Prospectivity Mapping for Epithermal Deposits of Western Milos Using a Fuzzy Multi Criteria Evaluation Approach Parameterized by Airborne Hyperspectral Remote Sensing Data
Abstract
:1. Introduction
2. Geological Setting of the Study Area
3. Materials and Method
3.1. Hydrothermal Alteration
3.1.1. Field Mapping with Supporting XRD and Petrological Analyses
3.1.2. Field VNIR-SWIR Reflectance and Laboratory Emission Spectroscopy
3.1.3. Digital Airborne Imaging Spectrometer (DAIS) Airborne Remote Sensing Dataset
3.1.4. DAIS Data Processing
3.2. Lithology and Structures
3.3. MPM Implementation
4. Results
4.1. Analysis of Field Spectral and Laboratory Spectral Emissivity Datasets
4.2. Analysis of DAIS Datasets
4.3. Results of the MPM Modelling
5. Discussion
5.1. Utility of High Spatial and Spectral Remote Sensing based Hydrothermal Mapping
5.2. Potential of Fuzzy Multi Criteria Evaluation MPM of Epithermal Deposits
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Andrada de Palomera, P.; van Ruitenbeek, F.J.; Carranza, E.J.M. Prospectivity for epithermal gold-silver deposits in the Deseado Massif, Argentina. Ore Geol. Rev. 2015, 71, 484–501. [Google Scholar] [CrossRef]
- Lipman, P.W. Ash-flow calderas as structural controls of ore deposits—Recent work and future problems. U.S. Geol. Soc. Bull. 1992, 2012, L1–L11. [Google Scholar]
- Milesi, J.-P.; Marcoux, E.; Sitorous, T.; Simandjuntak, M.; Leroy, J.; Bailly, L. Pongkor (West Java, Indonesia): A Pliocene supergene-enriched epithermal Au–Ag–(Mn) deposit. Miner. Depos. 1999, 34, 131–149. [Google Scholar] [CrossRef]
- Rytuba, J.J. Evolution of volcanic and tectonic features in caldera settings and their importance in the localization of ore deposits. Econ. Geol. 1994, 89, 1687–1696. [Google Scholar] [CrossRef]
- White, N.C.; Hedenquist, J.W. Epithermal environments and styles of mineralisation: Variations and their causes, and guidelines for exploration. J. Geochem. Explor. 1990, 36, 445–474. [Google Scholar] [CrossRef]
- Kouli, M.; St Seymour, K. Contribution of remote sensing techniques to the identification and characterisation of Miocene caldera, Lesvos Island, Aegean Sea, Hellas. Geomorphology 2006, 44, 1–16. [Google Scholar] [CrossRef]
- Vamvoukakis, C.; St Kouli, M.; Lamera, S.; Denes, G. Investigation of non pristine volcanic structures acting as probable hosts to epithermal gold mineralization in the back arc region of the active Aegean arc, using combined satellite imagery and field data: Examples from Lesvos volcanic terrain. Dev. Volcanol. 2005, 7, 329–343. [Google Scholar]
- Pour, A.M.; Hashim, M. The application of ASTER remote sensing data to porphyry copper and epithermal gold deposits. Ore Geol. Rev. 2012, 44, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Rockwell, B.W.; Hofstra, A.H. Identification of quartz and carbonate minerals across northern Nevada using ASTER thermal emissivity data—Implications for geologic mapping and mineral resource investigations in well-studied and frontier areas. Geosphere 2008, 4, 218–246. [Google Scholar] [CrossRef]
- Pour, A.B.; Park, Y.; Park, T.S.; Hong, J.K.; Hashim, M.; Woo, J.; Ayoobi, I. Evaluation of ICA and CEM algorithms with Landsat-8/ASTER data for geological mapping in inaccessible regions. Geocarto Int. 2018. [Google Scholar] [CrossRef]
- Pour, A.B.; Park, Y.; Park, T.S.; Hong, J.K.; Hashim, M.; Woo, J.; Ayoobi, I. Regional geology mapping using satellite-based remote sensing approach in Northern Victoria Land, Antarctica. Pol. Sci. 2018, 16, 23–46. [Google Scholar] [CrossRef]
- Pour, A.B.; Park, T.S.; Park, Y.; Hong, J.K.; Zoheir, B.; Pradhan, B.; Ayoobi, I.; Hashim, M. Application of multi-sensor satellite data for exploration of Zn-Pb sulfide mineralization in the Franklinian Basin, North Greenland. Remote Sens. 2018, 10, 1186. [Google Scholar] [CrossRef]
- Pour, A.B.; Hashim, M.; Park, Y.; Hong, J.K. Mapping alteration mineral zones and lithological units in Antarctic regions using spectral bands of ASTER remote sensing data. Geocarto Int. 2018, 33, 1281–1306. [Google Scholar] [CrossRef]
- Pour, A.B.; Hashim, M.; Hong, J.K.; Park, Y. Lithological and alteration mineral mapping in poorly exposed lithologies using Landsat-8 and ASTER satellite data: North-eastern Graham Land, Antarctic Peninsula. Ore Geol. Rev. 2017. [Google Scholar] [CrossRef]
- Safari, M.; Maghsodi, A.; Pour, B.A. Application of Landsat-8 and ASTER satellite remote sensing data for porphyry copper exploration: A case study from Shahr-e-Babak, Kerman, south of Iran. Geocarto Int. 2017. [Google Scholar] [CrossRef]
- Ahmadirouhani, R.; Rahimi, B.; Karimpour, M.H.; Malekzadeh Shafaroudi, A.; Najafi, S.A.; Pour, B.A. Fracture mapping of lineaments and recognizing their tectonic significance using SPOT-5 satellite data: A case study from the Bajestan area, Lut Block, east of Iran. J. Afr. Earth Sci. 2017, 134, 600–612. [Google Scholar] [CrossRef]
- Aubakar, A.J.; Hasim, M.; Pour, B.A. Identification of hydrothermal alteration minerals associated with geothermal system using ASTER and Hyperion satellite data: A case study from Yankari Park, NE Nigeria. Geocarto Int. 2018. [Google Scholar] [CrossRef]
- Van der Meer, F.; van der Werff, H.M.A.; van Ruitenbeek, F.J.A.; Hecker, C.A.; Bakker, W.H.; Noomen, M.F.; van der Meijde, M.; Carranza, E.J.M.; Boudewijn de Smeth, J.; Woldai, T. Multi- and hyperspectral geologic remote sensing: A review. Int. J. Appl. Earth Obs. Geoinf. 2012, 14, 112–128. [Google Scholar] [CrossRef]
- Bonham-Carter, G.F.; Agterberg, F.P.; Wright, D.F. Integration of geological datasets for gold exploration in Nova Scotia. Photogramm. Eng. Remote Sens. 1988, 54, 1585–1592. [Google Scholar]
- Carranza, E.J.M. Controls on mineral deposit occurrence inferred from analysis of their spatial pattern and spatial association with geological features. Ore Geol. Rev. 2009, 35, 383–400. [Google Scholar] [CrossRef]
- Carranza, E.J.M.; Sadeghi, M. Predictive mapping of prospectivity and quantitative estimation of undiscovered VMS deposits in Skelleft district, (Sweden). Ore Geol. Rev. 2010, 38, 219–241. [Google Scholar] [CrossRef]
- Lisitin, V. Spatial data analysis of mineral deposit point patterns: Applications to exploration targeting. Ore Geol. Rev. 2015, 71, 861–881. [Google Scholar] [CrossRef]
- Zhang, N.; Zhou, K.; Du, X. Application of fuzzy logic and fuzzy AHP to mineral prospectivity mapping of porphyry and hydrothermal vein copper deposits in the Dananhu-Tousuquan island arc, Xinjiang, NW China. J. Afr. Earth Sci. 2017, 128, 84–96. [Google Scholar] [CrossRef]
- Zuo, R.; Zhang, Z.J.; Zhang, D.J.; Carranza, E.J.M.; Wang, H.C. Evaluation of uncertainity in mineral prospectivity mapping due to missing evidence: A case study with skarn-type Fe deposits in Southwestern Fujian Province, China. Ore Geol. Rev. 2015, 71, 502–515. [Google Scholar] [CrossRef]
- Brown, W.M.; Groves, D.; Gedeon, T. Use of fuzzy membership input layers to combine subjective geological knowledge and empirical data in a neural network layer method for mineral-potential mapping. Nat. Resour. Res. 2003, 12, 183–200. [Google Scholar] [CrossRef]
- Chung, C.F.; Agterberg, F.P. Regression models for estimating mineral resources from geological map data. Math. Geol. 1980, 12, 473–488. [Google Scholar] [CrossRef]
- Bonham-Carter, G.F.; Agterberg, F.P.; Wright, D.F. Weights of evidence modeling: A new approach to mapping mineral potential. In Statistical Applications in the Earth Sciences; Agterberg, F.P., Bonham-Carter, G.F., Eds.; Geological Survey of Canada: Ottawa, ON, Canada, 1989; pp. 171–183. [Google Scholar]
- Porwal, A.; Carranza, E.J.M.; Hale, M. Artifical neural networks for mineral prospectivity mapping: A case study from Aravalli Province, Western India. Nat. Resour. Res. 2003, 12, 156–171. [Google Scholar]
- Harris, J.R.; Wilkinson, L.; Heather, K.; Fumerton, S.; Bernier, M.A.; Ayer, J.; Dahn, R. Application of GIS processing techniques for producing mineral prospectivity maps—A case study: Mesothermal Au in the Swayze greenstone belt, Ontario. Can. J. Earth Sci. 2001, 43, 865–893. [Google Scholar] [CrossRef]
- An, P.; Moon, W.; Rencz, A.N. Application of fuzzy theory for integration of geological, geophysical and remotely sensed data. Can. J. Explor. Geophys. 1991, 27, 1–11. [Google Scholar]
- Gorsevski, P.V.; Donevska, K.R.; Mitrovski, C.D.; Frizado, J.P. Integrating multi-criteria evaluation techniques with geographic information systems for landfill site selection: A case study using ordered weighted average. Waste Manag. 2012, 32, 287–296. [Google Scholar] [CrossRef] [PubMed]
- Zadeh, L.A. Fuzzy Sets. Inf. Control. 1965, 8, 338–353. [Google Scholar] [CrossRef]
- Saaty, R.W. The analytic hierarchy process—What is it and how it is used. Math. Model. 1987, 9, 161–176. [Google Scholar] [CrossRef]
- Smith, D.J.; Naden, J.; Miles, A.J.; Bennett, H.; Bicknell, S.H. Mass wasting events and their impact on the formation and preservation of submarine ore deposits. Ore Geol. Rev. 2018, 97, 143–151. [Google Scholar] [CrossRef]
- Stewart, A.L.; McPhie, J. An upper Pliocene coarse pumice breccia generated by a shallow submarine explosive eruption, Milos, Greece. Bull. Volcanol. 2004, 66, 15–28. [Google Scholar] [CrossRef]
- Naden, J.; Kilias, S.P.; Darbyshire, D.B.F. Active geothermal systems with entrained seawater as analogies for transitional continental magmato-hydrothermal and volcanic-hosted massive sulfide mineralisation—The example of Milos Island, Greece. Geology 2005, 33, 541–544. [Google Scholar] [CrossRef]
- Kilias, S.P.; Naden, J.; Cheliotis, I.; Shepherd, T.J.; Constandinidou, H.; Crossing, J.; Simos, I. Epithermal gold mineralisation in the active Aegean volcanic arc: The Profitis Ilias deposit, Milos Island, Greece. Miner. Deposita 2001, 36, 32–44. [Google Scholar] [CrossRef]
- Alfieris, D. Geological, Geochemical and Mineralogical Studies of Shallow Submarine Epithermal Mineralisation in an Emergent Volcanic Edifice at MILOS Island (Western Side), Greece. Unpublished Ph.D. Thesis, University of Hamburg, Hamburg, Germany, 2006. [Google Scholar]
- Alfieris, D.; Voudouris, P. Ore mineralogy of transitional submarine to subaerial magmatic-hydrothermal deposits in W. Milos, Greece. In: Cook, N.G. and Bonev, I., eds., Au-Ag-Te-Se deposits. Geochem. Mineral. Petrol. 2005, 43, 1–6. [Google Scholar]
- Alfieris, D.; Voudouris, P.; Spry, P.G. Shallow submarine epithermal Pb–Zn–Cu–Au–Ag–Te mineralization on western Milos Island, Aegean Volcanic Arc, Greece: Mineralogical, geological and geochemical constraints. Ore Geol. Rev. 2013, 53, 159–180. [Google Scholar] [CrossRef]
- Marschik, R.; Bauer, T.; Hensler, A.S.; Skarpelis, N.; Holzl, S. Isotope Geochemistry of the Pb-Zn-Ba(-Ag-Au) mineralisation at Triades-Galana, Milos Island, Greece. Resour. Geol. 2010, 60, 335–347. [Google Scholar] [CrossRef]
- Papavasiliou, K.; Voudouris, P.; Kanellopoulos, C.; Alfieris, D.; Xydous, S. The Kondaros-Katsimouti intermediate suplfidation Epithermal Pb-Zn-Ag-Mn mineralisation, Western Milos, Greece: New Mineralogical and Geochemical data. Bull. Geol. Soc. Greece 2016, 50, 1959–1968. [Google Scholar] [CrossRef]
- Strobl, P.; Muller, A.; Schlapfer, D.; Schaepman, M. Laboratory Calibration and Inflight Validation of the Digital Airborne Imaging Spectrometer DAIS 7915 for the 1996 Flight Season, Algorithms for Multispectral and Hyperspectral Imagery III. SPIE Proc. 1997, 307, 225–235. [Google Scholar]
- Ferrier, G.; Wadge, G. The application of imaging spectrometry data to mapping alteration zones associated with gold mineralization in southern Spain. Int. J. Remote Sens. 1996, 17, 331–350. [Google Scholar] [CrossRef]
- Green, A.A.; Berman, M.; Switzer, P.; Craig, M.D. A transformation for ordering multispectral data in terms of image quality with implications for noise removal. IEEE Trans. Geosci. Remote Sens. 1988, 26, 65–74. [Google Scholar] [CrossRef] [Green Version]
- Boardman, J. Automating spectral unmixing of AVIRIS data using convex geometry concepts. In Proceedings of the Summaries 4th Annual JPL Airborne Geoscience Workshop, Pasadena, CA, USA, 25–29 October 1993; pp. 11–14. [Google Scholar]
- Boardman, J.W. Leveraging the high dimensionality of AVIRIS data for improved subpixel target unmixing and rejection of false positives: Mixture tunded matched filtering. In Proceedings of the Summaries of the Seventh JPL Airborne Geoscience Workshop, Pasadena, CA, USA, 12–16 January 1998; NASA Jet Propulsion Laboratory: Pasadena, CA, USA; pp. 55–56. [Google Scholar]
- Richter, R.; Schläpfer, D. Atmospheric/Topographic Correction for Airborne Imagery. ATCOR-4 User Guide, Version 6.2.1; DLR-IB 565-02/08; Deutsches Zentrum für Luft- und Raumfahrt (DLR): Weßling, Germany, 2014. [Google Scholar]
- Kealy, P.S.; Hook, S.J. Separating temperature and emissivity in thermal infrared multispectral scanner data: Implications for recovering land surface temperatures. IEEE Trans. Geosci. Remote Sens. 1993, 31, 1155–1164. [Google Scholar] [CrossRef]
- Hook, S.; Gabell, A.R.; Green, A.A.; Kealy, P.S. A Comparison of Techniques for Extracting Emissivity Information from Thermal Infrared data for geologic studies. Rem. Sen. Environ. 1992, 42, 123–135. [Google Scholar] [CrossRef]
- Anguita, F.; Verma, S.P.; Marquez, A.; Vasconcelos, F.M.; Lopez, I.; Laurrieta, A. Circular features in the Trans-Mexican Volcanic Belt. J. Volcanol. Geotherm. Res. 2001, 107, 265–274. [Google Scholar] [CrossRef] [Green Version]
- Aydar, E.; Gourgaud, A.; Ulusoy, I.; Digonnet, F.; Labazuy, P.; Sen, E.; Bayhan, H.; Kurttas, T.; Tolluoglu, A.U. Morphological analysis of active Mount Nemrut stratovolcano, eastern Turkey: Evidences and possible impact areas of future eruption. J. Volcanol. Geotherm. Res. 2003, 123, 301–312. [Google Scholar] [CrossRef]
- Froger, J.-L.; Lenat, J.-F.; Chorowicz, J.; Le Pennec, J.-L.; Bourdier, J.-L.; Kose, O.; Zimitoğlu, O.; Gundogdu, N.M.; Gourgaud, A. Hidden calderas evidenced by multisource geophysical data; example of Cappadocian Calderas, Central Anatolia. J. Volcanol. Geotherm. Res. 1998, 185, 99–128. [Google Scholar] [CrossRef]
- Saintot, A.; Angelier, J.; Chorowicz, J. Mechanical significance of structural patterns identified by remote sensing studies: A multiscale analysis of tectonic structures in Crimea. Tectonophysics 1999, 313, 187–218. [Google Scholar] [CrossRef]
- Szekely, B.; Karatson, D. DEM-based morphometry as a tool for reconstructing primary volcanic landforms: Examples from the Borzsony Mountains, Hungary. Geomorphology 2004, 63, 25–37. [Google Scholar] [CrossRef]
- Ulusoy, I.; Cubukcu, E.; Aydar, E.; Labazuyb, P.; Gourgaud, A.; Vincent, P.M. Volcanic and deformation history of the Bodrum resurgent caldera system (southwestern Turkey). J. Volcanol. Geotherm. Res. 2004, 136, 71–96. [Google Scholar] [CrossRef]
- Clark, R.N.; Swayze, G.A.; Wise, R.; Livo, K.E.; Hoefen, T.M.; Kokaly, R.F.; Sutley, S.J. USGS Digital Spectral Library; Open File Report 03-395; U.S. Geological Survey: Reston, VA, USA, 2003.
- Salisbury, J.W. Infrared (2.1–25 µm) spectra of minerals. In Johns Hopkins Studies in Earth and Space Sciences; Johns Hopkins University Press: Baltimore, MD, USA, 1991. [Google Scholar]
- Christensen, P.R.; Bandfield, J.L.; Hamilton, V.E.; Howard, D.A.; Lane, M.D.; Piatek, J.L.; Stefanov, W.L. A thermal emission spectral library of rock-forming minerals. J. Geophys. Res. 2000, 105, 9735. [Google Scholar] [CrossRef]
- Azizi, H.; Tarverdi, M.A.; Akbarpour, A. Extraction of hydrothermal alterations from ASTER SWIR data from east Zanjan, northern Iran. Adv. Space Res. 2010, 46, 99–109. [Google Scholar] [CrossRef]
- Rowan, L.C.; Schmidt, R.G.; Mars, J.C. Distribution of hydrothermally altered rocks in the Reko Diq, Pakistan mineralized area based on spectral analysis of ASTER data. Remote Sens. Environ. 2006, 104, 74–87. [Google Scholar] [CrossRef]
- Eastman, J.R.; Kyem, P.A.K.; Toledano, J. Raster procedures for multi-criteria/multi-objective decisions. Photogramm. Eng. Remote Sens. 1995, 61, 539–547. [Google Scholar]
Sample | XRD Analyses: Minerals Present in % | Location Description |
---|---|---|
MI-05 | Alunite (21.8%), Natro-alunite (14.8%), quartz (34.5%), cristobalite (8.5%), tridymite (3.2%), kaolinite (17%), | Kaolinite Mine, Advanced Argillic |
MI-18 | Amorphous (47.5%), Andesine (47.5%), Augite (0.9%), Enstatite (4.1%), | Dacite |
MI-21 | Quartz (99.7%) | Silicified Sinter |
MI-22 | Alunite (29.2%), Natro-alunite (9.3%), quartz (61.2%) | Altered volcanics |
MI-26 | Andesine (52.7%), Sanidene (14.7%), Quartz (5%), Cristobalite (22.1%), Hematite (1.8%), Smectite present. | Propylitic, Volcanics |
MI-28 | Alunite (22.4%), Natro-alunite (18.2%), Cristobalite (23.7%), Tridymite (28.6%), Quartz (6.7%) | Silica Cap rock |
MI-30 | Quartz (61.9%), Barite (38.1%) | Fine grained sinter |
Wavelength Range | Number of Bands | Bandwidths |
---|---|---|
450–1050 nm | 32 | 25 nm |
1500–1800 nm | 8 | 45 nm |
1900–2450 nm | 32 | 25 nm |
3000–5000 nm | 1 | 2.0 µm |
8700–12,700 nm | 6 | 0.9 µm |
Factor | Weight | Spatial Influence | Fuzzy Function |
---|---|---|---|
Volcanic Centres (VC)s: Andesitic-dacitic lava domes | 1 | Within andesitic-dacitic lava domes | None-Binary |
Topographic Highs: | 1 | Within 100 m | Linear |
Faults: N30 °E- and E-trending faults | 2 | Within 200 m | Linear |
Hydrothermal Alteration: pixels classified as being in the Advanced Argillic Zone | 2 | Within pixel | None |
Hydrothermal Alteration: pixels classified as silicified lithocaps | 4 | Within pixel | None |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferrier, G.; Ganas, A.; Pope, R.; Jo Miles, A. Prospectivity Mapping for Epithermal Deposits of Western Milos Using a Fuzzy Multi Criteria Evaluation Approach Parameterized by Airborne Hyperspectral Remote Sensing Data. Geosciences 2019, 9, 116. https://doi.org/10.3390/geosciences9030116
Ferrier G, Ganas A, Pope R, Jo Miles A. Prospectivity Mapping for Epithermal Deposits of Western Milos Using a Fuzzy Multi Criteria Evaluation Approach Parameterized by Airborne Hyperspectral Remote Sensing Data. Geosciences. 2019; 9(3):116. https://doi.org/10.3390/geosciences9030116
Chicago/Turabian StyleFerrier, Graham, Athanassios Ganas, Richard Pope, and A. Jo Miles. 2019. "Prospectivity Mapping for Epithermal Deposits of Western Milos Using a Fuzzy Multi Criteria Evaluation Approach Parameterized by Airborne Hyperspectral Remote Sensing Data" Geosciences 9, no. 3: 116. https://doi.org/10.3390/geosciences9030116
APA StyleFerrier, G., Ganas, A., Pope, R., & Jo Miles, A. (2019). Prospectivity Mapping for Epithermal Deposits of Western Milos Using a Fuzzy Multi Criteria Evaluation Approach Parameterized by Airborne Hyperspectral Remote Sensing Data. Geosciences, 9(3), 116. https://doi.org/10.3390/geosciences9030116