Cross-Country Assessment of H-SAF Snow Products by Sentinel-2 Imagery Validated against In-Situ Observations and Webcam Photography
Abstract
:1. Introduction
2. Materials
2.1. Satellite Datasets
2.1.1. Sentinel-2 Imagery
2.1.2. H-SAF H10 Product
2.1.3. H-SAF H12 Product
2.2. Test Sites and Data Collection
2.3. Ground-Based Datasets
2.3.1. In-Situ Webcam Imagery
2.3.2. In-Situ Snow Measurements
3. Methods
3.1. Satellite Retrieval Algorithms
3.1.1. Sen2Cor Algorithm
3.1.2. H-SAF H10 Algorithms
3.1.3. H-SAF H12 Algorithms
3.2. Validation of Sentinel-2 Imagery with In-Situ Data
3.2.1. Validation of Sentinel-2 Imagery by In-Situ Webcams
3.2.2. Validation of Sentinel-2 Imagery against Ground-Based Snow Measurements
3.3. Procedures of Cross-Sensor Comparison between Satellitesnow Products
3.3.1. Comparison between Sentinel-Based Snow Masks and H-SAF H10
3.3.2. Comparison between Sentinel-Derived FSC Maps and H-SAF H12
3.4. Evaluation Metrics
4. Results and Discussion
4.1. Validation of Sentinel-2 Imagery
4.1.1. In-Situ Digital Imagery
4.1.2. Ground-Based Snow Measurements
4.2. Cross-Sensor Comparison of Snow Extent Products
4.3. Cross-Sensor Comparison of Effective Snow Cover Products
Impact of Vegetation on Snow Detection
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bates, B.; Kundzewicz, Z.; Wu, S. Climate Change and Water; Intergovernmental Panel on Climate Change Secretariat: Geneva, Switzerland, 2008. [Google Scholar]
- Appel, I. Uncertainty in satellite remote sensing of snow fraction for water resources management. Front. Earth Sci. 2018, 12, 711–727. [Google Scholar] [CrossRef]
- Thirel, G.; Salamon, P.; Burek, P.; Kalas, M. Assimilation of MODIS snow cover area data in a distributed hydrological model using the particle filter. Remote Sens. 2013, 5, 5825–5850. [Google Scholar] [CrossRef]
- Kumar, S.V.; Peters-Lidard, C.D.; Arsenault, K.R.; Getirana, A.; Mocko, D.; Liu, Y. Quantifying the added value of snow cover area observations in passive microwave snow depth data assimilation. J. Hydrometeorol. 2015, 16, 1736–1741. [Google Scholar] [CrossRef]
- Aalstad, K.; Westermann, S.; Schuler, T.V.; Boike, J.; Bertino, L. Ensemble-based assimilation of fractional snow-covered area satellite retrievals to estimate the snow distribution at Arctic sites. Cryosphere 2018, 12, 247–270. [Google Scholar] [CrossRef] [Green Version]
- Pirazzini, R.; Leppänen, L.; Picard, G.; Lopez-Moreno, J.I.; Marty, C.; Macelloni, G.; Kontu, A.; von Lerber, A.; Tanis, C.M.; Schneebeli, M.; et al. European In-Situ Snow Measurements: Practices and Purposes. Sensors 2018, 18, 2016. [Google Scholar] [CrossRef] [PubMed]
- López-Moreno, J.I.; Nogués-Bravo, D. A generalized additive model for the spatial distribution of snowpack in the Spanish Pyrenees. Hydrol. Process. 2005, 19, 3167–3176. [Google Scholar] [CrossRef] [Green Version]
- Bormann, K.J.; Westra, S.; Evans, J.P.; McCabe, M.F. Spatial and temporal variability in seasonal snow density. J. Hydrol. 2013, 484, 63–73. [Google Scholar] [CrossRef]
- Luce, C.H.; Lopez-Burgos, V.; Holden, Z. Sensitivity of snowpack storage to precipitation and temperature using spatial and temporal analog models. Water Resour. Res. 2014, 50, 9447–9462. [Google Scholar] [CrossRef] [Green Version]
- Rice, R.; Bales, R.C.; Painter, T.H.; Dozier, J. Snow water equivalent along elevation gradients in the Merced and Tuolumne River basins of the Sierra Nevada. Water Resour. Res. 2011, 47. [Google Scholar] [CrossRef] [Green Version]
- Molotch, N.P.; Meromy, L. Physiographic and climatic controls on snow cover persistence in the Sierra Nevada Mountains. Hydrol. Process. 2014, 28, 4573–4586. [Google Scholar] [CrossRef]
- Revuelto, J.; López-Moreno, J.I.; Azorin-Molina, C.; Vicente-Serrano, S.M. Topographic control of snowpack distribution in a small catchment in the central Spanish Pyrenees: Intra-and inter-annual persistence. Cryosphere 2014, 8, 1989–2006. [Google Scholar] [CrossRef]
- Harpold, A.A.; Guo, Q.; Molotch, N.; Brooks, P.D.; Bales, R.; Fernandez-Diaz, J.C.; Musselman, K.N.; Swetnam, T.L.; Kirchner, P.; Meadows, M.W.; et al. LiDAR-derived snowpack data sets from mixed conifer forests across the Western United States. Water Resour. Res. 2014, 50, 2749–2755. [Google Scholar] [CrossRef] [Green Version]
- Szczypta, C.; Gascoin, S.; Houet, T.; Hagolle, O.; Dejoux, J.F.; Vigneau, C.; Fanise, P. Impact of climate and land cover changes on snow cover in a small Pyrenean catchment. J. Hydrol. 2015, 521, 84–99. [Google Scholar] [CrossRef] [Green Version]
- Fayad, A.; Gascoin, S.; Faour, G.; López-Moreno, J.I.; Drapeau, L.; Le Page, M.; Escadafal, R. Snow hydrology in Mediterranean mountain regions: A review. J. Hydrol. 2017, 551, 374–396. [Google Scholar] [CrossRef]
- Gascoin, S.; Lhermitte, S.; Kinnard, C.; Bortels, K.; Liston, G.E. Wind effects on snow cover in Pascua-Lama, Dry Andes of Chile. Adv. Water Resour. 2013, 55, 25–39. [Google Scholar] [CrossRef] [Green Version]
- Vionnet, V.; Martin, E.; Masson, V.; Guyomarc’h, G.; Bouvet, F.N.; Prokop, A.; Durand, Y.; Lac, C. Simulation of wind-induced snow transport and sublimation in alpine terrain using a fully coupled snowpack/atmosphere model. Cryosphere 2014, 8, 395–415. [Google Scholar] [CrossRef] [Green Version]
- López-Moreno, J.I.; Fassnacht, S.R.; Heath, J.T.; Musselman, K.N.; Revuelto, J.; Latron, J.; Morán-Tejeda, E.; Jonas, T. Small scale spatial variability of snow density and depth over complex alpine terrain: Implications for estimating snow water equivalent. Adv. Water Resour. 2013, 55, 40–52. [Google Scholar] [CrossRef] [Green Version]
- Raleigh, M.; Livneh, B.; Lapo, K.; Lundquist, J. How does availability of meteorological forcing data impact physically-based snowpack simulations? J. Hydrometeorol. 2016, 17, 99–120. [Google Scholar] [CrossRef]
- Viviroli, D.; Archer, D.R.; Buytaert, W.; Fowler, H.J.; Greenwood, G.; Hamlet, A.F.; Huang, Y.; Koboltschnig, G.; Litaor, M.I.; López-Moreno, J.I. Climate change and mountain water resources: Overview and recommendations for research, management and policy. Hydrol. Earth Syst. Sci. 2011, 15, 471–504. [Google Scholar] [CrossRef]
- Migliavacca, M.; Galvagno, M.; Cremonese, E.; Rossini, M.; Meroni, M.; Sonnentag, O.; Cogliati, S.; Manca, G.; Diotri, F.; Busetto, L.; et al. Using digital repeat photography and eddy covariance data to model grassland phenology and photosynthetic CO2 uptake. Agric. For. Meteorol. 2011, 151, 1325–1337. [Google Scholar] [CrossRef]
- Filippa, G.; Cremonese, E.; Migliavacca, M.; Galvagno, M.; Forkel, M.; Wingate, L.; Tomelleri, E.; di Cella, U.M.; Richardson, A.D. Phenopix: AR package for image-based vegetation phenology. Agric. For. Meteorol. 2016, 220, 141–150. [Google Scholar] [CrossRef]
- Linkosalmi, M.; Aurela, M.; Tuovinen, J.-P.; Peltoniemi, M.; Tanis, C.M.; Arslan, A.N.; Kolari, P.; Aalto, T.; Rainne, J.; Laurila, T. Digital photography for assessing vegetation phenology in two contrasting northern ecosystems. Geosci. Instrum. Methods Data Syst. 2016, 5, 417–426. [Google Scholar] [CrossRef]
- Peltoniemi, M.; Aurela, M.; Böttcher, K.; Kolari, P.; Loehr, J.; Karhu, J.; Linkosalmi, M.; Tanis, C.M.; Tuovinen, J.-P.; Arslan, A.N. Webcam network and image database for studies of phenological changes of vegetation and snow cover in Finland, image time series from 2014 to 2016. Earth Syst. Sci. Data 2018, 10, 173–184. [Google Scholar] [CrossRef] [Green Version]
- Peltoniemi, M.; Aurela, M.; Böttcher, K.; Kolari, P.; Loehr, J.; Hokkanen, T.; Karhu, J.; Linkosalmi, M.; Tanis, C.M.; Metsämäki, S.; et al. Networked web-cameras monitor congruent seasonal development of birches with phenological field observations. Agric. For. Meteorol. 2018, 249, 335–347. [Google Scholar] [CrossRef]
- Wingate, L.; Ogée, J.; Cremonese, E.; Filippa, G.; Mizunuma, T.; Migliavacca, M.; Moisy, C.; Wilkinson, M.; Moureaux, C.; Wohlfahrt, G.; et al. Interpreting canopy development and physiology using the EUROPhen camera network at flux sites. Biogeosci. Discuss. 2015, 12, 5995–6015. [Google Scholar] [CrossRef]
- Richardson, A.D.; Hufkens, K.; Milliman, T.; Aubrecht, D.M.; Chen, M.; Gray, J.M.; Johnston, M.R.; Keenan, T.F.; Klosterman, S.T.; Kosmala, M.; et al. PhenoCam Dataset v1. 0: Vegetation Phenology from Digital Camera Imagery, 2000–2015; ORNL DAAC: Oak Ridge, TN, USA, 2017.
- Farinotti, D.; Magnusson, J.; Huss, M.; Bauder, A. Snow accumulation distribution inferred from time-lapse photography and simple modelling. Hydrol. Process. 2010, 24, 2087–2097. [Google Scholar] [CrossRef]
- Salvatori, R.; Plini, P.; Giusto, M.; Valt, M.; Salzano, R.; Montagnoli, M.; Cagnati, A.; Crepaz, G.; Sigismondi, D. Snow cover monitoring with images from digital camera systems. Ital. J. Remote Sens. 2011, 43, 137–145. [Google Scholar] [CrossRef]
- Bernard, É.; Friedt, J.M.; Tolle, F.; Griselin, M.; Martin, G.; Laffly, D.; Marlin, C. Monitoring seasonal snow dynamics using ground based high resolution photography (Austre Lovenbreen, Svalbard, 79 N). ISPRS J. Photogramm. Remote Sens. 2013, 75, 92–100. [Google Scholar] [CrossRef]
- Garvelmann, J.; Pohl, S.; Weiler, M. From observation to the quantification of snow processes with a time-lapse camera network. Hydrol. Earth Syst. Sci. 2013, 17, 1415–1429. [Google Scholar] [CrossRef] [Green Version]
- Härer, S.; Bernhardt, M.; Corripio, J.G.; Schulz, K. PRACTISE-Photo Rectification and ClassificaTIon SoftwarE (V. 1.0). Geosci. Model Dev. 2013, 9, 307–321. [Google Scholar] [CrossRef]
- Arslan, A.N.; Tanis, C.M.; Metsämäki, S.; Aurela, M.; Böttcher, K.; Linkosalmi, M.; Peltoniemi, M. Automated Webcam Monitoring of Fractional Snow Cover in Northern Boreal Conditions. Geosciences 2017, 7, 55. [Google Scholar] [CrossRef]
- Tanis, C.; Peltoniemi, M.; Linkosalmi, M.; Aurela, M.; Böttcher, K.; Manninen, T.; Arslan, A. A System for Acquisition, Processing and Visualization of Image Time Series from Multiple Camera Networks. Data 2018, 3, 23. [Google Scholar] [CrossRef]
- Gascoin, S.; Hagolle, O.; Huc, M.; Jarlan, L.; Dejoux, J.-F.; Szczypta, C.; Marti, R.; Sánchez, R. A snow cover climatology for the Pyrenees from MODIS snow products. Hydrol. Earth Syst. Sci. 2015, 19, 2337–2351. [Google Scholar] [CrossRef] [Green Version]
- Nolin, A.W. Recent advances in remote sensing of seasonal snow. J. Glaciol. 2010, 56, 1141–1150. [Google Scholar] [CrossRef]
- Frei, A.; Tedesco, M.; Lee, S.; Foster, J.; Hall, D.; Kelly, R.; Robinson, D. A review of global satellite-derived snow products. Adv. Space Res. 2012, 50, 1007–1029. [Google Scholar] [CrossRef] [Green Version]
- Robinson, D.; Kukla, G. Maximum surface albedo of seasonally snow covered lands in the Northern Hemisphere. J. Clim. Appl. Meteorol. 1985, 24, 402–411. [Google Scholar] [CrossRef]
- Nolin, A.W. Towards retrieval of forest cover density over snow from the Multi-angle Imaging SpectroRadiometer (MISR). Hydrol. Process. 2004, 18, 3623–3636. [Google Scholar] [CrossRef]
- Derksen, C. The contribution of AMSR-E 18.7 and 10.7 GHz measurements to improved boreal forest snow water equivalent retrievals. Remote Sens. Environ. 2008, 112, 2701–2710. [Google Scholar] [CrossRef]
- Dong, J.; Peters-Lidard, C. On the relationship between temperature and MODIS snow cover retrieval errors in the western US. IEEE J. Sel. Top. Earth Obs. Remote Sens. 2010, 3, 132–140. [Google Scholar] [CrossRef]
- Maurer, E.P.; Rhoads, J.D.; Dubayah, R.O.; Lettenmaier, D.P. Evaluation of the snow-covered area data product from MODIS. Hydrol. Process. 2003, 17, 59–71. [Google Scholar] [CrossRef]
- Tekeli, A.E.; Akyürek, Z.; Şorman, A.A.; Şensoy, A.; Şorman, A.Ü. Using MODIS snow cover maps in modeling snowmelt runoff process in the eastern part of Turkey. Remote Sens. Environ. 2005, 97, 216–230. [Google Scholar] [CrossRef]
- Riggs, G.A.; Hall, D.K.; Salomonson, V.V. MODIS Snow Products User Guide; NASA Goddard Space Flight Center: Greenbelt, MD, USA, 2006.
- Hall, D.K.; Riggs, G.A. Accuracy assessment of the MODIS snow products. Hydrol. Process. 2007, 21, 1534–1547. [Google Scholar] [CrossRef]
- Akyurek, Z.; Sorman, A.U.; Sensoy, A.; Sorman, A.A. Calibration and Validation of satellite derived snow products with in situ data over the mountainous Eastern part of Turkey. In Proceedings of the International Congress on River Basin Management, Antalya, Turkey, 22–24 March 2007; pp. 711–726. [Google Scholar]
- Parajka, J.; Blöschl, G. Spatio-temporal combination of MODIS images–potential for snow cover mapping. Water Resour. Res. 2008, 44. [Google Scholar] [CrossRef]
- Wang, X.; Xie, H.; Liang, T.; Huang, X. Comparison and validation of MODIS standard and new combination of Terra and Aqua snow cover products in northern Xinjiang, China. Hydrol. Process. 2009, 23, 419–429. [Google Scholar] [CrossRef]
- Huang, X.; Liang, T.; Zhang, X.; Guo, Z. Validation of MODIS snow cover products using Landsat and ground measurements during the 2001–2005 snow seasons over northern Xinjiang, China. Int. J. Remote Sens. 2011, 32, 133–152. [Google Scholar] [CrossRef]
- Raleigh, M.S.; Rittger, K.; Moore, C.E.; Henn, B.; Lutz, J.A.; Lundquist, J.D. Ground-based testing of MODIS fractional snow cover in subalpine meadows and forests of the Sierra Nevada. Remote Sens. Environ. 2013, 128, 44–57. [Google Scholar] [CrossRef]
- Arsenault, K.R.; Houser, P.R.; De Lannoy, G.J. Evaluation of the MODIS snow cover fraction product. Hydrol. Process. 2014, 28, 980–998. [Google Scholar] [CrossRef]
- Byun, K.; Choi, M. Uncertainty of snow water equivalent retrieved from AMSR-E brightness temperature in northeast Asia. Hydrol. Process. 2014, 28, 3173–3184. [Google Scholar] [CrossRef]
- Surer, S.; Parajka, J.; Akyurek, Z. Validation of the operational MSG-SEVIRI snow cover product over Austria. Hydrol. Earth Syst. Sci. 2014, 18, 763–774. [Google Scholar] [CrossRef] [Green Version]
- Sönmez, I.; Tekeli, A.E.; Erdi, E. Snow cover trend analysis using interactive multisensor snow and ice mapping system data over Turkey. Int. J. Climatol. 2014, 34, 2349–2361. [Google Scholar] [CrossRef]
- Salomonson, V.V.; Appel, I. Estimating fractional snow cover from MODIS using the normalized difference snow index. Remote Sens. Environ. 2004, 89, 351–360. [Google Scholar] [CrossRef]
- Surer, S.; Akyurek, Z. Evaluating the utility of the EUMETSAT H-SAF snow recognition product over mountainous areas of eastern Turkey. Hydrol. Sci. J. 2012, 57, 1684–1694. [Google Scholar] [CrossRef]
- Crawford, C.J. MODIS Terra Collection 6 fractional snow cover validation in mountainous terrain during spring snowmelt using Landsat TM and ETM+. Hydrol. Process. 2015, 29, 128–138. [Google Scholar] [CrossRef]
- Metsämäki, S.; Ripper, E.; Mattila, O.P.; Fernandes, R.; Bippus, G.; Luojus, K.; Nagler, T.; Bojkov, B. Evaluation of Northern Hemisphere Snow Extent products within ESA SnowPEx-project. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 10–15 July 2016; pp. 5280–5283. [Google Scholar]
- Appel, I. Validation and potential improvements of the NPP fractional snow cover product using high resolution satellite observations. In Proceedings of the 32nd EARSeL Symposium 17, Mykonos Island, Greece, 21–24 May 2012. [Google Scholar]
- Immitzer, M.; Vuolo, F.; Atzberger, C. First experience with Sentinel-2 data for crop and tree species classifications in central Europe. Remote Sens. 2016, 8, 166. [Google Scholar] [CrossRef]
- Paul, F.; Winsvold, S.H.; Kääb, A.; Nagler, T.; Schwaizer, G. Glacier remote sensing using sentinel-2. Part II: Mapping glacier extents and surface facies, and comparison to Landsat 8. Remote Sens. 2016, 8, 575. [Google Scholar] [CrossRef]
- Toming, K.; Kutser, T.; Laas, A.; Sepp, M.; Paavel, B.; Nõges, T. First experiences in mapping lake water quality parameters with Sentinel-2 MSI imagery. Remote Sens. 2016, 8, 640. [Google Scholar] [CrossRef]
- Huang, H.; Roy, D.P.; Boschetti, L.; Zhang, H.K.; Yan, L.; Kumar, S.S.; Gomez-Dans, J.; Li, J. Separability analysis of Sentinel-2A multi-spectral instrument (MSI) data for burned area discrimination. Remote Sens. 2016, 8, 873. [Google Scholar] [CrossRef]
- Lefebvre, A.; Sannier, C.; Corpetti, T. Monitoring urban areas with Sentinel-2A data: Application to the update of the Copernicus high resolution layer imperviousness degree. Remote Sens. 2016, 8, 606. [Google Scholar] [CrossRef]
- Radoux, J.; Chomé, G.; Jacques, D.C.; Waldner, F.; Bellemans, N.; Matton, N.; Lamarche, C.; D’Andrimont, R.; Defourny, P. Sentinel-2’s potential for sub-pixel landscape feature detection. Remote Sens. 2016, 8, 488. [Google Scholar] [CrossRef]
- Drusch, M.; Del Bello, U.; Carlier, S.; Colin, O.; Fernandez, V.; Gascon, F.; Lamarche, C.; D’Andrimont, R.; Meygret, A. Sentinel-2: ESA’s optical high-resolution mission for GMES operational services. Remote Sens. Environ. 2012, 120, 25–36. [Google Scholar] [CrossRef]
- Malenovský, Z.; Rott, H.; Cihlar, J.; Schaepman, M.E.; García-Santos, G.; Fernandes, R.; Berger, M. Sentinels for science: Potential of Sentinel-1,-2, and-3 missions for scientific observations of ocean, cryosphere, and land. Remote Sens. Environ. 2012, 120, 91–101. [Google Scholar] [CrossRef]
- Li, S.; Ganguly, S.; Dungan, J.L.; Wang, W.; Nemani, R.R. Sentinel-2 MSI radiometric characterization and cross-calibration with Landsat-8 OLI. Adv. Remote Sens. 2017, 6, 147–159. [Google Scholar] [CrossRef]
- Zhu, Z.; Woodcock, C.E. Object-based cloud and cloud shadow detection in Landsat imagery. Remote Sens. Environ. 2012, 118, 83–94. [Google Scholar] [CrossRef]
- Siljamo, N.; Hyvarinen, O.; Koskinen, J. Operational Snowcover Mapping using MSG/SEVIRI Data. In Proceedings of the IEEE International IGARSS Geoscience and Remote Sensing Symposium, Boston, MA, USA, 7–11 July 2008; Volume 5, p. V-45. [Google Scholar]
- Julitta, T.; Cremonese, E.; Migliavacca, M.; Colombo, R.; Galvagno, M.; Siniscalco, C.; Rossini, M.; Fava, F.; Cogliati, S.; Morra di Cella, U.; et al. Using digital camera images to analyse snowmelt and phenology of a subalpine grassland. Agric. For. Meteorol. 2014, 198, 116–125. [Google Scholar] [CrossRef]
- Hall, D.K.; Riggs, G.A.; Salomonson, V.V.; DiGirolamo, N.E.; Bayr, K.J. MODIS snow-cover products. Remote Sens. Environ. 2002, 83, 181–194. [Google Scholar] [CrossRef] [Green Version]
- Hall, D.K.; Riggs, G.A.; Salomonson, V.V. Algorithm theoretical basis document (ATBD) for the MODIS snow and sea ice-mapping algorithms. 2001. Available online: https://eospso.gsfc.nasa.gov/sites/default/files/atbd/atbd_mod10.pdf (accessed on 1 December 2018).
- Painter, T.H.; Rittger, K.; McKenzie, C.; Slaughter, P.; Davis, R.E.; Dozier, J. Retrieval of subpixel snow covered area, grain size, and albedo from MODIS. Remote Sens. Environ. 2009, 113, 868–879. [Google Scholar] [CrossRef] [Green Version]
- Solberg, R.; Wangensteen, B.; Metsämäki, S.; Nagler, T.; Sandner, R.; Rott, H.; Pulliainen, J. GlobSnow Snow Extent Product Guide Product Version 1.0; European Space Angency: Helsinki, Finland, 2010. [Google Scholar]
- Louis, J.; Debaecker, V.; Pflug, B.; Main-Korn, M.; Bieniarz, J.; Mueller-Wilm, U.; Cadau, E.; Gascon, F. Sentinel-2 Sen2Cor: L2A Processor for Users. Living Planet Symp. 2016, 740, 91. [Google Scholar]
- Gao, B.C.; Goetz, A.F.H.; Westwater, E.R.; Conel, J.E.; Green, R.O. Possible near-IR channels for remote sensing precipitable water vapor from geostationary satellite platforms. J. Appl. Meteorol. 1993, 32, 1791–1801. [Google Scholar] [CrossRef]
- Siljamo, N.; Hyvärinen, O. New Geostationary Satellite–Based Snow-Cover Algorithm. J. Appl. Meteorol. Climatol. 2011, 50, 1275–1290. [Google Scholar] [CrossRef]
- Derrien, M.; Le Gléau, H. MSG/SEVIRI cloud mask and type from SAFNWC. Int. J. Remote Sens. 2005, 26, 4707–4732. [Google Scholar] [CrossRef]
- Dybbroe, A.; Karlsson, K.G.; Thoss, A. NWCSAF AVHRR cloud detection and analysis using dynamic thresholds and radiative transfer modeling. Part I: Algorithm description. J. Appl. Meteorol. 2005, 44, 39–54. [Google Scholar] [CrossRef]
- Kidder, S.Q.; Wu, H.T. Dramatic contrast between low clouds and snow cover if daytime 3.7 imagery. Mon. Weather Rev. 1984, 112, 2345–2346. [Google Scholar] [CrossRef]
- Matson, M. NOAA satellite snow cover data. Glob. Planet. Chang. 1991, 4, 213–218. [Google Scholar] [CrossRef]
- Derrien, M.; Le Gléau, H.; Fernandez, P. Algorithm Theoretical Basis Document for “Cloud Products” (CMa-PGE01 v3.2, CT-PGE02 v2.2 & CTTH-PGE03 v2.2). Available online: http://www.nwcsaf.org/AemetWebContents/ScientificDocumentation/Documentation/MSG/SAF-NWC-CDOP2-MFL-SCI-ATBD-01_v3.2.1.pdf (accessed on 1 December 2018).
- Bunting, J.T.; d’Entremont, R.P. Improved Cloud Detection Utilizing Defense Meteorological Satellite Program Near Infrared Measurements; No. AFGL-TR-82-0027; Air Force Geophysics Laboratory: Hanscom AFB, MA, USA, 1982. [Google Scholar]
- Dozier, J. Spectral signature of alpine snow cover from the Landsat Thematic Mapper. Remote Sens. Environ. 1989, 28, 9–22. [Google Scholar] [CrossRef]
- Romanov, P.; Tarpley, D.; Gutman, G.; Carroll, T. Mapping and monitoring of the snow cover fraction over North America. J. Geophys. Res. Atmos. 2003, 108. [Google Scholar] [CrossRef] [Green Version]
- Metsämäki, S.J.; Anttila, S.T.; Markus, H.J.; Vepsäläinen, J.M. A feasible method for fractional snow cover mapping in boreal zone based on a reflectance model. Remote Sens. Environ. 2005, 95, 77–95. [Google Scholar] [CrossRef]
- Warren, S.G. Optical properties of snow. Rev. Geophys. 1982, 20, 67–89. [Google Scholar] [CrossRef]
- Proy, C.; Tanre, D.; Deschamps, P.Y. Evaluation of topographic effects in remotely sensed data. Remote Sens. Environ. 1989, 30, 21–32. [Google Scholar] [CrossRef]
- Smith, J.A.; Lin, T.L.; Ranson, K.J. The Lambertian assumption and Landsat data. Photogramm. Eng. Remote Sens. 1980, 46, 1183–1189. [Google Scholar]
- Vikhamar, D.; Solberg, R.; Seidel, K. Reflectance modeling of snow-covered forests in hilly terrain. Photogramm. Eng. Remote Sens. 2004, 70, 1069–1079. [Google Scholar] [CrossRef]
- Ertürk, A.G.; Barbosa, H. Detecting V-Storms using Meteosat Second Generation SEVIRI image and its applications: A case study over western Turkey. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2009, Cape Town, South Africa, 12–17 July 2009; Volume 3, p. III-609. [Google Scholar]
- WMO Guide to Meteorological Instruments and Methods of Observation, 7th ed.; WMO-No. 8; WMO: Geneva, Switzerland, 2008.
- Rittger, K.; Painter, T.H.; Dozier, J. Assessment of methods for mapping snow cover from MODIS. Adv. Water Resour. 2013, 51, 367–380. [Google Scholar] [CrossRef]
- Metsämäki, S.; Vepsäläinen, J.; Pulliainen, J.; Sucksdorff, Y. Improved linear interpolation method for the estimation of snow-covered area from optical data. Remote Sens. Environ. 2002, 82, 64–78. [Google Scholar] [CrossRef]
- Vikhamar, D.; Solberg, R. Snow-cover mapping in forests by constrained linear spectral unmixing of MODIS data. Remote Sens. Environ. 2003, 88, 309–323. [Google Scholar] [CrossRef]
- Chang, A.; Foster, J.; Rango, A. The role of passive microwaves in characterizing snow cover in the Colorado River Basin. GeoJournal 1992, 26, 381–388. [Google Scholar] [CrossRef]
- Hall, D.; Foster, J.; Chang, A. Measurement and modeling of microwave emission from forested snowfields in Michigan. Hydrol. Res. 1982, 13, 129–138. [Google Scholar] [CrossRef]
- Klein, A.G.; Hall, D.K.; Riggs, G.A. Improving snow cover mapping in forests through the use of a canopy reflectance model. Hydrol. Process. 1998, 12, 1723–1744. [Google Scholar] [CrossRef]
- Vikhamar, D.; Solberg, R. Subpixel mapping of snow cover in forests by optical remote sensing. Remote Sens. Environ. 2003, 84, 69–82. [Google Scholar] [CrossRef]
- Painter, T.H.; Dozier, J.; Roberts, D.A.; Davis, R.E.; Green, R.O. Retrieval of subpixel snow-covered area and grain size from imaging spectrometer data. Remote Sens. Environ. 2003, 85, 64–77. [Google Scholar] [CrossRef] [Green Version]
- Dietz, A.J.; Kuenzer, C.; Gessner, U.; Dech, S. Remote sensing of snow—A review of available methods. Int. J. Remote Sens. 2012, 33, 4094–4134. [Google Scholar] [CrossRef]
- Andreadis, K.M.; Storck, P.; Lettenmaier, D.P. Modeling snow accumulation and ablation processes in forested environments. Water Resour. Res. 2009, 45. [Google Scholar] [CrossRef] [Green Version]
- H-SAF: Product Validation Report for Product H10-SN-OBS-1. Available online: http://hsaf.meteoam.it/PVR-sn.php (accessed on 1 December 2018).
- H-SAF: Product Validation Report for Product H12-SN-OBS-3. Available online: http://hsaf.meteoam.it/PVR-sn.php (accessed on 1 December 2018).
Band Number | Spatial Resolution [m] | S-2A Central Wavelength [nm] | S-2B Central Wavelength [nm] |
---|---|---|---|
1 | 60 | 442.7 | 442.2 |
2 | 10 | 492.4 | 492.1 |
3 | 10 | 559.8 | 559.0 |
4 | 10 | 664.6 | 664.9 |
5 | 20 | 704.1 | 703.8 |
6 | 20 | 740.5 | 739.1 |
7 | 20 | 782.8 | 779.7 |
8 | 10 | 832.8 | 832.9 |
8a | 20 | 864.7 | 864.0 |
9 | 60 | 945.1 | 943.2 |
10 | 60 | 1373.5 | 1376.9 |
11 | 20 | 1613.7 | 1610.4 |
12 | 20 | 2202.4 | 2185.7 |
Vegetation Class | Selection of GlobCover Vegetation Classes |
---|---|
V_1 | Closed to open (>15%) broadleaved evergreen and/or semi-deciduous forest (>5 m) |
Closed (>40%) needle-leaved evergreen forest (>5 m) | |
Open (15–40%) needle-leaved deciduous or evergreen forest (>5 m) | |
Closed to open (>15%) mixed broadleaved and needle-leaved forest (>5 m) | |
V_2 | Closed (>40%) broadleaved deciduous forest (>5 m) |
Open (15–40%) broadleaved deciduous forest (>5 m) |
Selection of S-2 Tiles | ||||||||
---|---|---|---|---|---|---|---|---|
Finland | T34VFN | T34VFP | T34VFR | T34WFA | T35VNL | T35VPJ | T35WMQ | T35WNN |
V_1 | 53% | 73% | 45% | 57% | 62% | 57% | 69% | 73% |
V_2 | 10% | 6% | 8% | 2% | 17% | 14% | 2% | 2% |
Italy | T32TLQ | T32TLR | T32TMR | T32TMS | T32TNS | T32TPS | T32TQS | T33TUM |
V_1 | 10% | 13% | 6% | 17% | 20% | 34% | 33% | 30% |
V_2 | 15% | 12% | 19% | 15% | 12% | 14% | 21% | 22% |
Turkey | T36SVF | T36TWL | T37SED | T37SFD | T37TEE | T37TFE | T38SKH | T38SLH |
V_1 | 17% | 41% | 1% | 0% | 5% | 2% | 0% | 0% |
V_2 | 0% | 6% | 0% | 0% | 2% | 1% | 0% | 0% |
Test Site | Seasonal Number of S-2 Images | |
---|---|---|
Snow Season 2016/17 | Snow Season 2017/18 | |
Finland | 60 | 193 |
Italian Alps | 133 | 198 |
Turkey | 37 | 101 |
Site Name | Coordinates | Camera Brand and Model | Resolution | S-2 Tile | No. of Analyzed Images |
---|---|---|---|---|---|
Torgnon | 45.84° N, 7.57° E | Campbell CC640 | 0.3 MP | T32TLR | 24 |
Sodankylä peatland | 67.37° N, 26.65° E | Stardot Netcam SC | 5.0 MP | T35WMQ | 22 |
Sodankylä canopy | 67.36° N, 26.64° E | Stardot Netcam SC | 5.0 MP | 22 | |
Lompolojankka peatland | 69.80° N, 24.21° E | Stardot Netcam SC | 5.0 MP | T34WFA | 23 |
Kenttärova canopy | 67.99° N, 24.24° E | Stardot Netcam SC | 5.0 MP | 23 |
Label | Classification |
---|---|
0 | No data |
1 | Saturated/defective |
2 | Dark area |
3 | Cloud shadows |
4 | Vegetation |
5 | Not vegetated |
6 | Water |
7 | Unclassified |
8 | Cloud (medium probability) |
9 | Cloud (high probability) |
10 | Thin cirrus |
11 | Snow |
Site Name | AOI Size [m2] | Number of S-2 Pixels | RMSE (All Days) | RMSE (Only Patchy Snow Cover) |
---|---|---|---|---|
Torgnon | 1,056,171 | 2722 | 13.6% | 13.6% |
Sodankylä peatland | 3976 | 9 | 0% | 0% |
Sodankylä canopy | 4760 | 11 | 6.3% | 13.2% |
Lompolojankka peatland | 12,310 | 33 | 5.7% | 15.8% |
Kenttärova canopy | 254,373 | 633 | 0% | 0% |
Reference Dataset | |||
---|---|---|---|
Snow | No Snow | ||
Analyzed dataset | Snow | a | b |
No Snow | c | d |
Ground-Based Measures | |||
---|---|---|---|
SD ≥ 5 cm | SD < 5 cm | ||
S-2 Binary Snow Masks | Snow | 201 | 17 |
No Snow | 43 | 25 |
Metrics | Value |
---|---|
POD | 0.82 |
FAR | 0.08 |
POFD | 0.40 |
ACC | 0.79 |
CSI | 0.77 |
HSS | 0.33 |
Area | PODthr | FARthr | POD | FAR | POFD | ACC | CSI | HSS |
---|---|---|---|---|---|---|---|---|
Finland | 0.80 | 0.20 | 0.98 | 0.10 | 0.07 | 0.95 | 0.89 | 0.90 |
Italian Alps | 0.60 | 0.30 | 0.78 | 0.35 | 0.16 | 0.83 | 0.55 | 0.59 |
Turkey | 0.91 | 0.13 | 0.08 | 0.92 | 0.80 | 0.83 |
Region | RMSEthr | RMSE |
---|---|---|
Finland | 0.40 | 0.15 |
Italian Alps | 0.50 | 0.33 |
Turkey | 0.21 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Piazzi, G.; Tanis, C.M.; Kuter, S.; Simsek, B.; Puca, S.; Toniazzo, A.; Takala, M.; Akyürek, Z.; Gabellani, S.; Arslan, A.N. Cross-Country Assessment of H-SAF Snow Products by Sentinel-2 Imagery Validated against In-Situ Observations and Webcam Photography. Geosciences 2019, 9, 129. https://doi.org/10.3390/geosciences9030129
Piazzi G, Tanis CM, Kuter S, Simsek B, Puca S, Toniazzo A, Takala M, Akyürek Z, Gabellani S, Arslan AN. Cross-Country Assessment of H-SAF Snow Products by Sentinel-2 Imagery Validated against In-Situ Observations and Webcam Photography. Geosciences. 2019; 9(3):129. https://doi.org/10.3390/geosciences9030129
Chicago/Turabian StylePiazzi, Gaia, Cemal Melih Tanis, Semih Kuter, Burak Simsek, Silvia Puca, Alexander Toniazzo, Matias Takala, Zuhal Akyürek, Simone Gabellani, and Ali Nadir Arslan. 2019. "Cross-Country Assessment of H-SAF Snow Products by Sentinel-2 Imagery Validated against In-Situ Observations and Webcam Photography" Geosciences 9, no. 3: 129. https://doi.org/10.3390/geosciences9030129
APA StylePiazzi, G., Tanis, C. M., Kuter, S., Simsek, B., Puca, S., Toniazzo, A., Takala, M., Akyürek, Z., Gabellani, S., & Arslan, A. N. (2019). Cross-Country Assessment of H-SAF Snow Products by Sentinel-2 Imagery Validated against In-Situ Observations and Webcam Photography. Geosciences, 9(3), 129. https://doi.org/10.3390/geosciences9030129