Evidences for Paleo-Gas Hydrate Occurrence: What We Can Infer for the Miocene of the Northern Apennines (Italy)
Abstract
:1. Introduction
2. Geological Setting
2.1. The Northern Apennines
2.2. Miocene Seep-Carbonates
3. Methods
4. Results
4.1. Dating of Seep Carbonate Outcrops
5. Discussion
Gas Hydrate Stability along the Northern Apennine Margin during the Miocene
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Archer, D. Methane hydrate stability and anthropogenic climate change. Biogeosciences 2007, 4, 993–1057. [Google Scholar] [CrossRef]
- Maslin, M.; Owen, M.; Betts, R.; Simon, D.; Dunkley Jones, T.; Ridgwell, A. Gas hydrates: Past and future geohazard? Philos. Trans. R. Soc. A 2010, 368, 2369–2393. [Google Scholar] [CrossRef] [PubMed]
- Plaza-Faverola, A.; Klaeschen, D.; Barnes, P.; Pecher, I.; Henrys, S.; Mountjoy, J. Evolution of fluid expulsion and concentrated hydrate zones across the southern Hikurangi subduction margin, New Zealand: An analysis from depth migrated seismic data. Geochem. Geophys. Geosyst. 2012, 13. [Google Scholar] [CrossRef] [Green Version]
- Ruppel, C.D.; Kessler, J.D. The interaction of climate change and methane hydrates. Rev. Geophys. 2017, 55, 126–168. [Google Scholar] [CrossRef] [Green Version]
- Paull, C.K.; Buelow, W.J.; Ussler, W., III; Borowski, W.S. Increased continental-margin slumping frequency during sea-level lowstands above gas hydrate-bearing sediments. Geology 1996, 24, 143–146. [Google Scholar] [CrossRef]
- Collett, T.S. Energy resource potential of natural gas hydrates. AAPG Bull. 2002, 86, 1971–1992. [Google Scholar]
- Matsumoto, R.; Freire, A.F.M.; Machiyama, H.; Satoh, M.; Hiruta, A. Low velocity anomaly of gas hydrate bearing silty and clayey sediments, Joetsu Basin, Eastern Margin of Japan Sea. AOGS 2009, 4, 529–543. [Google Scholar]
- Freire, A.F.M.; De Matos Maia Lete, C.; De Oliveira, F.M.; Guimaraes, M.F.; Da Silva Milhomen, P.; Pietzsch, R.; D’Avila, R.S.F. Fluid escape structures as possible indicators of past gas hydrate dissociation during the deposition of the Barremian sediments in the Reconcavo Basin, NE, Brasil. Braz. J. Geol. 2017, 47, 79–93. [Google Scholar] [CrossRef]
- Haq, B.U. Natural gas hydrates: Searching for the long-term climatic and slope-stability records. In Gas Hydrates: Relevance to World Margin Stability and Climate Change; Henriet, J.P., Mienert, J., Eds.; Geological Society: London, UK, 1998; Volume 137, pp. 303–318. [Google Scholar]
- Henriet, J.P.; Mienert, J. Gas Hydrates—Relevance to World Margin Stability and Climatic Change; Geological Society: London, UK, 1998; Volume 137, pp. 1–338. [Google Scholar]
- Vogt, P.R.; Jung, W.Y. Holocene mass wasting on upper non-Polar continental slopes- due to post Glacial ocean warming and hydrate disssociation? Geophys. Res. Lett. 2002, 29, 1341–1348. [Google Scholar] [CrossRef]
- Sultan, N.; Cochonat, P.; Foucher, J.P.; Mienert, J. Effect of gas hydrates melting on seafloor slope instability. Mar. Geol. 2004, 213, 379–401. [Google Scholar] [CrossRef]
- Handwerger, A.L.; Rempel, A.W.; Skarbek, R.M. Submarine landslides triggered by destabilization of high-saturation hydrate anomalies. Geochem. Geophys. Geosyst. 2017, 18, 2429–2445. [Google Scholar] [CrossRef]
- Pierre, C.; Fouquet, Y. Authigenic carbonates from methane seeps of the Congo deep-sea fan. Geo-Mar. Lett. 2007, 27, 249–257. [Google Scholar] [CrossRef]
- Pierre, C.; Blanc-Valleron, M.; Demange, J.; Boudouma, O.; Foucher, J.P.; Pape, T.; Himnler, T.; Fekete, N.; Spiess, P. Authigenic carbonates from active methane seeps offshore southwest Africa. Geo-Mar. Lett. 2012, 32, 501–513. [Google Scholar] [CrossRef]
- Kennett, J.P.; Fackler-Adams, B.N. Relationship of clathrate instability to sediment deformation in the upper Neogene of California. Geology 2000, 28, 215–218. [Google Scholar] [CrossRef]
- Aloisi, G.; Pierre, C.; Rouchy, J.M.; Foucher, J.P.; Woodside, J.; Medinaut Scientific-Party. Methane-related authigenic carbonates of eastern Mediterranean Sea mud volcanoes and their possible relation to gas hydrate destabilisation. Earth Planet. Sci. Lett. 2000, 184, 321–338. [Google Scholar] [CrossRef]
- Greinert, J.; Bohrmann, G.; Suess, E. Gas hydrate associated carbonates and methane venting at Hydrate Ridge: Classification, distribution and origin of authigenic lithologies. In Natural Gas Hydrates: Occurrence, Distribution and Detection; Geophysical Monograph Series; Paull, C.K., Dillon, W.P., Eds.; American Geophysical Union: Washington, DC, USA, 2001; Volume 124, pp. 99–113. [Google Scholar]
- Sassen, R.; Roberts, H.H.; Carney, R.; Milkov, A.; DeFreitas, D.A.; Lanoil, B.; Zhang, C.L. Free hydrocarbon gas, gas hydrate and authigenic minerals in chemosynthetic communities of the northern Gulf of Mexico continental slope: Relation to microbial process. Chem. Geol. 2004, 205, 195–217. [Google Scholar] [CrossRef]
- Mazzini, A.; Svensen, H.; Hovland, M.; Planke, S. Comparison and implications from strikingly different authigenic carbonates in a Nyegga complex pockmark, G11, Norwegian Sea. Mar. Geol. 2006, 231, 89–102. [Google Scholar] [CrossRef]
- Ho, S.A.; Cartwright, J.A.; Imbert, P. Vertical evolution of fluid venting structures in relation to gas flux, in the Neogene-Quaternary of the Lower Congo Basin, Offshore Angola. Mar. Geol. 2012, 332–334, 40–55. [Google Scholar] [CrossRef]
- Suess, E. Marine cold seeps and their manifestations: Geological control, biogeochemical criteria and environmental conditions. Int. J. Earth Sci. 2014, 103, 1889–1916. [Google Scholar] [CrossRef]
- Smith, J.P.; Coffin, R.B. Methane-flux and authigenic carbonate in shallow sediments overlying methane hydrate bearing strata in Alaminos Canyon, Gulf of Mexico. Energies 2014, 7, 6118–6141. [Google Scholar] [CrossRef]
- Bohrmann, G.; Heeschen, K.; Jung, C.; Weinrebe, W.; Baranov, B.; Cailleau, B.; Heath, R.; Huhnerbach, V.; Hort, M.; Masson, D.; et al. Widespread fluid expulsion along the seafloor of the Costa Rica convergent margin. Terra Nova 2002, 14, 69–79. [Google Scholar] [CrossRef]
- Teichert, B.M.A.; Gussone, N.; Eisenhauer, A.; Bohrmann, G. Clathrites: Archives of near-seafloor pore-fluid evolution (δ44/40Ca, δ13C, δ18O) in gas hydrate environments. Geology 2005, 33, 213–216. [Google Scholar] [CrossRef]
- Abegg, F.; Bohrmann, G.; Freitag, J.; Kuhs, W. Fabric of gas hydrate in sediments from Hydrate Ridge-results from ODP Leg 204 samples. Geo-Mar. Lett. 2007, 27, 269–277. [Google Scholar] [CrossRef]
- Bohrmann, G.; Torres, M.E. Gas hydrates in marine sediments. In Marine Geochemistry; Schulz, H.D., Zabel, M., Eds.; Springer: Berlin, Germany, 2006; pp. 481–512. [Google Scholar]
- Tong, H.; Feng, D.; Cheng, H.; Yang, S.; Wang, H.; Min, A.G.; Edwards, R.L.; Chen, Z.; Chen, D. Authigenic carbonates from seeps on the northern continental slope of the South China Sea: New insights into fluid sources and geochronology. Mar. Pet. Geol. 2013, 13, 260–271. [Google Scholar] [CrossRef]
- Han, X.; Suess, E.; Liebetrau, V.; Eisenhauer, A.; Huang, Y. Past methane release events and environmental conditions at the upper continental slope of the South China Sea: Constraints by seep carbonates. Int. J. Earth Sci. 2014, 103, 1873–1887. [Google Scholar] [CrossRef]
- Loyd, S.J.; Sample, J.; Tripati, R.E.; Defliese, W.F.; Brooks, K.; Hovland, M.; Torres, M.; Marlow, J.; Hancock, L.G.; Martin, R.; et al. Methane seep carbonates yield clumped isotope signatures out of equilibrium with formation temperatures. Nat. Commun. 2016, 7, 12274. [Google Scholar] [CrossRef] [Green Version]
- Naehr, T.H.; Rodriguez, N.M.; Bohrmann, G.; Paull, C.K.; Botz, R. Methane derived authigenic carbonates associated with gas hydrate decomposition and fluid venting above the Blake Ridge Diapir. Proc. ODP Sci. Results 2000, 164, 285–300. [Google Scholar]
- Matsumoto, R.; Borowski, W.S. Gas-hydrate estimate from newly determined oxygen isotopic fractionaction (αGH-IW) and 18O anomalies of the interstitial waters. Leg 164, Blake Ridge. Proc. ODP Sci. Results 2000, 164, 59–66. [Google Scholar]
- Heeschen, K.U.; Haeckel, M.; Klaucke, I.; Ivanov, M.K.; Bohrmann, G. Quantifying in situ gas hydrates at active seep sites in the eastern Blake Sea using pressure coring technique. Biogeosciences 2011, 8, 3555–3565. [Google Scholar] [CrossRef]
- Larrasoaña, J.C.; Roberts, A.P.; Musgrave, R.J.; Gràcia, E.; Piñero, E.; Vega, M.; Martínez-Ruiz, F. Diagenetic formation of greigite and pyrrhotite in gas hydrate marine sedimentary systems. Earth Planet. Sci. Lett. 2007, 261, 350–366. [Google Scholar] [CrossRef]
- Wendel, J. Ancient methane seeps tell tale of sudden warming. EOS 2017, 98. [Google Scholar] [CrossRef]
- Hesselbo, S.P.; Grocke, D.R.; Jenkins, H.C.; Bjerrum, C.J.; Farrimond, P.; Bell, H.S.M.; Green, O.R. Massive dissociation of gas hydrate during a Jurassic oceanic anoxic event. Nature 2000, 406, 392–395. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Padden, M.; Weissert, H.; De Rafelis, M. Evidence for Late Jurassic release of methane from gas hydrate. Geology 2001, 29, 223–226. [Google Scholar] [CrossRef]
- Kennedy, M.J.; Christie-Blick, N.; Sohl, L.E. Are Proterozoic cap carbonates and isotopic excursions a record of gas hydrate destabilization following Earth’s coldest intervals? Geology 2001, 29, 443–446. [Google Scholar] [CrossRef]
- Krause, F.F. Genesis and geometry of the Meiklejohn Peak lime mud-mound, Bare Mountain Quadrangle, Nevada, USA. Ordovician limestone with submarine frost heave structures—A possible response to gas clathrate hydrate evolution. Sediment. Geol. 2001, 145, 189–213. [Google Scholar] [CrossRef]
- Pierre, C.; Rouchy, G.M.; Blanc-Valleron, M.M. Gas hydrate dissociation in the Lorca Basin (SE Spain) during the Mediterranean Messinian salinity crisis. Sediment. Geol. 2002, 147, 247–252. [Google Scholar] [CrossRef]
- Pierre, C.; Rouchy, J.M. Isotopic compositions of diagenetic dolomites in the Tortonian marls of the western Mediterranean margins: Evidence of past gas hydrate formation and dissociation. Chem. Geol. 2004, 205, 469–484. [Google Scholar] [CrossRef]
- Bojanowski, M.J.; Bagiński, B.; Guillermier, C.; Franchi, I.A. Carbon and oxygen isotope analysis of hydrate-associated Oligocene authigenic carbonates using NanoSIMS and IRMS. Chem. Geol. 2015, 416, 51–64. [Google Scholar] [CrossRef]
- Himmler, T.; Freiwald, A.; Stollhofen, H.; Peckmann, J. Late Carboniferous hydrocarbon-seep carbonates from the glaciomarine Dwyka Group, southern Namibia. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2008, 257, 185–197. [Google Scholar] [CrossRef]
- Wang, J.; Jiang, G.; Xiao, S.; Li, Q.; Wei, Q. Carbon isotope evidence for widespread methane seeps in the ca.635 Ma Doushantuo cap carbonate in south China. Geology 2008, 36, 347–350. [Google Scholar] [CrossRef]
- Nyman, S.L.; Nelson, C.S.; Campbell, K.A. Miocene tubular concretions in East Coast Basin, New Zealand: Analogue for subsurface plumbing of cold seeps. Mar. Geol. 2010, 272, 319–336. [Google Scholar] [CrossRef]
- Iadanza, A.; Sanpalmieri, G.; Cipollari, P.; Mola, M.; Cosentino, D. The “Brecciated Limestones” of Maiella, Italy: Rheological implications of hydrocarbon-charged fluid migration in the Messinian Mediterranean Basin. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2013, 390, 130–147. [Google Scholar] [CrossRef]
- Peckmann, J.; Thiel, V. Carbon cycling at ancient methane-seeps. Chem. Geol. 2004, 205, 443–467. [Google Scholar] [CrossRef]
- Dela Pierre, F.; Martire, L.; Natalicchio, M.; Clari, P.; Petrea, C. Authigenic carbonates in Upper Miocene sediments of the Tertiary Piedmont Basin (NW Italy): Vestiges of an ancient gas hydrate stability zone? GSA Bull. 2010, 122, 994–1010. [Google Scholar] [CrossRef]
- Conti, S.; Fontana, D.; Lucente, C.C.; Pini, G.A. Relationships between seep-carbonates, mud volcanism and basin geometry in the Late Miocene of the northern Apennines of Italy: The Montardone mélange. Int. J. Earth Sci. 2014, 103, 281–295. [Google Scholar] [CrossRef]
- Conti, S.; Fioroni, C.; Fontana, D. Correlating shelf carbonate evolutive phases with fluid expulsion episodes in the foredeep (Miocene, northern Apennines, Italy). Mar. Pet. Geol. 2017, 79, 351–359. [Google Scholar] [CrossRef]
- Argentino, C.; Conti, S.; Crutchley, G.J.; Fioroni, C.; Fontana, D.; Johnson, J.E. Methane-derived authigenic carbonates on accretionary ridges: Miocene case studies in the northern Apennines (Italy) compared with modern submarine counterparts. Mar. Pet. Geol. 2019, 102, 860–872. [Google Scholar] [CrossRef]
- Conti, S.; Fioroni, C.; Fontana, D.; Grillenzoni, C. Depositional history of the Epiligurian wedge-top basin in the Val Marecchia area (northern Apennines, Italy): A revision of the Burdigalian-Tortonian succession. Ital. J. Geosci. 2016, 135, 324–335. [Google Scholar] [CrossRef]
- Conti, S.; Fontana, D.; Mecozzi, S.; Panieri, G.; Pini, G.A. Late Miocene seep-carbonates and fluid migration on top of the Montepetra intrabasinal high (Northern Apennines, Italy): Relations with synsedimentary folding. Sediment. Geol. 2010, 231, 41–54. [Google Scholar] [CrossRef]
- Tinterri, R.; Magalhaes, P.M. Synsedimentary structural control on foredeep turbidites: An example from Miocene Marnoso-arenacea Formation, Northern Apennines, Italy. Mar. Pet. Geol. 2011, 28, 629–657. [Google Scholar] [CrossRef]
- Ricci Lucchi, F. The Oligocene to Recent Foreland basins of the Northern Apennines. In Foreland Basins; Allen, P.A., Homewood, P., Eds.; The International Association of Sedimentologists: Gent, Belgium, 1986; Volume 8, pp. 103–139. [Google Scholar]
- Campbell, K.A. Hydrocarbon seep and hydrothermal vent paleoenvironments and paleontology: Past developments and future research directions. Paleogeogr. Paleoclimatol. Paleoecol. 2006, 232, 362–407. [Google Scholar] [CrossRef]
- Grillenzoni, C.; Monegatti, P.; Turco, E.; Conti, S.; Fioroni, C.; Fontana, D.; Salocchi, A.C. Paleoenvironmental evolution in a high-stressed cold-seep system (Vicchio Marls, Miocene, northern Apennines, Italy). Palaeogeogr. Palaeoclimatol. Palaeoecol. 2017, 487, 37–50. [Google Scholar] [CrossRef]
- Terzi, C.; Lucchi, F.R.; Vai, G.B.; Aharon, P. Petrography and stable isotope aspects of cold-vent activity imprinted on Miocene-age “calcari aLucina” from Tuscan and Romagna Apennines, Italy. Geo-Mar. Lett. 1994, 14, 177–184. [Google Scholar] [CrossRef]
- Conti, S.; Fontana, D.; Gubertini, A.; Sighinolfi, G.; Tateo, F.; Fioroni, C.; Fregni, P. A multidisciplinary study of middle Miocene seep-carbonates from the northern Apennine foredeep (Italy). Sediment. Geol. 2004, 169, 1–19. [Google Scholar] [CrossRef]
- Conti, S.; Fontana, D.; Lucente, C.C. Authigenic seep-carbonates cementing coarse-grained deposits in a fan-delta depositional system (middle Miocene, Marnoso-arenacea Formation, central Italy). Sedimentology 2008, 55, 471–486. [Google Scholar] [CrossRef]
- Artoni, A.; Conti, S.; Turco, E.; Iaccarino, S. Tectonic and climatic control on deposition of seep-carbonates: The case of middle-late Miocene Salsomaggiore Ridge (Northern Apennines, Italy). Rivista Italiana di Paleontologia e Stratigrafia 2014, 120, 317–335. [Google Scholar]
- Martire, L.; Natalicchio, M.; Petrea, C.C.; Cavagna, S.; Clari, P.; Pierre, F.D. Petrographic evidence of the past occurrence of gas hydrates in the Tertiary Piedmont Basin (NW Italy). Geo-Mar. Lett. 2010, 30, 461–476. [Google Scholar] [CrossRef]
- Shanmugam, G. Global case studies of soft-sediment deformation structures (SSDS): Definitions, classifications, advances, origins and problems. J. Palaeogeogr. 2017, 6, 251–320. [Google Scholar] [CrossRef]
- Schwartz, H.; Sample, J.; Weberling, K.D.; Minisini, D.; Moore, J.C. An ancient linked fluid migration system: Cold-seep deposits and sandstone intrusions in the Panoche Hills, California, USA. Geo-Mar. Lett. 2003, 23, 340–350. [Google Scholar] [CrossRef]
- Mazzini, A. Mud volcanism: Processes and implications. Mar. Pet. Geol. 2009, 26, 1677–1680. [Google Scholar] [CrossRef]
- Friedman, I.; O’Neil, J.R. Compilation of stable isotope fractionation: Factors of geochemical interest. In Data of Geochemistry, 6th ed.; Geological Survey Professional Paper; Fleischer, M., Ed.; USGS: Washington, DC, USA, 1977; pp. 1–12. [Google Scholar]
- Tremaine, D.M.; Froelich, P.N.; Wang, Y. Speleothem calcite farmed in situ: Modern calibration of 18O and 13C paleoclimate proxies in a continuously-monitored natural cave system. Geochim. Cosmochim. Acta 2011, 75, 4929–4950. [Google Scholar] [CrossRef]
- Tarutani, T.; Clayton, R.N.; Mayeda, T.K. The effect of polymorphism and Mg substitution on oxygen isotope fractionation between calcium carbonate and water. Geochim. Cosmochim. Acta 1969, 33, 987–996. [Google Scholar] [CrossRef]
- Emrich, K.; Ehhalt, D.H.; Vogel, J.C. Carbon isotope fractionation during the precipitation of calcium carbonate. Earth Planet. Sci. Lett. 1970, 8, 363–371. [Google Scholar] [CrossRef]
- Zeebe, R.E.; Wolf-Gladrow, D. CO2 in Seawater: Equilibrium, Kinetics, Isotopes; Elsevier: Amsterdam, The Netherlands, 2001; 346p. [Google Scholar]
- Feng, D.; Birgel, D.; Peckmann, J.; Roberts, H.H.; Joye, S.B.; Sassen, R.; Liu, X.L.; Hinrichs, K.U.; Chen, D. Time integrated variation of sources of fluids and seepage dynamics archived in authigenic carbonates from Gulf of Mexico Gas Hydrate Seafloor Observatory. Chem. Geol. 2014, 385, 129–139. [Google Scholar] [CrossRef]
- Hudson, J.D.; Anderson, T.F. Ocean temperatures and isotopic compositions through time. Earth Environ. Sci. Trans. R. Soc. Edinb. 1989, 80, 183–192. [Google Scholar] [CrossRef]
- Dählmann, A.; De Lange, G.J. Fluid–sediment interactions at Eastern Mediterranean mud volcanoes: A stable isotope study from ODP Leg 160. Earth Planet. Sci. Lett. 2003, 212, 377–391. [Google Scholar] [CrossRef]
- Tréhu, A.M. Gas hydrates in marine sediments: Lessons from scientific ocean drilling. Oceanography 2006, 19, 124–142. [Google Scholar] [CrossRef]
- Aharon, P.; Sen Gupta, B.K. Bathymetric reconstructions of the Miocene age “calcari a Lucina” (Northern Apennines, Italy) from oxigen isotopes and benthic foraminifera. Geo-Mar. Lett. 1994, 14, 219–230. [Google Scholar] [CrossRef]
- Bosellini, F.R.; Perrin, C. Estimating Mediterranean Oligocene-Miocene sea-surface temperatures: An approach based on coral taxonomic richness. Paleogeogr. Paleoclimatol. Paleoecol. 2008, 258, 71–88. [Google Scholar] [CrossRef]
- Wenzhöfer, F. Short Cruise Report MERIAN MSM 13/4 HOMER Limassol-Limassol 21.11. 2009 14.12. 2009; Max Planck Institut für Marine Mikrobiologie: Bremen, Germany, 2009. [Google Scholar]
- Scheiner, F.; Holcová, K.; Milovský, R.; Kuhnert, H. Temperature and isotopic composition of seawater in the epicontinental sea (Central Paratethys) during the Middle Miocene Climate Transition based on Mg/Ca, δ18O and δ13C from foraminiferal tests. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2018, 495, 60–71. [Google Scholar] [CrossRef]
- Haq, B.U.; Hardenbol, J.A.N.; Vail, P.R. Chronology of fluctuating sea levels since the Triassic. Science 1987, 235, 1156–1167. [Google Scholar] [CrossRef] [PubMed]
- Fontana, D.; Conti, S.; Grillenzoni, C.; Mecozzi, S.; Petrucci, F.; Turco, E. Evidence of climatic control on hydrocarbon seepage in the Miocene of the northern Apennines: The case study of the Vicchio Marls. Mar. Pet. Geol. 2013, 48, 90–99. [Google Scholar] [CrossRef]
Outcrop | Geosetting | Dimension (Length × Thickness) | Samples (n) | 13C (‰V-PDB) | 18O (‰V-PDB) | Clathrite Facies | SSD | References | |
---|---|---|---|---|---|---|---|---|---|
Outcrop | MDAC | ||||||||
MSS | Wedge-top | 400 × 70 | 10–250 × 5–30 | 16 | −39.1 to −18.2 | +0.3 to +5.5 | X | X | [49] |
CM | n.m. | 35 × 25 | 7 | −30.0 to −11.0 | +1.1 to +2.9 | X | n.o. | [49] | |
SV | Slope | 200 × 40 | 10–70 × 5–20 | 11 | −33.2 to −27.2 | +0.1 to +3.6 | X | X | This work, [58] |
BU | n.m. | 50 × 15 | 2 | −36.4 to −35.1 | −0.3 to +1.5 | X | n.o. | This work | |
PC | 70 × 30 | 10–20 × 5–8 | 1 | −32.2 | +2.2 | X | X | This work | |
SAB | 250 × 35 | 10–25 × 5–8 | 18 | −41.4 to −8.7 | +0.2 to + 2.9 | X | X | [59] | |
MP | 100–150 | 10–40 × 5–10 | 20 | −52.7 to −19,1 | +0.7 to +6.0 | X | X | [53] | |
LL | 350 × 40 | 10–150 × 5–30 | 18 | −51,7 to −27.4 | −1.6 to + 5.0 | X | n.o. | [58] | |
COR | Intrabasinal highs | 1000 × 50 | 20–300 × 10–25 | 16 | −42.3 to −26.6 | −5.7 to +1.2 | X | X | [51] |
CA | 90 × 50 | 12–30 × –5–10 | 30 | −41.3 to −15.0 | +0.9 to +1.2 | X | X | [60] | |
COL | 100 × 30 | 5–10 × 2–5 | 7 | −56.2 to −38.9 | +0.6 to +3.5 | X | n.o. | This work | |
DE | 150 × 40 | 10–80 × 5–20 | 14 | −46.0 to −11.0 | −4.7 to +2.2 | X | X | [61] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Argentino, C.; Conti, S.; Fioroni, C.; Fontana, D. Evidences for Paleo-Gas Hydrate Occurrence: What We Can Infer for the Miocene of the Northern Apennines (Italy). Geosciences 2019, 9, 134. https://doi.org/10.3390/geosciences9030134
Argentino C, Conti S, Fioroni C, Fontana D. Evidences for Paleo-Gas Hydrate Occurrence: What We Can Infer for the Miocene of the Northern Apennines (Italy). Geosciences. 2019; 9(3):134. https://doi.org/10.3390/geosciences9030134
Chicago/Turabian StyleArgentino, Claudio, Stefano Conti, Chiara Fioroni, and Daniela Fontana. 2019. "Evidences for Paleo-Gas Hydrate Occurrence: What We Can Infer for the Miocene of the Northern Apennines (Italy)" Geosciences 9, no. 3: 134. https://doi.org/10.3390/geosciences9030134
APA StyleArgentino, C., Conti, S., Fioroni, C., & Fontana, D. (2019). Evidences for Paleo-Gas Hydrate Occurrence: What We Can Infer for the Miocene of the Northern Apennines (Italy). Geosciences, 9(3), 134. https://doi.org/10.3390/geosciences9030134