republic of Macedonia (FYROM). Geosciences 2019, 9, 88. https://doi.org/10.3390/geosciences9020088
Melfos V, Voudouris P, Serafimovski T, Tasev G. Fluid Inclusions at the Plavica Au-Ag-Cu Telescoped Porphyry–Epithermal System, Former Yugoslavian Republic of Macedonia (FYROM). Geosciences. 2019; 9(2):88. https://doi.org/10.3390/geosciences9020088
Chicago/Turabian StyleMelfos, Vasilios, Panagiotis Voudouris, Todor Serafimovski, and Goran Tasev. 2019. "Fluid Inclusions at the Plavica Au-Ag-Cu Telescoped Porphyry–Epithermal System, Former Yugoslavian Republic of Macedonia (FYROM)" Geosciences 9, no. 2: 88. https://doi.org/10.3390/geosciences9020088
APA StyleMelfos, V., Voudouris, P., Serafimovski, T., & Tasev, G. (2019). Fluid Inclusions at the Plavica Au-Ag-Cu Telescoped Porphyry–Epithermal System, Former Yugoslavian Republic of Macedonia (FYROM). Geosciences, 9(2), 88. https://doi.org/10.3390/geosciences9020088