Character, Rates, and Environmental Significance of Holocene Dust Accumulation in Archaeological Hilltop Ruins in the Southern Levant
Abstract
:1. Introduction
- (1)
- The debris inside (hilltop) ruins contains a major dust component;
- (2)
- Local and remote sediment sources can be differentiated;
- (3)
- Sediments in archaeological ruins represent the missing Holocene dust archives;
- (4)
- Understanding deposition processes in the ruins in the context of current dust dynamics will improve our knowledge of past landscape changes;
- (5)
- Ruin soils might represent a hitherto unexplored climate archive.
2. Study Areas and Methods
2.1. The Negev and Petra Areas
2.1.1. Sampled Profiles
2.1.2. Current Dust
2.2. Methods of Sample Collection, Laboratory Analysis, Dating, and Statistical Evaluation
3. Results
3.1. General Soil Properties
3.1.1. Ruin Soils in the Negev
3.1.2. Ruin Soils Near Petra
3.2. Ages and Sedimentation Rates
3.2.1. Sedimentation Ages of the Negev Hilltop Ruin above the Western Wadi (HH-WW-R)
3.2.2. Sedimentation Ages of the Negev Ruin Overlooking the Central Wadi (HH-CW-R)
3.2.3. Sedimentation Ages in the Petra Region
3.3. Grain Sizes
3.3.1. Negev
3.3.2. Petra Region
3.4. Current Dust Samples
3.4.1. Deposition Conditions, Total Amounts, Colors, and CaCO3 Contents of Current Dust
3.4.2. Grain Sizes of Current Dust Samples
3.5. Statistical Analysis of Grain Size Distributions
- End member 1 (black line) explains 4.5% of the variance and shows trimodal properties, with a main peak in the coarse clay and smaller modes in the coarse silt and medium sand fractions. It is present in the ruins soils in both areas, some reference samples of rocks, and the Turonian paleosol;
- End member 2 (red line) explains 8.5% of the variance and shows trimodal properties, with a main mode in the fine silt fraction and minor peaks in the coarse silt and medium sand fractions. It is present in all Negev samples, to some degree in the ruin soils in the Petra region, and in some of the dust storms in the Petra region, particularly those associated with precipitation;
- End member 3 (green line) explains 9% of the variance and has bimodal properties, with a main mode in the medium-coarse silt fraction and a minor peak in the medium sand fraction. This end member is present mainly in the Negev reference samples, one of the Negev dust storms, one of the Petra sandstone rocks, and in the dust storms in the Petra region;
- End member 4 (blue line) explains 19% of the variance and has unimodal properties with a peak in the coarse silt fraction. It is present in all Negev soils and in all Negev dust storms, but not in the reference samples. In the Petra region, it is found to a very limited amount in the ruin soils and in the dust storms associated with precipitation;
- End member 5 (cyan line) explains 18% of the variance and is bimodal, with a main mode in the coarse silt-fine sand fraction and a very minor peak in the coarse clay fraction. It is found in most Negev ruin soils and Negev dust storms and in most Petra ruin soils and Petra dust storms. With the exception of the limestone outcrop, it is absent in all reference samples;
- End member 6 (purple line) explains 31% of the variance, which exceeds by far all other computed end members. It is bimodal with a strong peak in the medium sand and a small peak in the fine clay fraction. This end member is present in the ruin soils in both investigation areas and in most samples from the Petra region. It is absent in Negev dust storms and reference samples. In the Petra region, it is absent from the limestone outcrop, the dust storms associated with precipitation, one dry dust storm, and two sandstones;
- End member 7 (yelow line) explains 10% of the variance and has trimodal properties. Its main peak is in the coarse sand fraction, with two minimal other peaks in the coarse silt and medium clay fraction. It is absent in the Negev samples and in the Petra region is only present in most sandstone rocks and a few dry dust storms, including the two samples that may have been associated with a dust devil.
3.6. Pedogenesis
3.6.1. Extractable Iron
- The higher amounts of extractable iron in the loess aprons in Nahal HaRo’a suggest that they are not the source of the material in the ruin soils, despite the similarity of grain sizes.
- Extractable iron is not elevated in the paleosols that contain secondary carbonates, which puts a question mark on their assumed inheritance from periods of intense pedogenesis as proposed by [6].
3.6.2. Magnetic Susceptibilities χ
3.7. Principal Component Analysis (PCA) Based on Grain Sizes and Magnetic Susceptibilities
4. Discussion
4.1. Current Dust Storms Sediments vs. Ruins Soils
4.2. Sources of Sediments in the Ruin Soils
4.3. Vegetation, Biocrusts, and Clast Pavements
4.4. The Role of Climate
- -
- Snow would lead to gentle infiltration with maximum soil moisture, providing optimal conditions for biocrusts and vegetation;
- -
- Snow would mostly be associated with very limited runoff and subsequent erosion;
- -
- Snow could be effective in catching dust particles from the air. This hypothesis is based on the character of one snow storm in the Petra region on 15 February 2017 and needs further testing.
4.5. Ruin Soils as Potential Environmental Archives
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A. Detailed Description of Sampled Sites
Appendix A.1. Sampled Profiles in the Negev
Appendix A.1.1. Western Wadi: Hilltop Ruin (Samples HH-WW R1)
Appendix A.1.2. Central Wadi: Hilltop Ruin (Samples HH-CW Ruin)
Appendix A.1.3. Loessial Apron in Nahal HaRo’a
Appendix A.1.4. Negev Reference Samples: Limestones, Chalk, and Turonian Paleosol
Appendix A.2. Sampled Profiles in the Petra Region
Appendix A.2.1. The Monastery of Jabal Haroun
Appendix A.2.2. The Triclinium on Jabal Farasha
Appendix A.2.3. Umm Saysaban Hilltop Ruin
Appendix A.2.4. Shkarat Msaied Hilltop Ruin
Appendix A.2.5. Abu Suwwan Hilltop Ruin
Appendix A.2.6. Natural Sandstone Plateau Soil
Appendix A.2.7. Petra Region Reference Samples
Appendix B. Detailed Description of Methods
Appendix B.1. Sample Collection
Appendix B.2. Laboratory Analysis
Appendix B.3. Dating
Appendix B.4. Statistical Evaluation
Appendix C. Detailed Results of Laboratory Analyses
Sample No. | CaCO3 % from C/N | CaCO3 % Karbonat-Bombe | CaCO3 % from Ca% |
---|---|---|---|
Negev Western Wadi Ruin: Calcaric Leptosol (Protic, Siltic) | |||
HH-WW R1 10 | 35 | n.a. | 40 |
HH-WW-R1 20 | 35 | n.a. | 42 |
Negev Central Wadi Ruin: Protic Regosol (Siltic) | |||
HH-CW-Ruin 10 | 40 | 39 | 41 |
HH-CW-Ruin 25 | 42 | 40 | 43 |
HH-CW-Ruin 50 | 40 | 38 | 42 |
HH-CW-R-60 | 32 | n.a. | 37 |
HH-CW-Ruin 75 | 36 | 36 | 37 |
HH-CW-R 90 | 27 | n.a. | 32 |
Negev Loess Apron in Nahal Haroa: Cambic Calcisol (Siltic) | |||
NH-LA-10cm | 28 | n.a. | n.a. |
NH-LA-30cm | 27 | n.a. | n.a. |
Negev Reference Samples from Horvath Haluqium | |||
HH-CW-Tur-Paleo | n.a. | 43 | 45 |
HH-CW-chalk | n.a. | 98 | 97 |
Haroa Farm chalk | n.a. | 98 | n.a. |
Soft limestone | n.a. | 93 | 98 |
Hard limestone | n.a. | 93 | 98 |
Natural Hilltop Soil in Petra Region: Protic Regosol (Arenic) | |||
Sandplateau 1 | 2 | n.a. | n.a. |
Sandplateau 2 | 1 | n.a. | n.a. |
Sandplateau 3 | 0 | n.a. | n.a. |
Sandplateau 4 | 0 | n.a. | 0 |
Sandplateau Stein | 0 | n.a. | 0 |
Jabal Haroun Monastery Ruin: Protic Arenosol (Aridic, Aeolic) - Petra | |||
FJHP Site 1, Trench R | 7 | n.a. | 7 |
JH 1 | 7 | n.a. | 7 |
Petra Region, Jabal Farasha Hilltop Ruin: Calcaric Leptosol (Protic) | |||
JF site 124/1 5 cm | 13 | n.a. | 13 |
JF site 124/1 15 cm | 10 | n.a. | 11 |
JF site 124/1 25 cm | 8 | n.a. | 9 |
JF site 124/1 rock | 2 | n.a. | 3 |
Petra region, Umm Saysaban Hilltop Ruin: Calcaric Leptosol (Protic) | |||
Umm Saysaban 5 cm | 12 | n.a. | 13 |
Umm Saysaban 10 cm | 12 | n.a. | 13 |
Petra region, Abu Suwwan PPNB Ruins: Protic Regosol (Aeolic) | |||
Abu Suwwan ashy layer 30 cm | n.a. | n.a. | n.a. |
Abu Suwwan below nw 65 | 18 | 17 | 18 |
Petra Region, Shkarat Msaied Ppnb Ruins: Chromic Cambisol (Protocalcic) | |||
Shkarat Msaeid 4 | n.a. | n.a. | n.a. |
Shkarat Msaied 1 | 15 | 15 | 15 |
Reference Samples from Petra Region | |||
Ba’ja Sandstein (rock) | 1 | n.a. | 2 |
Disi Sandstone | 4 | n.a. | 2 |
Um Ishrin sandstone | 2 | n.a. | 2 |
Abu Khushayba sandstone JH | 2 | n.a. | 1 |
JH limestone outcrop | 97 | 98 | 57–100 |
Beidha Fan | 16 | n.a. | n.a. |
Fan Umm Sayhoun | 5 | n.a. | n.a. |
Umm Seihun formation (US 1) | 34 | n.a. | 36 |
Sample No. | Skeleton > 2 mm (%) | Sand % | Silt % | Clay % | Coarse Sand % | Medium Sand % | Fine Sand % | Very Fine Sand % | Coarse Silt % | Medium Silt % | Fine Silt % | Coarse Clay % | Medium Clay % | Fine Clay % | Mode 1 (µm) | Mode 2 (µm) | Mode 3 (µm) | Mean (µm) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Western Wadi Ruin: Calcaric Leptosol (Protic, Siltic) | ||||||||||||||||||
HH-WW R1 10 | 21 | 42 | 45 | 13 | 4 | 8 | 29 | 23 | 18 | 15 | 13 | 9 | 2 | 2 | 132 | 0 | 0 | 25 |
HH-WW-R1 20 | 16 | 45 | 42 | 13 | 5 | 11 | 30 | 24 | 12 | 16 | 13 | 8 | 3 | 2 | 132 | 13 | 0 | 28 |
Central Wadi Ruin: Protic Regosol (Siltic) | ||||||||||||||||||
HH-CW-Ruin 10 | 4 | 21 | 53 | 26 | 2 | 3 | 16 | 13 | 22 | 14 | 16 | 14 | 6 | 5 | 42 | 4 | 0 | 10 |
HH-CW-Ruin 25 | 19 | 23 | 53 | 24 | 4 | 3 | 17 | 11 | 18 | 16 | 19 | 16 | 5 | 3 | 4 | 42 | 1315 | 11 |
HH-CW-Ruin 50 | 9 | 41 | 47 | 12 | 3 | 6 | 32 | 22 | 20 | 14 | 13 | 7 | 3 | 2 | 132 | 0 | 0 | 26 |
HH-CW-R-60 | 24 | 36 | 51 | 13 | 5 | 5 | 27 | 23 | 19 | 18 | 14 | 9 | 3 | 1 | 132 | 0 | 0 | 22 |
HH-CW-Ruin 75 | 12 | 20 | 51 | 29 | 1 | 4 | 15 | 15 | 28 | 9 | 14 | 11 | 7 | 11 | 42 | 4 | 0 | 8 |
HH-CW-R 90 | 10 | 27 | 51 | 22 | 2 | 2 | 23 | 21 | 22 | 14 | 14 | 11 | 7 | 4 | 132 | 4 | 0 | 13 |
Loess Paleosol Of Loess Apron in Nahal Haroa: Cambic Calcisol (Siltic) | ||||||||||||||||||
NH-LA-10cm | 10 | 32 | 57 | 11 | 3 | 3 | 25 | 24 | 39 | 10 | 8 | 7 | 4 | 0 | 42 | 0 | 0 | 27 |
NH-LA-30cm | 5 | 27 | 58 | 15 | 2 | 2 | 23 | 22 | 35 | 12 | 10 | 8 | 6 | 1 | 42 | 0 | 0 | 20 |
Reference Samples from Horvath Haluqium | ||||||||||||||||||
HH-CW-Tur-Paleo | 14 | 20 | 42 | 38 | 2 | 6 | 11 | n.a. | 12 | 16 | 14 | 8 | 9 | 22 | 13 | 0 | 0 | 3 |
HH-CW-chalk | n.a. | 25 | 39 | 36 | 5 | 9 | 11 | n.a. | 1 | 0 | 38 | 35 | 0 | 2 | 4 | 132 | 0 | 8 |
Haroa Farm - chalk | n.a. | 12 | 86 | 2 | 0 | 1 | 11 | n.a. | 1 | 7 | 78 | 1 | 0 | 2 | 4 | 0 | 0 | 5 |
HH-WW-C2-soft limestone | n.a. | 16 | 80 | 4 | 4 | 3 | 8 | n.a. | 7 | 53 | 20 | 2 | 1 | 1 | 13 | 132 | 0 | 14 |
Sample No. | Skeleton > 2 mm (%) | Sand % | Silt % | Clay % | Coarse Sand % | Medium Sand % | Fine Sand % | Very Fine Sand % | Coarse Silt % | Medium Silt % | Fine Silt % | Coarse Clay % | Medium Clay % | Fine Clay % | Mode 1 (µm) | Mode 2 (µm) | Mode 3 (µm) | Mean (µm) | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Jabal Haroun Monastery Ruin: Protic Arenosol (Aridic, Aeolic) | |||||||||||||||||||
FJHP Site 1, Trench R | n.a. | 84 | 8 | 8 | 2 | 47 | 36 | 3 | 3 | 2 | 3 | 3 | 2 | 2 | 415 | 0 | 0 | 178 | |
JH 1 | n.a. | 75 | 13 | 12 | 4 | 31 | 39 | 13 | 5 | 4 | 4 | 4 | 3 | 5 | 132 | 0 | 0 | 68 | |
Jabal Farasha hilltop Ruin: Calcaric Leptosol (Protic) | |||||||||||||||||||
JF site 124/1 5 cm | 3 | 51 | 36 | 13 | 3 | 17 | 30 | 15 | 18 | 11 | 8 | 6 | 4 | 3 | 132 | 0 | 0 | 38 | |
JF site 124/1 15 cm | 5 | 53 | 35 | 12 | 3 | 16 | 34 | 16 | 19 | 9 | 7 | 6 | 3 | 3 | 132 | 0 | 0 | 41 | |
JF site 124/1 25 cm | 21 | 57 | 29 | 14 | 4 | 14 | 39 | 19 | 15 | 8 | 6 | 6 | 5 | 2 | 132 | 1 | 0 | 38 | |
JF site 124/1 rock | n.a. | 60 | 18 | 22 | 48 | 10 | 2 | n.a. | 3 | 8 | 8 | 10 | 9 | 3 | 1315 | 1 | 13 | 89 | |
Umm Saysaban Hilltop Ruin: Calcaric Leptosol (Protic) | |||||||||||||||||||
Umm Saysaban 5 cm | 13 | 51 | 35 | 14 | 3 | 16 | 32 | 13 | 15 | 11 | 9 | 8 | 4 | 2 | 132 | 0 | 0 | 35 | |
Umm Saysaban 10 cm | 12 | 54 | 30 | 16 | 5 | 18 | 32 | 13 | 13 | 9 | 8 | 8 | 5 | 3 | 132 | 0 | 0 | 36 | |
Abu Suwwan PPNB Ruins: Protic Regosol (Aeolic) | |||||||||||||||||||
Abu Suwwan below nw 65 | 2 | 62 | 23 | 15 | 1 | 39 | 22 | 7 | 7 | 8 | 8 | 7 | 5 | 3 | 415 | 4 | 0 | 48 | |
Shkarat Msaied PPNB Ruins: Chromic Cambisol (Protocalcic) | |||||||||||||||||||
Shakarat Msaid 1 | 0 | 52 | 26 | 22 | 0 | 30 | 21 | 5 | 11 | 7 | 8 | 8 | 6 | 8 | 415 | 4 | 0 | 27 | |
Natural Hilltop Soil on Sandstone Plateau: Protic Regosol (Arenic) | |||||||||||||||||||
Sandplateau 1 | 0 | 80 | 12 | 8 | 3 | 59 | 18 | n.a. | 6 | 4 | 3 | 4 | 3 | 2 | 415 | 0 | 0 | 143 | |
Sandplateau 2 | 5 | 82 | 9 | 9 | 2 | 61 | 19 | n.a. | 4 | 3 | 3 | 3 | 3 | 3 | 415 | 0 | 0 | 169 | |
Sandplateau 3 | 9 | 82 | 9 | 9 | 2 | 61 | 19 | n.a. | 4 | 2 | 3 | 3 | 3 | 3 | 415 | 0 | 0 | 161 | |
Sandplateau 4 | 0 | 82 | 8 | 10 | 1 | 62 | 18 | n.a. | 3 | 2 | 3 | 3 | 3 | 4 | 415 | 0 | 0 | 160 | |
Sandplateau Stein | 0 | 89 | 7 | 3 | 1 | 75 | 12 | n.a. | 2 | 2 | 4 | 3 | 1 | 0 | 415 | 0 | 0 | 248 | |
Reference Samples from Petra Region: Rocks, Current Fans, and Cemented Paleosol: Cambic Calcisol (Loamic) | |||||||||||||||||||
Ba’ja sandstone | n.a. | 72 | 11 | 17 | 14 | 31 | 27 | n.a. | 3 | 3 | 6 | 17 | 0 | 0 | 415 | 1 | 0 | 56 | |
Disi sandstone | n.a. | 90 | 6 | 4 | 11 | 67 | 12 | n.a. | 1 | 2 | 2 | 2 | 1 | 1 | 415 | 0 | 0 | 281 | |
Um Ishrin sandstone | n.a. | 81 | 12 | 7 | 18 | 55 | 9 | n.a. | 3 | 4 | 4 | 3 | 1 | 2 | 415 | 0 | 0 | 186 | |
Abu Khushayba sandstone JH | n.a. | 79 | 11 | 10 | 3 | 63 | 13 | n.a. | 2 | 3 | 5 | 5 | 2 | 2 | 415 | 0 | 0 | 101 | |
JH limestone outcrop | n.a. | 48 | 46 | 6 | 29 | 14 | 5 | n.a. | 12 | 27 | 7 | 2 | 1 | 2 | 1315 | 13 | 0 | 74 | |
Beidha Fan | 9 | 69 | 21 | 11 | 3 | 43 | 22 | n.a. | 9 | 5 | 6 | 7 | 3 | 1 | 415 | 1 | 0 | 72 | |
Fan Umm Sayhoun | 7 | 91 | 3 | 6 | 16 | 66 | 9 | n.a. | 0 | 1 | 1 | 2 | 1 | 3 | 415 | 0 | 0 | 338 | |
Cemented paleosol US 1 | n.a. | 82 | 14 | 4 | 26 | 40 | 16 | 8 | 4 | 4 | 5 | 3 | 0 | 1 | 415 | 0 | 0 | 230 | |
US 1after removal of CaCO3 | n.a. | 68 | 9 | 23 | 13 | 42 | 13 | n.a. | 3 | 3 | 3 | 4 | 3 | 16 | 415 | 0 | 0 | 29 |
Sample No. | Skeleton > 2 mm (%) | Sand % | Silt % | Clay % | Coarse Sand % | Medium Sand % | Fine Sand % | Very Fine Sand % | Coarse Silt % | Medium Silt % | Fine Silt % | Coarse Clay % | Medium Clay % | Fine Clay % | Mode 1 (µm) | Mode 2 (µm) | Mode 3 (µm) | Mean [µm] |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Negev | ||||||||||||||||||
25-03-03-HH dry spot | 0 | 4 | 83 | 13 | 0 | 0 | 4 | 3 | 44 | n.a. | 39 | 13 | 0 | 0 | 42 | 0 | 0 | 12 |
25-03-03-HH-incl.-washout | 0 | 2 | 84 | 14 | 0 | 0 | 2 | 2 | 39 | n.a. | 44 | 14 | 0 | 0 | 42 | 0 | 0 | 11 |
11-12-10-HH | 0 | 24 | 56 | 20 | 0 | 1 | 23 | 21 | 38 | n.a. | 18 | 19 | 1 | 0 | 42 | 1 | 0 | 16 |
12-12-10-HH | 0 | 22 | 59 | 19 | 0 | 0 | 22 | 21 | 41 | n.a. | 18 | 19 | 1 | 0 | 42 | 1 | 0 | 16 |
29-02-12-HH | 0 | 30 | 58 | 12 | 0 | 0 | 30 | 28 | 46 | n.a. | 11 | 12 | 0 | 0 | 42 | 1 | 0 | 27 |
18-04-12-HH | 0 | 26 | 61 | 13 | 0 | 1 | 25 | 23 | 48 | n.a. | 13 | 12 | 0 | 0 | 42 | 1 | 0 | 24 |
20-12-12-HH | 0 | 23 | 64 | 13 | 0 | 0 | 23 | 22 | 50 | n.a. | 14 | 13 | 0 | 0 | 42 | 1 | 0 | 18 |
22-03-13-HH | 0 | 24 | 60 | 16 | 0 | 1 | 23 | 21 | 44 | n.a. | 16 | 16 | 0 | 0 | 42 | 1 | 0 | 17 |
11-02-15-HH | 0 | 22 | 60 | 18 | 0 | 0 | 22 | 21 | 44 | n.a. | 15 | 17 | 1 | 0 | 42 | 1 | 0 | 16 |
01-12-16-HH | 0 | 16 | 68 | 16 | 0 | 0 | 16 | 15 | 51 | n.a. | 18 | 15 | 0 | 0 | 42 | 1 | 0 | 17 |
05-01-18-HH | 0 | 21 | 63 | 16 | 0 | 3 | 17 | 15 | 45 | n.a. | 18 | 15 | 1 | 0 | 42 | 1 | 0 | 9 |
28-03-18-HH | 0 | 6 | 72 | 22 | 0 | 1 | 6 | 5 | 34 | n.a. | 38 | 21 | 0 | 0 | 42 | 0 | 0 | 12 |
Petra | ||||||||||||||||||
JH-19-12-2016 | 0 | 89 | 8 | 3 | 0 | 36 | 54 | 20 | 4 | n.a. | 4 | 3 | 0 | 0 | 132 | 0 | 0 | 157 |
JH-07.01.2017 | 0 | 83 | 13 | 4 | 10 | 62 | 11 | 5 | 7 | n.a. | 6 | 4 | 0 | 0 | 415 | 0 | 0 | 204 |
JH-15.02.2017 | 0 | 44 | 43 | 13 | 1 | 24 | 19 | 11 | 22 | n.a. | 21 | 13 | 0 | 0 | 415 | 42 | 10 | 34 |
JH-01.03.2017 | 0 | 46 | 46 | 8 | 0 | 11 | 35 | 22 | 30 | n.a. | 16 | 7 | 0 | 0 | 132 | 0 | 0 | 40 |
05-08-17-JH | 0 | 80 | 14 | 6 | 4 | 63 | 14 | 4 | 7 | n.a. | 7 | 5 | 0 | 0 | 415 | 0 | 0 | 170 |
05-08-17-JH closed box | 0 | 82 | 13 | 5 | 3 | 65 | 13 | 3 | 6 | n.a. | 6 | 5 | 0 | 0 | 415 | 0 | 0 | 182 |
Saleh.25.11.2016 | 0 | 86 | 10 | 4 | 0 | 52 | 34 | 9 | 5 | n.a. | 5 | 4 | 0 | 0 | 415 | 0 | 0 | 184 |
20-06-17-Saleh | 0 | 59 | 33 | 8 | 0 | 19 | 41 | 24 | 23 | n.a. | 10 | 8 | 0 | 0 | 132 | 1 | 0 | 63 |
05-08-17-Saleh | 0 | 65 | 28 | 7 | 1 | 23 | 42 | 24 | 19 | n.a. | 8 | 6 | 0 | 0 | 132 | 1 | 0 | 85 |
Sample No. | Fe(o) (mg/g) | Fe(d) (mg/g) | Fe (d/t) | CIA quotient A | CIA quotient B | K/Al2O3-ratio | CaCO3 % | Clay % | χ (m³/kg) E-8 | χFD % | χOx-diff % | χDi-diff % |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Negev | ||||||||||||
Ruin Western Wadi | ||||||||||||
HH-WW R1 10 cm | 0.21 | 2.52 | 0.14 | 0.92 | 0.80 | 0.09 | 35 | 13 | 44 | 4 | 8 | 31 |
HH-WW-R1 20 cm | 0.20 | 2.41 | 0.13 | 0.92 | 0.81 | 0.07 | 35 | 13 | 44 | 4 | 6 | 36 |
Ruin Central Wadi | ||||||||||||
HH-CW-R 10 cm | 0.49 | 4.27 | 0.20 | 0.91 | 0.80 | 0.16 | 40 | 26 | 64 | 6 | ||
HH-CW-R 25 cm | 0.50 | 3.62 | 0.19 | 0.92 | 0.82 | 0.14 | 42 | 24 | 64 | 7 | ||
HH-CW-R 50 cm | 0.54 | 3.07 | 0.17 | 0.92 | 0.82 | 0.17 | 40 | 12 | 74 | 8 | ||
HH-CW-R 60 cm | 0.23 | 1.84 | 0.11 | 0.92 | 0.80 | 0.13 | 32 | 13 | 61 | 5 | 2 | 35 |
HH-CW-R 75 cm | 0.32 | 3.74 | 0.18 | 0.92 | 0.79 | 0.17 | 36 | 29 | 55 | 3 | ||
HH-CW-R 90 cm | 0.21 | 2.12 | 0.12 | 0.92 | 0.77 | 0.13 | 27 | 22 | 55 | 3 | 6 | 38 |
Haroa Loess Aprons | ||||||||||||
NH-LA-10 cm | 0.40 | 4.59 | 0.20 | 0.92 | 0.75 | 0.16 | 28 | 11 | 58 | 3 | 14 | 25 |
NH-LA-30 cm | 0.38 | 4.64 | 0.20 | 0.92 | 0.73 | 0.16 | 27 | 15 | 61 | 3 | 10 | 23 |
Petra Region | ||||||||||||
Monastery Ruin Soil on Jabal Haroun | ||||||||||||
FJHP Site 1, Trench R | 0.05 | 3.79 | 0.50 | 0.97 | 0.62 | 0.11 | 7 | 8 | 18 | 7 | ||
Jabal Farasha Hilltop Ruin | ||||||||||||
JF site 124/1 5 cm | 0.21 | 7.53 | 0.44 | 0.91 | 0.55 | 0.09 | 13 | 13 | 32 | 5 | 0 | 54 |
JF site 124/1 15 cm | 0.30 | 6.72 | 0.45 | 0.91 | 0.49 | 0.07 | 10 | 12 | 26 | 6 | ||
JF site 124/1 25 cm | 0.19 | 7.61 | 0.45 | 0.90 | 0.40 | 0.05 | 8 | 14 | 20 | 6 | ||
JF site 124/1 rock (sandstone) | 0.21 | 52.20 | 0.63 | 0.72 | 0.09 | 0.02 | 2 | 22 | 7 | 14 | ||
Umm Saysaban | ||||||||||||
Umm Saysaban 5 cm | 0.25 | 5.56 | 0.34 | 0.91 | 0.52 | 0.06 | 12 | 14 | 28 | 7 | ||
Umm Saysaban 10 cm | 0.17 | 5.24 | 0.36 | 0.90 | 0.51 | 0.05 | 12 | 16 | 23 | 7 | ||
Abu Suwwan Paleosol bel. Ruins | ||||||||||||
Abu Suwwan below nw 65 cm | 0.14 | 4.02 | 0.39 | 0.96 | 0.76 | 0.07 | 18 | 15 | 82 | 6 | ||
Shakarat Msaid Paleosol bel. Ruins | ||||||||||||
Shkarat Msaied 1 | 0.27 | 4.42 | 0.31 | 0.95 | 0.69 | 0.14 | 15 | 22 | 22 | 5 | ||
Natural Soil on Sandstone Plateau | ||||||||||||
Sandplateau 1 | 0.05 | 2.47 | 0.41 | 0.96 | 0.32 | 0.06 | 2 | 8 | 20 | −4 | ||
Sandplateau 2 | 0.04 | 2.01 | 0.46 | 0.97 | 0.26 | 0.05 | 1 | 9 | 15 | −6 | ||
Sandplateau 3 | 0.00 | 2.01 | 0.46 | 0.97 | 0.15 | 0.04 | 0 | 9 | 10 | −2 | ||
Sandplateau 4 | 0.00 | 1.75 | 0.42 | 0.97 | 0.07 | 0.04 | 0 | 10 | 11 | 4 | ||
Sandplateau Stein (sandstone) | 0.00 | 0.14 | 0.20 | 0.96 | 0.03 | 0.01 | 0 | 4 | 0 | |||
Baja Sandstein Oberfläche (sandstone) | 0.03 | 0.23 | 0.15 | 0.86 | 0.09 | 0.01 | 1 | 17 | 0 | |||
Cemented Paleosol | ||||||||||||
US 1 | 0.03 | 1.32 | 0.25 | 0.98 | 0.94 | 0.07 | 34 | 4 | 6 | 10 |
Appendix D. Dating Results
Labcode | Sample | Material | 14C | cal BCE/CE | cal BCE/CE | C (%) | Software/Dataset | |
---|---|---|---|---|---|---|---|---|
yrs BP | ± | 1 σ | 2 σ | |||||
UBA-38659 | HH-CW-R 13-15 | charcoal | 229 | 35 | 1643–1949* CE | 1527–1949* CE | 76.8 | CALIB7.04/IntCal13 |
UBA-38660 | HH-WC-R-20 | charcoal | 106 | 27 | 1694–1918 CE | 1682–1935 CE | 75.7 | CALIB7.04/IntCal13 |
UBA-38661 | HH-WC-R-5-8 | charcoal | 4 | 24 | age - 2 sigma outside calibration age range | 82.8 | ||
UBA-38980 | AS ashy layer 30 | charcoal | 3599 | 28 | 2014–1916 BCE | 2026–1891 BCE | 0.62 | CALIB7.04/IntCal13 |
UBA-39002 | Shakarat Msaid 4 | charcoal | 12288 | 59 | 12385–12131 BCE | 12666–12077 BCE | 65.8 | CALIB7.04/IntCal13 |
MAMS 31135 | HH CW R1 50 TL temper (ash) | charcoal | 7282 | 29 | 6210–6092 BCE | 6219–6072 BCE | 1.4 | SwissCal 1.0/IntCal13 |
Labcode | Sample | Depth Below Surface (cm) | Water | Th | U | K | Mean DR | Cosm. DR | OSL/TL | OD | N | De | a-Value | Age | Year BCE/CE | Remarks | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
% | µg/g | ± | µg/g | ± | % | ± | mGy/a | mGy/a | (%) | Gy | ± | yrs | ± | yrs | |||||||
MAL 10341 | HH-WW-R-TL 15 | 15 | 5 ± 5 * | 7.46 | 0.35 | 5.49 | 0.22 | 1.90 | 0.09 | 4.38 ± 0.4 | 0.26 ± 0.03 | TL | 11.53 | 0.3 | 0.05 | 2736 | 252 | 970–470 BCE | Fraction 4–11 µm | ||
MAL 10342 | HH CW R1 50 TL | 50 | 5 ± 5 * | 5.81 | 0.17 | 2.12 | 0.21 | 2.47 | 0.4 | 4.25 ± 0.4 | 0.21 ± 0.02 | TL | 10.38 | 0.5 | 0.1 | 2586 | 264 | 830–300 BCE | Fraction 4–11 µm | ||
HLK-12 | HH-CW-Ruin 25 | 25 | 5 ± 3 | 4.7 | 1.5 | 1.08 | 1.82 ± 0.07 * | OSL | 35 | 30/31 | 2.0 | 0.1 | 1070 | 80 | 870–1020 CE | Fraction 90–125 µm | |||||
HLK-11 | HH-CW-Ruin 50 | 55 | 8 ± 3 | 3.4 | # | 1.3 | # | 0.73 | # | 1.36 ± 0.05 * | OSL | 34 | 32/33 | 5.9 | 0.4 | 4300 | 290 | 2570–1990 BCE | Fraction 90–125 µm | ||
HLK-10 | HH-CW-Ruin 90 | 90 | 8 ± 3 | 6.3 | # | 2.1 | # | 1.31 | # | 2.21 ± 0.09 * | OSL | 32 | 17/19 | 54 | 3 | 24300 | 1700 | 23,980–20,580 BCE | Fraction 90–125 µm | ||
PET-20 | JF site 124/1 15 | 15 | 5 ± 2 | 10.2 | # | 2.42 | # | 0.56 | # | 2.02 ± 0.07 * | OSL | 27 | 19/19 | 2.2 | 0.1 | 1060 | 80 | 870–1040 CE | Fraction 90–125 µm |
Appendix E. Comparison of Grain Size Analysis Results
Sample No. & Method | Coarse Sand % | Medium Sand % | Fine Sand % | Coarse Silt % | Medium Silt % | Fine Silt % | Coarse Clay % | Medium Clay % | Fine Clay % | Sand % | Silt % | Clay % | Very Fine Sand (125–63 µm) % |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Sedigraph | |||||||||||||
25-03-03 HH incl washout (Sedigraph) | 0 | 0 | 2 | 14 | 51 | 18 | 7 | 5 | 3 | 3 | 82 | 15 | n.a. |
12-12-10-HH (Sedigraph) | 0 | 0 | 11 | 38 | 16 | 12 | 10 | 6 | 6 | 12 | 66 | 22 | n.a. |
05-08-17 JH (Sedigraph) | 0 | 48 | 36 | 4 | 4 | 3 | 2 | 1 | 1 | 84 | 11 | 5 | n.a. |
05-08-17 JH closed box (Sedigraph) | 0 | 47 | 36 | 4 | 4 | 3 | 2 | 1 | 1 | 84 | 11 | 5 | n.a. |
Laser, Clay Border 2 µm | |||||||||||||
25-03-03 HH incl. washout (Laser 2 µm) | 0 | 0 | 2 | 39 | 41 | 12 | 6 | 0 | 0 | 2 | 92 | 6 | 2 |
12-12-10-HH (Laser 2 µm) | 0 | 0 | 22 | 41 | 15 | 14 | 8 | 1 | 0 | 23 | 69 | 8 | 21 |
05-08-17-JH (Laser 2 µm) | 4 | 63 | 14 | 7 | 6 | 4 | 2 | 0 | 0 | 81 | 17 | 2 | 4 |
05-08-17-JH closed box (Laser 2 µm) | 3 | 65 | 13 | 6 | 5 | 4 | 2 | 0 | 0 | 82 | 16 | 2 | 3 |
Laser, Clay Border 5 µm | |||||||||||||
25-03-03 HH incl. washout (Laser 5 µm) | 0 | 0 | 2 | 39 | n.a. | 44 | 14 | 0 | 0 | 3 | 83 | 14 | 2 |
12-12-10-HH (Laser 5 µm) | 0 | 0 | 22 | 41 | n.a. | 18 | 19 | 1 | 0 | 22 | 59 | 19 | 21 |
05-08-17-JH (Laser 5 µm) | 3 | 65 | 13 | 6 | n.a. | 6 | 5 | 0 | 0 | 82 | 13 | 5 | 3 |
05-08-17-JH closed box (Laser 5 µm) | 3 | 65 | 13 | 6 | n.a. | 6 | 5 | 0 | 0 | 82 | 13 | 5 | 3 |
Sample No. & Method | Coarse Sand % | Medium Sand % | Fine Sand % | Coarse Silt % | Medium Silt % | Fine Silt % | Coarse Clay % | Medium Clay % | Fine Clay % | Sand % | Silt % | Clay % | Very Fine Sand (125–63 µm) % |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Sedigraph | |||||||||||||
HH-WW R1 10 (Sedigraph) | 21 | 4 | 8 | 29 | 18 | 15 | 13 | 9 | 2 | 42 | 45 | 13 | n.a. |
HH-WW-R1 20 (Sedigraph) | 16 | 5 | 11 | 30 | 12 | 16 | 13 | 8 | 3 | 45 | 42 | 13 | n.a. |
JF site 124/1 5 cm (Sedigraph) | 3 | 3 | 17 | 30 | 18 | 11 | 8 | 6 | 4 | 51 | 36 | 13 | n.a. |
JF site 124/1 15 cm (Sedigraph) | 5 | 3 | 16 | 34 | 19 | 9 | 7 | 6 | 3 | 53 | 35 | 12 | n.a. |
JF site 124/1 25 cm (Sedigraph) | 21 | 4 | 14 | 39 | 15 | 8 | 6 | 6 | 5 | 57 | 29 | 14 | n.a. |
Laser, Clay Border 2 µm | |||||||||||||
HH-WW R1 10 (Laser 2 µm) | 0 | 6 | 25 | 28 | 18 | 15 | 8 | 1 | 0 | 31 | 60 | 9 | 19 |
HH-WW-R1 20 (Laser 2 µm) | 1 | 8 | 26 | 26 | 15 | 14 | 9 | 1 | 0 | 35 | 56 | 9 | 19 |
JF Site 124/1 5cm (Laser 2 µm) | 0 | 16 | 24 | 24 | 16 | 13 | 6 | 0 | 0 | 40 | 53 | 7 | 14 |
JF Site 124/1 15cm (Laser 2 µm) | 0 | 17 | 26 | 23 | 15 | 12 | 6 | 0 | 0 | 44 | 50 | 6 | 15 |
JF Site 124/1 25cm (Laser 2 µm) | 0 | 16 | 27 | 22 | 15 | 12 | 6 | 1 | 0 | 43 | 50 | 7 | 15 |
Laser, Clay Border 5 µm | |||||||||||||
HH-WW R1 10 (Laser 5 µm) | 0 | 6 | 25 | 28 | n.a. | 21 | 20 | 1 | 0 | 31 | 49 | 20 | 19 |
HH-WW-R1 20 (Laser 5 µm) | 1 | 8 | 26 | 26 | n.a. | 19 | 19 | 1 | 0 | 35 | 45 | 20 | 19 |
JF Site 124/1 5cm (Laser 5 µm) | 1 | 16 | 24 | 24 | n.a. | 19 | 16 | 0 | 0 | 41 | 42 | 17 | 14 |
JF Site 124/1 15cm (Laser 5 µm) | 0 | 17 | 26 | 23 | n.a. | 18 | 15 | 0 | 0 | 43 | 41 | 16 | 15 |
JF Site 124/1 25cm (Laser 5 µm) | 0 | 16 | 27 | 22 | n.a. | 18 | 16 | 1 | 0 | 43 | 41 | 16 | 15 |
Appendix F. Detailed Sample List for EMMAgeo
No. | Sample Name | Type | No. | Sample Name | Type | No. | Sample Name | Type |
---|---|---|---|---|---|---|---|---|
1 | HH-WW R1 10 | Negev soil | 20 | dust storm 18.04.12 elevated floor | Negev dust storm | 39 | Sandplateau 3 | Petra soil |
2 | HH-WW-R1 20 | Negev soil | 21 | dust storm 18.04.12 table | Negev dust storm | 40 | Sandplateau 4 | Petra soil |
3 | HH-CW-Ruin 10 | Negev soil | 22 | dust storm 20.12.12 | Negev dust storm | 41 | Sandplateau Stein | Petra reference |
4 | HH-CW-Ruin 25 | Negev soil | 23 | dust storm 22.03.13 | Negev dust storm | 42 | Baja Sandstein | Petra reference |
5 | HH-CW-Ruin 50 | Negev soil | 24 | dust storm 10/11.02.15 | Negev dust storm | 43 | Disi Sandstone | Petra reference |
6 | HH-CW-R-60 | Negev soil | 25 | dust storm 05_01_18 | Negev dust storm | 44 | Um Ishrin Sandstone | Petra reference |
7 | HH-CW-Ruin 75 | Negev soil | 26 | dust storm 28_03_18 | Negev dust storm | 45 | Jh limestone 60 outcrop | Petra reference |
8 | HH-CW-R 90 | Negev soil | 27 | FJHP Site 1, Trench R | Petra soil | 46 | Beidha Fan | Petra reference |
9 | NH-LA-10cm | Negev soil | 28 | JH 1 | Petra soil | 47 | Fan Umm Sayhoun | Petra reference |
10 | NH-LA-30cm | Negev soil | 29 | JF site 124/1 5 cm | Petra soil | 48 | US 1 | Petra soil |
11 | HH-CW-Tur-Paleo | Negev reference | 30 | JF site 124/1 15 cm | Petra soil | 49 | Saleh 25-11-16 | Petra dust storm |
12 | HH-CW-chalk | Negev reference | 31 | JF site 124/1 25 cm | Petra soil | 50 | JH-19-12-16 | Petra dust storm |
13 | Haroa Farm - chalk | Negev reference | 32 | JF site 124/1 rock | Petra reference | 51 | JH-07-01-17 | Petra dust storm |
14 | HH-WW-C2-soft limestone | Negev reference | 33 | Umm Saysaban 5 cm | Petra soil | 52 | JH-15-02-17 | Petra dust storm |
15 | dust storm 24./25.03.03 front door | Negev dust storm | 34 | Umm Saysaban 10 cm | Petra soil | 53 | JH-01-03-17 | Petra dust storm |
16 | dust storm 24./25.03.03 incl washout dust | Negev dust storm | 35 | Abu Suwwan below nw 65 | Petra soil | 54 | Saleh 20-06-17 | Petra dust storm |
17 | dust storm 11.12.10 | Negev dust storm | 36 | Shkarat Msaied 1 | Petra soil | 55 | JH-05-08-17 | Petra dust storm |
18 | dust storm 12.12.10 | Negev dust storm | 37 | Sandplateau 1 | Petra soil | 56 | JH-05-08-17 closed box | Petra dust storm |
19 | dust storm 29.02.12 | Negev dust storm | 38 | Sandplateau 2 | Petra soil | 57 | Saleh 05-08-17 | Petra dust storm |
References
- Yaalon, D.H.; Dan, J. Accumulation and distribution of loess-derived deposits in the semi-desert and desert fringe areas of Israel. Z. Geomorph. N. F. Suppl. 1974, 20, 91–105. [Google Scholar]
- Bruins, H.J. The origin, nature and stratigraphy of paleosols in the loessial deposits of the NW-Negev (Netivot, Israel). Master’s Thesis, The Hebrew University, Jerusalem, Israel, 1976. [Google Scholar]
- Bruins, H.J.; Yaalon, D.H. Stratigraphy of the Netivot section in the desert loess of the Negev (Israel). Acta Geol. Acad. Sci. Hung. 1979, 22, 161–169. [Google Scholar]
- Bruins, H.J.; Yaalon, D.H. Parallel advance of slopes in aeolian loess deposits of the northern Negev, Israel. Isr. J. Earth Sci. 1992, 41, 189–199. [Google Scholar]
- Goldberg, P. Late quaternary environmental history of the southern Levant. Geoarchaeology 1986, 1, 225–244. [Google Scholar] [CrossRef]
- Goodfriend, G.A.; Magaritz, M. Palaeosols and late Pleistocene rainfall fluctuations in the Negev Desert. Nature 1988, 332, 144. [Google Scholar] [CrossRef]
- Issar, A.S.; Bruins, H.J. Special climatological conditions in the deserts of Sinai and the Negev during the latest Pleistocene. Palaeogeogr. Palaeoclim. Palaeoecol. 1983, 43, 63–72. [Google Scholar] [CrossRef]
- Bowman, D.; Karnieli, A.; Issar, A.; Bruins, H.-J. Residual colluvio-aeolian aprons in the Negev highlands (Israel) as a palaeo-climatic indicator. Palaeogeogr. Palaeoclimatol. Palaeoecol. 1986, 56, 89–101. [Google Scholar] [CrossRef]
- Gerson, R.; Amit, R. Rates and modes of dust accretion and deposition in an arid region: The Negev, Israel. Geol. Soc. Spec. Publ. 1987, 35, 157–169. [Google Scholar] [CrossRef]
- Zilberman, E. The Late Pleistocene sequence of the northwestern Negev flood plains—A key to reconstructing the paleoclimate of southern Israel in the last glacial. Isr. J. Earth Sci. 1992, 41, 155–167. [Google Scholar]
- Crouvi, O.; Amit, R.; Enzel, Y.; Porat, N.; Sandler, A. Sand dunes as a major proximal dust source for late Pleistocene loess in the Negev Desert, Israel. Quat. Res. 2008, 70, 275–282. [Google Scholar] [CrossRef]
- Crouvi, O.; Amit, R.; Enzel, Y.; Gillespie, A.R.; McDonald, E.V. The significance of studying primary hilltop, aeolian loess: An example from the Negev desert, Israel. J. Geophys. Res. 2009, 114, 1–16. [Google Scholar] [CrossRef]
- Evenari, M.; Shanan, L.; Tadmor, N. The Negev. The Challenge of a Desert; Havard University Press: Cambridge, MA, USA, 1971; ISBN 978-0674419247. [Google Scholar]
- Al-Qudah, K.; Abdelal, Q.; Hamarneh, C.; Abu-Jaber, N. Taming the torrents: The hydrological impacts of ancient terracing practices in Jordan. J. Hydrol. 2016, 542, 913–922. [Google Scholar] [CrossRef]
- Bender, F. Geology of Jordan; Gebrüder Borntraeger: Berlin, Germany, 1974; ISBN 978-3443117078. [Google Scholar]
- Cordova, C. Millenial Landscape Change in Jordan; University of Arizona Press: Tucson, AZ, USA, 2007; ISBN 978-0816525546. [Google Scholar]
- Avni, Y.; Porat, N.; Plakht, J.; Avni, G. Geomorphologic changes leading to natural desertification processes versus anthropogenic land conservation in an arid environment, the Negev Highlands, Israel. Geomorphology 2006, 82, 177–200. [Google Scholar] [CrossRef]
- Roskin, J.; Porat, N.; Tsoar, H.; Blumberg, D.G.; Zander, A.M. Age, origin and climatic controls on vegetated linear dunes in the northwestern Negev Desert (Israel). Quat. Sci. Rev. 2011, 30, 1649–1674. [Google Scholar] [CrossRef]
- Muhs, D. The geologic records of dust during the Quaternary. Aeolian Res. 2013, 9, 3–48. [Google Scholar] [CrossRef]
- Faershtein, G.; Porat, N.; Avni, Y.; Matmon, A. Aggradation–incision transition in arid environments at the end of the Pleistocene: An example from the Negev Highlands, southern Israel. Geomorphology 2016, 253, 289–304. [Google Scholar] [CrossRef]
- Kidron, G.J.; Zohar, M.; Starinsky, A. Spatial distribution of dust deposition within a small drainage basin: Implications for loess deposits in the Negev Desert. Sedimentology 2014, 61, 1908–1922. [Google Scholar] [CrossRef]
- Enzel, Y.; Amit, R.; Crouvi, O.; Porat, N. Abrasion-derived sediments under intensified winds at the latest Pleistocene leading edge of the advancing Sinai–Negev erg. Quat. Res. 2010, 74, 121–131. [Google Scholar] [CrossRef]
- Roskin, J.; Katra, I.; Blumberg, D.G. Particle-size fractionation of eolian sand along the Sinai–Negev erg of Egypt and Israel. Geol. Soc. Am. Bull. 2014, 126, 47–65. [Google Scholar] [CrossRef]
- Swet, N.; Elperin, T.; Kok, J.F.; Martin, R.L.; Yizhaq, H.; Katra, I. Can active sands generate dust particles by wind-induced processes? Earth Planet. Sci. Lett. 2019, 506, 371–380. [Google Scholar] [CrossRef]
- Ganor, E.; Foner, H.A. The mineralogical and chemical properties and the behaviour of aaeolian Saharan dust over Israel. In The impact of Desert Dust Across the Mediterranean; Guerzoni, S., Chester, R., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1996; pp. 163–172. ISBN 978-0792342946. [Google Scholar]
- Ganor, E.; Foner, H.A. Mineral dust concentrations, deposition fluxes and deposition velocities in dust episodes over Israel. J. Geophys. Res.-Atmos. 2001, 106, 18431–18437. [Google Scholar] [CrossRef] [Green Version]
- Wieler, N.; Avni, Y.; Rosensaft, M. The significance of the geological strata on desert runoff agriculture: Indications for stable desert environment over the last 1600 years in southern Israel. J. Arid Environ. 2016, 135, 147–163. [Google Scholar] [CrossRef]
- Bruins, H.; Jongmans, A. Micromorphology of ancient agricultural Terraces in the Negev Desert, Horvat Haluqim (Israel). In Proceedings of the 14th International Working Meeting on Soil Micromorphology, Lleida, Spain, 8–14 July 2012; Poch, R.M., Casamitjana, M., Francis, M.L., Eds.; Departament de Medi Ambient i Ciències del Sòl (UdL): Lleida, Spain, 2012; pp. 292–295, ISBN 978-84-615-9132-9. [Google Scholar]
- Lucke, B. Demise of the Decapolis. Past and Present Desertification in the Context of Soil Development, Land Use, and Climate; Verlag Dr. Müller: Saarbrücken, Germany, 2008; ISBN 978-3639006131. [Google Scholar]
- Lucke, B.; Schmidt, M.; Bäumler, R. Paleosols and “debris” in Jordan—Neglected archives of environmental change? Geophys. Res. Abstr. 2008, 10, EGU2008-A-01223. [Google Scholar]
- Rösner, U. “Löss” am Rande der Wüstensteppe? Ein Beitrag zur Frage der Entstehung von Staubsedimenten im Wüstenrandbereich am Beispiel der syrischen Basaltlandschaften. Erdkunde 1989, 43/44, 233–242. [Google Scholar]
- Wilkinson, T.; Deckers, K. Tell Brak’s loess section in TC. In Subartu XXVII, Holocene Landscapes through Time in the Fertile Crescent; Deckers, K., Ed.; Brepols Publishers: Turnhout, Belgium, 2011; pp. 107–110. ISBN 978-2503541068. [Google Scholar]
- Friesem, D.; Boaretto, E.; Eliyahu-Behar, A.; Shahack-Gross, R. Degradation of mud brick houses in an arid environment: A geoarchaeological model. J. Archaeol. Sci. 2011, 38, 1135–1147. [Google Scholar] [CrossRef]
- Bruins, H.J. Comparative chronology of climatic and human history in the southern Levant from the late Chalcolithic to the Early Arab Period. In Late Quaternary Chronology and Paleoclimates of the Eastern Mediterranean; Bar-Yosef, O., Kra, R., Eds.; Tucson University Press: Tucson, AZ, USA, 1994; pp. 301–314. ISBN 0963831410. [Google Scholar]
- Bruins, H.J. Runoff terraces in the Negev Highlands during the Iron Age: Nomads settling down or farmers living in the desert? In On the Fringe of Society: Archaeological and Ethnoarchaeological Perspectives on Pastoral and Agricultural Societies; Van der Steen, E.J., Saidel, B.A., Eds.; British Archaeological Reports (BAR) International Series 1657; Archaeopress: Oxford, UK, 2007; pp. 37–43. ISBN 978-1407300931. [Google Scholar]
- Bruins, H.J. Ancient desert agriculture in the Negev and climate-zone boundary changes during average, wet and drought years. J. Arid Environ. 2012, 86, 28–42. [Google Scholar] [CrossRef]
- Bruins, H.J.; Van der Plicht, J. Assorting and synchronising archaeological and geological strata with radiocarbon: The Southern Levant in relation to Egypt and Thera. In The Synchronisation of Civilizations in the Eastern Mediterranean in the 2nd Millennium BC–II; Bietak, M., Ed.; Austrian Academy of Sciences: Vienna, Austria, 2003; pp. 35–42. ISBN 978-3700129363. [Google Scholar]
- Bruins, H.J.; Van der Plicht, J. Desert settlement in the central Negev: First 14C indication of rainwater-harvesting agriculture in the Iron Age. In Radiocarbon and Archaeology: Proceedings of the 4th International Symposium, Oxford, 2002, Oxford University, School of Archaeology, Monograph 62; Higham, T.F.G., Bronk Ramsey, C., Owen, D.C., Eds.; Oxford University Press: Oxford, UK, 2004; pp. 83–98. ISBN 978-0947816650. [Google Scholar]
- Bruins, H.J.; Ore, G. Runoff from loess or bedrock? Hillslope geoarchaeology of ancient runoff farming systems at Horvat Haluqim and Har Eldad in the central Negev desert. Isr. J. Earth Sci. 2009, 57, 231–247. [Google Scholar] [CrossRef]
- Lavento, M.; Huotari, M.; Jansson, H.; Silvonen, S.; Fiema, Z. Ancient Water Management System in the Area of Jabal Harûn, Petra. In Men of Dikes and Canals: The Archaeology of Water in the Middle East; Bienert, H., Häser, J., Eds.; Verlag Marie Leidorf: Rahden (Westfalen), Germany, 2004; pp. 163–172. ISBN 978-3896466433. [Google Scholar]
- Lavento, M.; Kouki, P.; Silvonen, S.; Ynnilä, H.; Huotari, M. Discussions on terrace cultivation and its relationship to the city of Petra, in southern Jordan. In Studies in the History and Archaeology of Jordan 9; Department of Antiquities: Amman, Jordan, 2007; pp. 145–156. [Google Scholar]
- Frösén, J. Petra papyri. In The Encyclopedia of Ancient History; Bagnall, R.S., Brodersen, K., Champion, C.B., Erskine, A., Huebner, S.R., Eds.; Blackwell Publishing Ltd.: Hoboken, NJ, USA, 2012. [Google Scholar]
- Kouki, P. Archaeological evidence of land tenure in the Petra region, Jordan: Nabataean-Early Roman to Late Byzantine. J. Mediterr. Archaeol. 2009, 22, 29–56. [Google Scholar] [CrossRef]
- Kouki, P. The Hinterland of a City. Rural Settlement and Land Use in the Petra Region from the Nabatean-Roman to the Early Islamic Periods; Helsinki University Print: Helsinki, Finland, 2012; ISBN 978-952-10-8015-9. [Google Scholar]
- Kouki, P. Appendix 1. Sedimentological studies in the FJHP Survey. In Petra—The Mountain of Aaron III. The Archaeological Survey; Kouki, P., Lavento, M., Eds.; Societas Scientiarum Fennica: Helsinki, Finland, 2013; pp. 44–50. ISBN 9789516534001. [Google Scholar]
- Kouki, P.; Lavento, M. (Eds.) Petra—The Mountain of Aaron: The Finnish Archaeological Project in Jordan. Vol. 3: The Archaeological Survey; Societas Scientiarum Fennica: Helsinki, Finland, 2013; ISBN 978-951-653-400-1. [Google Scholar]
- Sandler, A. A Turonian Subaerial Event in Israel: Karst, Sandstone, and Pedogenesis; GSI Bulletin 85; Geological Survey of Israel: Jerusalem, Israel, 1996. [Google Scholar]
- Barjous, M.O. The Geology or Petra and Wadi Lahyana Area, Map Sheets No. 3050-I and 3050-IV. Bulletin 56; Hashemite Kingdom of Jordan, Natural Resources Authority, Geology Directorate, Geological Mapping Division: Amman, Jordan, 2003. [Google Scholar]
- Lucke, B.; Bäumler, R. Soils and Paleosols at Ba’ja. Neo-Lithics 2007, 02/07, 43–50. [Google Scholar]
- Lucke, B. Landscape Transformations in the Context of Soil Development, Land Use, and Climate: A Comparison of Marginal Areas in Jordan, Mexico, and Germany; Relief Boden Paläoklima 26; Gebrüder Bornträger: Stuttgart, Germany, 2017; ISBN 978-3443090265. [Google Scholar]
- Peel, M.C.; Finlayson, B.L.; McMahon, T.A. Updated world map of the KöppenGeiger climate classification. Hydrol. Earth Syst. Sci. Discuss. Eur. Geosci. Union 2007, 4, 1633–1644. [Google Scholar] [CrossRef]
- WRB. World Reference Base for Soil Resources 2014. Update 2015; World Soil Resources Reports 106; FAO: Rome, Italy, 2015; ISBN 978-92-5-108369-7. [Google Scholar]
- Turk, J.; Houdeshell, C.-A.; Graham, R. A Proposed Master V Horizon for the Designation of Near-Surface Horizons with Vesicular Porosity. 2016. Available online: https://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs142p2_050966.pdf (accessed on 13 March 2019).
- Pieri, L.; Bittelli, M.; Rossi Pisa, P. Laser diffraction, transmission electron microscopy and image analysis to evaluate a bimodal Gaussian model for particle size distribution in soils. Geoderma 2006, 135, 118–132. [Google Scholar] [CrossRef]
- Blott, S.J.; Pye, K. GRADISTAT: A grain size distribution and statistics package for the analysis of unconsolidated sediments. Earth Surf. Process. Landf. 2001, 26, 1237–1248. [Google Scholar] [CrossRef]
- Dietze, E.; Hartmann, K.; Diekmann, B.; IJmker, J.; Lehmkuhl, F.; Opitz, S.; Stauch, G.; Wünnemann, B.; Borchers, A. An end-member algorithm for deciphering modern detrital processes from lake sediments of Lake Donggi Cona, NE Tibetan Plateau, China. Sediment. Geol. 2012, 243, 169–180. [Google Scholar] [CrossRef]
- R Core Team. R. A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2013; Available online: ftp://ftp.uvigo.es/CRAN/web/packages/dplR/vignettes/intro-dplR.pdf (accessed on 15 March 2019).
- Liaw, A.; Wiener, M. Classification and Regression by randomForest. R News 2002, 2, 18–22. [Google Scholar]
- Abu-Safat, M. Verwitterung und Hangabtragung im “Nubischen Sandstein” Südjordanien; Erlanger Geographische Arbeiten 49; Fränkische Geographische Gesellschaft: Erlangen, Germany, 1988; ISBN 3920405-65-X. [Google Scholar]
- Kinzel, M.; (University of Copenhagen, Copenhagen, Denmark). Personal communication, 2016.
- Haiman, M. Preliminary report of the western Negev Highlands emergency survey. Isr. Explor. J. 1989, 38, 173–191. [Google Scholar]
- Amiran, R. Ancient Pottery of the Holy Land: From Its Beginnings in the Neolithic Period to the End of the Iron Age; Rutgers University Press: New Brunswick, NJ, USA, 1970; ISBN 978-0813506340. [Google Scholar]
- Kleiman, S.; Kleiman, A.; Ben-Yosef, E. Metalworkers’ Material Culture in the Early Iron Age Levant: The Ceramic Assemblage from Site 34 (Slaves’ Hill) in the Timna Valley. Tel Aviv 2017, 44, 232–264. [Google Scholar] [CrossRef]
- Gunneweg, J.; Beier, T.; Diehl, U.; Lambrecht, D.; Mommsen, H. ‘Edomite’, ’Negbite’ and ‘Midianite’ pottery from the Negev Desert and Jordan: Instrumental neutron activation analysis results. Archaeometry 1991, 33, 239–253. [Google Scholar] [CrossRef]
- Martin, M.A.; Finkelstein, I. Iron IIA Pottery from the Negev Highlands: Petrographic Investigation and Historical Implications. Tel Aviv 2013, 40, 6–45. [Google Scholar] [CrossRef]
- Dietze, M.; Kleber, A. Contribution of lateral processes to stone pavement formation in deserts inferred from clast orientation patterns. Geomorphology 2012, 139, 172–187. [Google Scholar] [CrossRef]
- Johnson, J.S.; Clark, J.; Miller-Antonio, S.; Robins, D.; Schiffer, M.B.; Skibo, J.M. Effects of firing temperature on the fate of naturally occurring organic matter in clays. J. Archaeol. Sci. 1988, 15, 403–414. [Google Scholar] [CrossRef]
- Avni, Y.; Avni, G.; Porat, N. A review of the rise and fall of ancient desert runoffagriculture in the Negev Highlands—A model for the southern Levant deserts. J. Arid Environ. 2019, 163, 127–137. [Google Scholar] [CrossRef]
- Hübner, U.; (University of Kiel, Kiel, Germany). Personal communication, 2019.
- Juntunen, K. The Northern Court Area. In Petra—The Mountain of Aaron: The Finnish Archaeological Project in Jordan. Vol. 2: The Nabataean Sanctuary and the Byzantine Monastery; Fiema, Z., Frösén, J., Holappa, M., Eds.; Societas Scientiarum Fennica: Helsinki, Finland, 2016; pp. 75–107. ISBN 978-951-653-410-0. [Google Scholar]
- Shkarat Msaied Neolithic Project. Available online: https://shkaratmsaied.tors.ku.dk/radiocarbondates/ (accessed on 11 December 2018).
- Al-Qudah, K.; (Yarmouk University, Irbid, Jordan). Personal communication, 2015.
- Ganor, E. Atmospheric dust in Israel—Sedimentological and meteorological analysis of dust deposition. Ph.D. Thesis, The Hebrew University, Jerusalem, Israel, 1975. [Google Scholar]
- Kronberg, B.I.; Nesbitt, H.W. Quantification of weathering soil chemistry and soil fertility. J. Soil Sci. 1981, 32, 453–459. [Google Scholar] [CrossRef]
- Evans, M.; Heller, F. Environmental Magnetism. Principles and Applications of Enviromagentics; Academic Press: Amsterdam, The Netherlands, 2003; ISBN 978-0122438516. [Google Scholar]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Crouvi, O.; Dayan, U.; Amit, R.; Enzel, Y. An Israeli haboob: Sea breeze activating local anthropogenic dust sources in the Negev loess. Aeolian Res. 2017, 24, 39–52. [Google Scholar] [CrossRef]
- Abu-Jaber, N. Mopping up leaking carbon: A natural analog at Wadi Namaleh, Jordan. Chem. Der Erde-Geochem. 2017, 77, 267–279. [Google Scholar] [CrossRef]
- Abu-Jaber, N.; Rambeau, C.; Hamarneh, C.; Lucke, B.; Inglis, R. Secondary carbonates in Petra: Tracers of past landscapes and land use. Catena 2019. under review. [Google Scholar]
- Zamanian, K.; Pustovoytov, K.; Kuzyakov, Y. Pedogenic carbonates: Forms and formation processes. Earth-Sci. Rev. 2016, 157, 1–17. [Google Scholar] [CrossRef]
- Hunt, C.O.; Elrishi, H.A.; Gilbertson, D.D.; Grattan, J.; Mclaren, S.; Pyatt, F.B.; Rushworth, G.; Barker, G.W. Early-holocene environments in the Wadi Faynan, Jordan. Holocene 2004, 14, 921–930. [Google Scholar] [CrossRef]
- Baruch, U.; Goring-Morris, N. The arboreal vegetation of the Central Negev Highlands, Israel, at the end of the Pleistocene: Evidence from archaeological charred wood remains. Veg. Hist. Archaeobot. 1997, 6, 249–259. [Google Scholar] [CrossRef]
- Kidron, G.J. Biocrust research: A critical view on eight common hydrological-related paradigms and dubious theses. Ecohydrology 2019, 12, e2061. [Google Scholar] [CrossRef]
- Danin, A.; Ganor, E. Trapping of airborne dust by mosses in the Negev Desert, Israel. Earth Surf. Process. Landf. 1991, 16, 153–162. [Google Scholar] [CrossRef]
- Kidron, G.J.; Ying, W.; Starinsky, A.; Herzberg, M. Drought effect on biocrust resilience: High-speed winds result in crust burial and crust rupture and flaking. Sci. Total Environ. 2017, 579, 848–859. [Google Scholar] [CrossRef]
- Jeschke, M.; (University of Trier, Trier, Germany). Personal communication, 2015.
- McFadden, L.D.; Wells, S.G.; Jercinovich, M.J. Influences of eolian and pedogenic processes on the origin and evolution of desert pavements. Geology 1987, 15, 504–508. [Google Scholar] [CrossRef]
- McFadden, L.D.; McDonald, E.V.; Wells, S.G.; Anderson, K.; Quade, J.; Forman, S.L. The vesicular layer and carbonate collars of desert soils and pavements: Formation, age and relation to climate change. Geomorphology 1998, 24, 101–145. [Google Scholar] [CrossRef]
- Turk, J.K. Vesicular Horizon Distribution, Properties, and Pedogenic Processes in Deserts of the Western United States. Ph.D. Thesis, UC Riverside, Riverside, CA, USA, 2012. Available online: https://escholarship.org/uc/item/325854wj (accessed on 13 March 2019).
- Al-Taani, A.A.; Al-Qudah, K.A. Investigation of desert subsoil nitrate in Northeastern Badia of Jordan. Sci. Total Environ. 2013, 442, 111–115. [Google Scholar] [CrossRef] [PubMed]
- Dagsson-Waldhauserova, P.; Arnalds, O.; Olafsson, H.; Hladil, J.; Skala, R.; Navratil, T.; Chadimova, L.; Meinander, O. Snow–dust storm: Unique case study from Iceland, March 6–7, 2013. Aeolian Res. 2015, 16, 69–74. [Google Scholar] [CrossRef]
- Nicoll, K.; Hahnenberger, M.; Goldstein, H.L. Dust in the wind’ from source-to-sink: analysis of the 14-15 April 2015 storm in Utah. Aeolian Res. 2019, in press. [Google Scholar]
- Bodenheimer, S.; Lensky, I.M.; Dayan, U. Characterization of Eastern Mediterranean dust storms by area of origin; North Africa vs. Arabian Peninsula. Atmos. Environ. 2019, 198, 158–165. [Google Scholar] [CrossRef]
- Cohen, R. The Iron Age fortresses in the central Negev. Bull. Am. Sch. Orient. Res. 1979, 236, 61–79. [Google Scholar] [CrossRef]
- Fiema, Z.T.; Frösén, J. (Eds.) Petra-the Mountain of Aaron: The Finnish Archaeological Project in Jordan. Vol. 1: The Church and the Chapel; Societas Scientiarum Fennica: Helsinki, Finland, 2008; ISBN 978-951-653-364-6. [Google Scholar]
- Fiema, Z.; Frösén, J.; Holappa, M. (Eds.) Petra—The Mountain of Aaron: The Finnish Archaeological Project in Jordan. Vol. 2: The Nabataean Sanctuary and the Byzantine Monastery; Societas Scientiarum Fennica: Helsinki, Finland, 2016; ISBN 978-951-653-410-0. [Google Scholar]
- Lindner, M.; Hübner, U.; Genz, H. The Early Bronze Age settlement on Umm Saysaban north of Petra (Jordan) and its topographical context, report on the 1998/1999 survey. Annu. Dep. Antiq. Jordan 2001, 45, 287–310. [Google Scholar]
- Hübner, U. Die archäologische Expedition 2012–2015 in der Region um Petra: Ausgrabungen auf Umm Saisabān. Nat. Und Mensch 2016, Jahresmitteilungen 2015, Naturhistorische Gesellschaft, Nürnberg. 9–20. [Google Scholar]
- Soil Survey Staff. Keys to Soil Taxonomy, 11th ed.; USDA Natural Resources Conservation Service: Washington, DC, USA, 2010; ISBN 978-0160854279. [Google Scholar]
- Müller, G.; Gastner, M. The “Karbonat-Bombe”, a simple device for the determination of the carbonate content in sediments, soils and other materials. N. Jb. Miner. Mh. 1971, 10, 466–469. [Google Scholar]
- DIN 19683. Deutsches Institut für Normung. Blatt 1–3, Physikalische Laboruntersuchungen, Bestimmung der Korngrößenzusammensetzung nach Vorbehandlung mit Natriumpyrophosphat; Beuth Verlag: Berlin, Germany, 1973. [Google Scholar]
- Gerzabek, M.H. Die Bestimmung der Bodentextur mittels Sedigraph 5100; OEFZS Report no. 4592; Österreichisches Forschungszentrum Seibersdorf: Seibersdorf, Austria, 1991. [Google Scholar]
- Schlichting, E.; Blume, H.-P.; Stahr, K. Bodenkundliches Praktikum, 2nd ed.; Blackwell Wissenschafts-Verlag: Berlin, Germany, 1995; ISBN 978-3826330421. [Google Scholar]
- Schwertmann, U. Use of oxalate for Fe extraction from soils. Can. J. Soil Sci. 1973, 53, 244–246. [Google Scholar] [CrossRef]
- Slota, P.J.; Jull, A.J.T.; Linick, T.W.; Toolin, L.J. Preparation of Small Samples For C-14 Accelerator Targets by Catalytic Reduction of Co. Radiocarbon 1987, 29, 303–306. [Google Scholar] [CrossRef]
- Vogel, J.S.; Nelson, D.E.; Southon, J.R. 14C Background Levels in an Accelerator Mass Spectrometry System. Radiocarbon 1987, 29, 323–333. [Google Scholar] [CrossRef]
- Stuiver, M.; Polach, H.A. Discussion: Reporting of 14C data. Radiocarbon 1977, 19, 355–363. [Google Scholar] [CrossRef]
- Lindauer, S.; Kromer, B. Carbonate sample preparation for 14 C dating using an elemental analyzer. Radiocarbon 2013, 55, 364–372. [Google Scholar] [CrossRef]
- Kromer, B.; Lindauer, S.; Synal, H.-A.; Wacker, L. MAMS—A new AMS facility at the Curt-Engelhorn-Centre for Achaeometry, Mannheim, Germany. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2013, 294, 11–13. [Google Scholar] [CrossRef]
- Lang, A.; Lindauer, S.; Kuhn, R.; Wagner, G.A. Procedures used for optically and infrared stimulated luminescence dating of sediments in Heidelberg. Anc. Tl 1996, 14, 7–11. [Google Scholar]
- Aitken, M.J. Thermoluminescence Dating; Academic Press Inc. Ltd.: London, UK, 1985. [Google Scholar]
- Murray, A.S.; Wintle, A.G. Luminescence dating of quartz using an improved single-aliquot regenerative-dose protocol. Radiat. Meas. 2000, 32, 57–73. [Google Scholar] [CrossRef]
- Duller, G.A.T. The Analyst software package for luminescence data: Overview and recent improvements. Anc. Tl 2015, 33, 35–42. [Google Scholar]
- Duller, G.A.T.; (Aberystwyth University, Aberystwyth, UK). Personal communication, 2008.
- Folk, R.L.; Ward, W.C. Brazos River bar [Texas]; A study in the significance of grain size parameters. J. Sediment. Res. 1957, 27, 3–26. [Google Scholar] [CrossRef]
- EMMAgeo. End-Member Modelling of Grain-Size Data v0.9.4. Available online: https://www.rdocumentation.org/packages/EMMAgeo/versions/0.9.4 (accessed on 19 February 2019).
- Reyment, R.A.; Jöreskog, K.G. Applied Factor Analysis in the Natural Sciences, 2nd ed.; Cambridge University Press: Cambridge, UK, 1997; ISBN 978-0521575560. [Google Scholar]
- Dietze, E.; Maussion, F.; Ahlborn, M.; Diekmann, B.; Hartmann, K.; Henkel, K.; Kasper, T.; Lockot, G.; Opitz, S.; Haberzettl, T. Sediment transport processes across the Tibetan Plateau inferred from robust grain-size end members in lake sediments. Clim. Past 2014, 10, 91–106. [Google Scholar] [CrossRef] [Green Version]
- Hartmann, K.; Wünnemann, B. Hydrological changes and Holocene climate variations in NW China, inferred from lake sediments of Juyanze palaeolake by factor analyses. Quat. Int. 2009, 194, 28–44. [Google Scholar] [CrossRef]
- Manson, V.; Imbrie, J. FORTRAN Program for Factor and Vector Analysis of Geological Data Using an IBM 7090 or 7094/1401 Computer System; Kansas Geological Survey Special Distribution Publications Vol. 13; Kansas Geological Survey: Lawrence, KS, USA, 1964. [Google Scholar]
- Klovan, J.E.; Imbrie, J. An algorithm and FORTRAN-IV program for large-scale Q-mode factor analysis and calculation of factor scores. Math. Geol. 1971, 3, 61–77. [Google Scholar] [CrossRef]
- Renner, R.M.; Glasby, G.P.; Szefer, P. Endmember analysis of heavy-metal pollution in surficial sediments from the Gulf of Gdansk and the southern Baltic Sea off Poland. Appl. Geochem. 1998, 13, 313–318. [Google Scholar] [CrossRef]
- Kaiser, H.F. The VARIMAX criterion for analytic rotation in factor analysis. Psychometrika 1958, 23, 187–200. [Google Scholar] [CrossRef]
- Krumm, S.; (FAU Erlangen-Nürnberg, Department of Geosciences, Geo-Center Northern Bavaria, Erlangen, Germany). Personal communication, 2018.
- Lucke, B.; Schmidt, U. Grain size analysis of soils in semi-arid regions: With or Without calcium carbonate removal, and which device should be chosen? In Soils and Sediments as Archives of Environmental Change. Geoarchaeology and Landscape Change in the Subtropics and Tropics; Lucke, B., Bäumler, R., Schmidt, M., Eds.; Fränkische Geographische Gesellschaft: Erlangen, Germany, 2015; pp. 83–96. ISBN 978-3-941665-04-0. [Google Scholar]
- Van Oorschot, I.H.M.; Dekkers, M.J.; Havlicek, P. Selective dissolution of magnetic iron oxides with the acid-ammonium-oxalate/ferrous-iron extraction technique—II. Natural loess and palaeosol samples. Geophys. J. Int. 2002, 149, 106–117. [Google Scholar] [CrossRef]
- Singer, M.J.; Bowen, L.H.; Verosub, K.L.; Fine, P.; TenPas, J. Mössbauer spectroscopic evidence for citrate-bicarbonate-dithionite extraction of maghemite from soils. Clays Clay Miner. 1995, 43, 1–7. [Google Scholar] [CrossRef]
- Hunt, C.P.; Singer, M.J.; Kletetschka, G.; TenPas, J.; Verosub, K.L. Effect of citrate-bicarbonate-dithionite treatment on fine-grained magnetite and maghemite. Earth Planet. Sci. Lett. 1995, 130, 87–94. [Google Scholar] [CrossRef]
- Taylor, R.M.; Schwertmann, U. Maghemite in soils and its origin: I. Properties and observations on soil maghemites. Clay Miner. 1974, 10, 289–298. [Google Scholar] [CrossRef]
- Stuiver, M.; Reimer, P.J. Extended C-14 Data-Base and Revised Calib 3.0 C-14 Age Calibration Program. Radiocarbon 1993, 35, 215–230. [Google Scholar] [CrossRef]
- Reimer, P.J.; Bard, E.; Bayliss, A.; Beck, J.W.; Blackwell, P.G.; Ramsey, C.B.; Buck, C.E.; Cheng, H.; Edwards, R.L.; Friedrich, M.; et al. IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 2013, 55, 1869–1887. [Google Scholar] [CrossRef]
- Buurman, P.; Pape, T.; Muggler, C.C. Laser Grain-Size Determination in Soil Genetic Studies 1. Practical Problems. Soil Sci. 1997, 162, 211–218. [Google Scholar] [CrossRef]
- Eshel, G.; Levy, G.J.; Mingelgrin, U.; Singer, M.J. Critical evaluation of the use of laser diffraction for particle-size distribution analysis. Soil Sci. Soc. Am. J. 2004, 68, 736–743. [Google Scholar] [CrossRef]
- Di Stefano, C.; Ferro, V.; Mirabile, S. Comparison between grain-size analyses using laser diffraction and sedimentation methods. Biosyst. Eng. 2010, 106, 205–215. [Google Scholar] [CrossRef]
- Goossens, D. Techniques to measure grain-size distributions of loamy sediments: A comparative study of ten instruments for wet analysis. Sedimentology 2008, 55, 65–96. [Google Scholar] [CrossRef]
- Kowalenko, C.G.; Babuin, D. Inherent factors limiting the use of laser diffraction for determining particle size distributions of soil and related samples. Geoderma 2013, 193/194, 22–28. [Google Scholar] [CrossRef]
- Makó, A.; Rajkai, K.; Hernádi, H.; Hauk, G. Comparison of different settings and pre-treatments in soil particlesize distribution measurement by laser-diffraction method. Agrokémia És Talajt. 2014, 63, 19–28. [Google Scholar] [CrossRef]
- Ramaswamy, V.; Rao, P.S. Grain Size Analysis of Sediments from the Northern Andaman Sea: Comparison of Laser Diffraction and Sieve-Pipette Techniques. J. Coast. Res. 2006, 22, 1000–1009. [Google Scholar] [CrossRef]
- Taubner, H.; Roth, B.; Tippkötter, R. Determination of soil texture: Comparison of the sedimentation method and the laser-diffraction analysis. J. Plant Nutr. Soil Sci. 2009, 172, 161–171. [Google Scholar] [CrossRef]
- Konert, M.; Vandenberghe, J. Comparison of laser grain size analysis with pipette and sieve analysis: A solution for the underestimation of the clay fraction. Sedimentology 1997, 44, 523–535. [Google Scholar] [CrossRef]
- Vdović, N.; Obhođaš, J.; Pikelj, K. Revisiting the particle-size distribution of soils: Comparison of different methods and sample pre-treatments. Eur. J. Soil Sci. 2010, 61, 854–864. [Google Scholar] [CrossRef]
- Kerry, R.; Rawlins, B.G.; Oliver, M.A.; Lacinska, A.M. Problems with determining the particle size distribution of chalk soil and some of their implications. Geoderma 2009, 152, 324–337. [Google Scholar] [CrossRef] [Green Version]
Site Name | Coordinates | Number of Samples | Description |
---|---|---|---|
Negev: Horvat Haluqim | |||
HH-WW-R1 | N 30.89151 E 34.79909 | 2 | Soil covering a hilltop tumulus ruin near the western wadi of Horvat Haluqim |
HH-CW-Ruin | N 30.88948 E 34.80015 | 6 | Soil covering a circular hilltop ruin, with paleosol below, near the central wadi of Horvat Haluqim |
NH-LA | N 30.30140 E 34.84296 | 2 | Pleistocene loessial paleosol of a colluvial-aeolian apron in Nahal HaRo’a |
Reference samples | See Appendix A for coordinates | 5 | Turonian paleo-sol, and various rock outcrops at Horvat Haluqim |
Petra Region: Jabal Haroun | |||
Jabal Haroun monastery | N 30.31734 E 35.40418 | 2 | Soil covering the ruins of a monastery on a sandstone plateau at Jabal Haroun |
Jabal Farasha triclinium | N 30.30445 E 35.40141 | 2 | Soil covering the ruins of a triclinium on a hilltop southwest of Jabal Haroun |
Umm Saysaban | N 30.34595 E 35.43178 | 2 | Soil covering the ruins of the hilltop site of Umm Saysaban north of Jabal Haroun |
Abu Suwwan | N 30.33064 E 35.42297 | 1 | Paleosol preserved below ruin of Neolithic hilltop site, north-east of Jabal Haroun |
Shkarat Msaied | N 30.44372 E 35.43917 | 1 | Paleosol preserved below ruin of Neolithic hilltop site, north of Jabal Haroun |
Sandplateau | N 30.41564 E 35.46117 | 5 | Natural, currently forming hilltop soil on sandstone plateau, north-east of Jabal Haroun |
Reference samples | See Appendix A for coordinates | 8 | Various rock outcrops, fans, and a cemented paleosol in the Petra region |
Sample No. | Horizon from … to… (cm) | Sampling Depth (cm) | Calibrated 14C Age (1-Sigma) | Cal. OSL Age | Age from Context | Cal. TL Age of Pottery | Munsell Dry | pH (H2O) | Conductivity (µS/cm) | Corg % | CaCO3 1 % |
---|---|---|---|---|---|---|---|---|---|---|---|
Ruin Overlooking the Western Wadi: Calcaric Leptosol (Protic, Siltic) | |||||||||||
HH-WW R1 10 | C (5–20) | 10 | 10YR 6/6 brownish yellow | 8.3 | 2300 | 1.10 | 37 | ||||
HH-WW-R1 20 | C (5–20) | 20 | 2000–2500 BCE | 970–470 BCE (15 cm) | 10YR 5/6 yellowish brown | 8.3 | 3890 | 1.30 | 38 | ||
Ruin Overlooking the Central Wadi: Protic Regosol (Siltic) | |||||||||||
HH-CW-Ruin 10 | V1 (5–15) | 10 | ~ 1946 2 CE (7 cm) 1643–1918 CE (14 cm) | 10YR 7/3 very pale brown | 8.7 | 371 | 0.90 | 40 | |||
HH-CW-Ruin 25 | V2 (15–35) | 25 | 1694–1918 CE (20 cm) | 870–1020 CE | 10YR 7/3 very pale brown | 8.4 | 2100 | 0.84 | 42 | ||
HH-CW-Ruin 50 | C (40–70) | 50 | 6210–6092 BCE (charred temper) | 2570–1990 BCE | 830–300 BCE | 10YR 7/3 very pale brown | 8.7 | 3450 | 0.76 | 40 | |
HH-CW-R-60 | C (40–70) | 60 | 10YR 7/6 yellow | 9.0 | 3620 | 1.20 | 34 | ||||
HH-CW-R 75 (Paleosol: buried Cambic Calcisol) | 2Bwk (70–100+) | 75 | 10 YR 7/4 very pale brown | 8.8 | 3320 | 0.30 | 36 | ||||
HH-CW-R 90 (Paleosol: buried Cambic Calcisol) | 2Bwk (70–100+) | 90 | 23980–20580 BCE | 10YR 7/4 very pale brown | 9.0 | 3120 | 1.10 | 29 | |||
Paleosol of Loess Apron in Nahal Haroa: Cambic Calcisol (Siltic) | |||||||||||
NH-LA-10cm | V (Loess apron cover) | 10 | 10YR 8/6 yellow | 8.9 | 111 | 0.43 | 28 | ||||
NH-LA-30cm (Paleosol: buried Cambic Calcisol) | 2Bwk (Loess apron paleosol) | 30 | 10YR 6/6 brownish yellow | 9.3 | 135 | 0.38 | 27 | ||||
Reference Samples from Horvath Haluqium | |||||||||||
HH-CW-Tur-Paleo | Turonian paleosol | outcrop | 2.5 Y 7/4 pale yellow | 7.6 | 1817 | 44 | |||||
HH-CW-chalk | chalk | outcrop | 7.5YR 8/3 pink | 98 | |||||||
Haroa Farm chalk | chalk | outcrop | 5YR 8/2 pinkish white | 98 | |||||||
HH-WW-C2-soft limestone | soft limestone | outcrop | 5YR 8/1 white | 96 | |||||||
HH-WW-C2-hard limestone | hard limestone | outcrop | 5YR 8/1 white | 96 |
Sample No. | Horizon from … to… (cm) | Sampling Depth (cm) | Calibrated 14C Age (1-Sigma) | Cal. OSL Age | Age from Context | Munsell Dry | pH (H2O) | Conductivity (µS/cm) | Corg % | CaCO3 1 % |
---|---|---|---|---|---|---|---|---|---|---|
Jabal Haroun Monastery Ruin: Protic Arenosol (Aridic, Aeolic) | ||||||||||
FJHP Site 1, Trench R | n.d. | 30 | 7.5YR 6/3 light brown | 8.3 | 1296 | 0.33 | 7 | |||
JH 1 | V (0–10) | 10 | ~1000 CE | 7.5YR 7/3 pink | 8.6 | 114 | 0.23 | 7 | ||
Jabal Farasha Triclinium Ruin: Calcaric Leptosol (Protic) | ||||||||||
JF site 124/1 5 cm | V (0–10) | 5 | 7.5YR 5/3 brown | 8.5 | 112 | 0.94 | 13 | |||
JF site 124/1 15 cm | C (10–25) | 15 | 870–1040 CE | 7.5YR 5/4 brown | 8.6 | 86 | 0.53 | 10 | ||
JF site 124/1 25 cm | C (10–25) | 25 | ~200 CE | 5YR 5/4 reddish brown | 8.5 | 79 | 0.52 | 8 | ||
JF site 124/1 rock | R (25+) | bedrock | 10R 5/4 weak red | n.a. | n.a. | 0.13 | 2 | |||
Umm Saysaban Ruin: Calcaric Leptosol (Protic) | ||||||||||
Umm Saysaban 5 cm | V (0–5) | 5 | 7.5YR 6/3 light brown | 8.5 | 106 | 0.58 | 12 | |||
Umm Saysaban 10 cm | C (5–10) | 10 | ~2500 BCE | 10YR 7/3 very pale brown | 8.5 | 83 | 0.38 | 12 | ||
Shkarat Msaied PPNB Ruins: Buried Chromic Cambisol (Protocalcic) | ||||||||||
Shkarat Msaeid 4 (cover above ruin) | 2C (70–110) | 90 | 12,385–12,131 BCE | |||||||
Shkarat Msaied 1 (paleosol below ruin) | 3BCk (45–60+) | 55 | >8000 BCE | 7.5 YR 7/3 pink | 8.3 | 1375 | 0.27 | 15 | ||
Abu Suwwan PPNB Ruins: Buried Protic Regosol (Aeolic) | ||||||||||
Abu Suwwan ashy layer 30 cm | 2C (20–40) | 30 | 2014–1916 BCE | |||||||
Abu Suwwan below nw 65 (buried paleosol) | 3BC (60–70+) | 65 | >8000 BCE | 10 YR 5/2 grayish brown | 8.1 | 142 | 0.60 | 18 | ||
Natural Hilltop Soil on Sandstone Plateau: Protic Regosol (Arenic) | ||||||||||
Sandplateau 1 | A (0–10) | 10 | 10 YR 6/4 light yellowish brown | 8.4 | 66 | 0.28 | 2 | |||
Sandplateau 2 | C (10–70) | 30 | 10 YR 5/6 yellowish brown | 8.5 | 60 | 0.16 | 1 | |||
Sandplateau 3 | C (20–70) | 50 | 10 YR 6/6 brownish yellow | 8.2 | 60 | 0.12 | 0 | |||
Sandplateau 4 | C (20–70) | 70 | 10 YR 5/8 yellowish brown | 8.2 | 40 | 0.14 | 0 | |||
Sandplateau Stein | R (70+) | bedrock | 10 YR 8/1 white | 8.5 | 52 | 0.03 | 0 | |||
Reference Samples from Petra Region: Rocks, Current Fans, and Cemented Paleosol: Cambic Calcisol (Loamic) | ||||||||||
Ba’ja Sandstein (rock) | surface rock | 10 YR 8/2 white | 8.3 | 81 | 0.02 | 1 | ||||
Disi Sandstone | rock outcrop | 7.5YR 8/1 white | 0.14 | 4 | ||||||
Um Ishrin sandstone | rock outcrop | 5YR 4/6 yellowish red | 0.06 | 2 | ||||||
Abu Khushayba sandstone JH | rock outcrop | 2.5YR 5/3 reddish brown | 8.7 | 97 | 0.02 | 2 | ||||
JH limestone outcrop | rock outcrop | 7.5YR 8/4 pink | 0.85 | 97 2 | ||||||
Beidha Fan | surface | 10YR 6/4 light yellowish brown | 8.44 | 346 | 0.46 | 16 | ||||
Fan Umm Sayhoun | surface | 10YR 8/4 very pale brown | 8.98 | 136 | 0.07 | 5 | ||||
Loess(?) Umm Seihun (US 1) | Cemented paleosol | 7.5YR 8/3 pink | 8.9 | 76 | 0.44 | 34 |
Site | mm/year | g/m² year−1 | Comment |
---|---|---|---|
Negev | |||
Ruin near Western Wadi | 0.05 | 50 | Minimum rate: ruin filled completely in the past |
Ruin near Central Wadi | 0.13–0.2 | 140–210 | Lower boundary unclear; occupation & collapse layers? |
Petra region | |||
Jabal Farasha triclinium | 0.14 | 150 | Apparently constant deposition; consistent ages |
Umm Saysaban | 0.02 | 24 | Minimum rate: ruin filled completely in the past |
Jabal Haroun monastery | 0.10 | 110 | Minimum rate: lower boundary unclear |
Sample No. | Skeleton > 2 mm (%) | Sand % | Silt % | Clay % | Coarse Sand % | Medium Sand % | Fine Sand % | Very Fine Sand % | Coarse Silt % | Medium Silt % | Fine Silt % | Coarse Clay % | Medium Clay % | Fine Clay % | Mode 1 (µm) | Mode 2 (µm) | Mode 3 (µm) | Mean [µm] |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Negev ruin soils: Horvat Haluqim, ruin at Western Wadi (HH-WW-R1): Calcaric Leptosol (Protic, Siltic); ruin at Central Wadi (HH-CW-Ruin): protic regosol (Siltic) | ||||||||||||||||||
HH-WW R1 10 | 21 | 42 | 45 | 13 | 4 | 8 | 29 | 23 | 18 | 15 | 13 | 9 | 2 | 2 | 132 | 0 | 0 | 25 |
HH-CW-Ruin 10 | 4 | 21 | 53 | 26 | 2 | 3 | 16 | 13 | 22 | 14 | 16 | 14 | 6 | 5 | 42 | 4 | 0 | 10 |
HH-CW-R-60 | 24 | 36 | 51 | 13 | 5 | 5 | 27 | 23 | 19 | 18 | 14 | 9 | 3 | 1 | 132 | 0 | 0 | 22 |
Negev reference samples: Loess paleosol of loess apron in Nahal Haroa (NH-LA): Cambic Calcisol (Siltic); and chalk outcrop | ||||||||||||||||||
NH-LA-30cm | 5 | 27 | 58 | 15 | 2 | 2 | 23 | 22 | 35 | 12 | 10 | 8 | 6 | 1 | 42 | 0 | 0 | 20 |
Haroa Farm - chalk | n.a. | 12 | 86 | 2 | 0 | 1 | 11 | n.a. | 1 | 7 | 78 | 1 | 0 | 2 | 4 | 0 | 0 | 5 |
Petra ruin soils: Jabal Haroun monastery (JH 1): Protic Arenosol (Aridic, Aeolic); Jabal Farasha triclinium (JF site 124/1): Calcaric Leptosol; Umm Saysaban: hilltop ruin: Calcaric Leptosol (Protic) | ||||||||||||||||||
JH 1 | n.a. | 75 | 13 | 12 | 4 | 31 | 39 | 13 | 5 | 4 | 4 | 4 | 3 | 5 | 132 | 0 | 0 | 68 |
JF site 124/1 15 cm | 5 | 53 | 35 | 12 | 3 | 16 | 34 | 16 | 19 | 9 | 7 | 6 | 3 | 3 | 132 | 0 | 0 | 41 |
Umm Saysaban 5 cm | 13 | 51 | 35 | 14 | 3 | 16 | 32 | 13 | 15 | 11 | 9 | 8 | 4 | 2 | 132 | 0 | 0 | 35 |
Petra region buried early Holocene paleosols: Abu Suwwan PPNB Ruins: Protic Regosol (Aeolic); Shkarat Msaied PPNB Ruins: Chromic Cambisol (Protocalcic) | ||||||||||||||||||
Abu Suwwan below nw 65 | 2 | 62 | 23 | 15 | 1 | 39 | 22 | 7 | 7 | 8 | 8 | 7 | 5 | 3 | 415 | 4 | 0 | 48 |
Shakarat Msaid 1 | 0 | 52 | 26 | 22 | 0 | 30 | 21 | 5 | 11 | 7 | 8 | 8 | 6 | 8 | 415 | 4 | 0 | 27 |
Petra region natural hilltop soil with sandstone bedrock sample (Stein): Protic Regosol (Arenic) | ||||||||||||||||||
Sandplateau 1 | 0 | 80 | 12 | 8 | 3 | 59 | 18 | n.a. | 6 | 4 | 3 | 4 | 3 | 2 | 415 | 0 | 0 | 143 |
Sandplateau Stein | 0 | 89 | 7 | 3 | 1 | 75 | 12 | n.a. | 2 | 2 | 4 | 3 | 1 | 0 | 415 | 0 | 0 | 248 |
Petra Region Reference Samples: Rocks and Current Fans | ||||||||||||||||||
Um Ishrin sandstone | n.a. | 81 | 12 | 7 | 18 | 55 | 9 | n.a. | 3 | 4 | 4 | 3 | 1 | 2 | 415 | 0 | 0 | 186 |
JH limestone | n.a. | 48 | 46 | 6 | 29 | 14 | 5 | n.a. | 12 | 27 | 7 | 2 | 1 | 2 | 1315 | 13 | 0 | 74 |
Beidha Fan | 9 | 69 | 21 | 11 | 3 | 43 | 22 | n.a. | 9 | 5 | 6 | 7 | 3 | 1 | 415 | 1 | 0 | 72 |
Current dust storm sediment samples from the Negev (HH – Horvat Haluqim) and the Petra region (JH – Jabal Haroun) | ||||||||||||||||||
11-12-10-HH | 0 | 24 | 56 | 20 | 0 | 1 | 23 | 21 | 38 | n.a. | 18 | 19 | 1 | 0 | 42 | 1 | 0 | 16 |
29-02-12-HH | 0 | 30 | 58 | 12 | 0 | 0 | 30 | 28 | 46 | n.a. | 11 | 12 | 0 | 0 | 42 | 1 | 0 | 27 |
JH-07.01.2017 | 0 | 83 | 13 | 4 | 10 | 62 | 11 | 5 | 7 | n.a. | 6 | 4 | 0 | 0 | 415 | 0 | 0 | 204 |
JH-15.02.2017 | 0 | 44 | 43 | 13 | 1 | 24 | 19 | 11 | 22 | n.a. | 21 | 13 | 0 | 0 | 415 | 42 | 10 | 34 |
JH-01.03.2017 | 0 | 46 | 46 | 8 | 0 | 11 | 35 | 22 | 30 | n.a. | 16 | 7 | 0 | 0 | 132 | 0 | 0 | 40 |
Sample No. | Date of Sample Collection | Place | Max. Wind Speed (km/h) | Average Wind Speed (km/h) | Main Wind Direction from | Precipitation | Weight (g) | Munsell Dry | CaCO3 % from Ca% |
---|---|---|---|---|---|---|---|---|---|
Negev | |||||||||
25-03-03-HH dry spot | 25.03.2003 | Midreshet Ben-Gurion | 70 | 20–25 | W | rain, but dry deposition | 12 | 10YR 7/6 yellow | n.d. |
25-03-03-HH-incl.-washout | 25.03.2003 | Midreshet Ben-Gurion | 70 | 20–25 | W | rain | 14 | 10YR 7/6 yellow | 35 |
11-12-10-HH | 11.12.2010 | Midreshet Ben-Gurion | 80 | 25–30 | SW | dry | 15 | 10YR 7/4 very pale brown | 38 |
12-12-10-HH | 12.12.2010 | Midreshet Ben-Gurion | 80 | 25–30 | SW | dry | 27 | 10YR 7/4 very pale brown | 38 |
29-02-12-HH | 29.02.2012 | Midreshet Ben-Gurion | 83 | 25–30 | SW | rain | 9 | 10YR 7/4 very pale brown | 34 |
18-04-12-HH | 18.04.2012 | Midreshet Ben-Gurion | 64 | 10–15 | NW | dry | 16 | 10YR 7/4 very pale brown | 30 |
20-12-12-HH | 20.12.2012 | Midreshet Ben-Gurion | 68 | 15–20 | WSW | dry | 1 | n.d. | 33 |
22-03-13-HH | 22.03.2013 | Midreshet Ben-Gurion | 84 | 15–20 | W | dry | 5 | 10YR 7/4 very pale brown | 44 |
11-02-15-HH | 11.02.2015 | Midreshet Ben-Gurion | 81 | 25–30 | SW | very light rain | 3 | 10YR 7/4 very pale brown | 40 |
01-12-16-HH | 01.12.2016 | Midreshet Ben-Gurion | 60 | 15–20 | W | rain | 1 | n.d. | n.d. |
05-01-18-HH | 05.01.2018 | Midreshet Ben-Gurion | 80 | 25–30 | W | rain | 1 | 10YR 7/6 yellow | n.d. |
28-03-18-HH | 28.03.2018 | Midreshet Ben-Gurion | 73 | 15–20 | S | dry | 3 | 10YR 7/6 yellow | n.d. |
Petra Region | |||||||||
JH-25.11.2016 | 25.11.2016 | Jabal Haroun | 60 | 30–35 | SE | dry | 1 | 10YR 5/3 brown | n.d. |
JH-19-12-2016 | 19.12.2016 | Jabal Haroun | 61 | 30–35 | W | very light rain | 2 | n.d. | 3 |
JH-31-12-2016 | 31.12.2016 | Jabal Haroun | 42 | 15–20 | NW | dry | 1 | n.d. | n.d. |
JH-07.01.2017 | 07.01.2017 | Jabal Haroun | 47 | 15–20 | W | dry | 8 | 10YR 6/3 pale brown | 6 |
JH-15.02.2017 | 15.02.2017 | Jabal Haroun | 45 | 25–30 | NW | snow | 16 | 10YR 6/3 pale brown | 15 |
JH-01.03.2017 | 01.03.2017 | Jabal Haroun | 39 | 5–10 | S | rain | 3 | 10YR 5/2 grayish brown | 11 |
05-08-17-JH | 05.08.2017 | Jabal Haroun | 30 | 15–20 | NW | dust devil? | 66 | 10YR 5/4 yellowish brown | 5 |
05-08-17-JH closed box | 05.08.2017 | Jabal Haroun | 30 | 15–20 | NW | dust devil? | 56 | 10YR 5/4 yellowish brown | 4 |
Saleh.25.11.2016 | 25.11.2016 | Saleh’s house | 60 | 30–35 | SE | dry | 12 | 5YR 5/3 reddish brown | 2 |
20-06-16-Saleh | 20.06.2017 | Saleh’s house | 51 | 25–30 | NW | dry | 13 | 10YR 5/4 yellowish brown | 12 |
05-08-17-Saleh | 05.08.2017 | Saleh’s house | 30 | 15–20 | NW | dry | 13 | 5YR 6/4 light reddish brown | 11 |
No. | Variance Expl. % | Composition | Present in | Possible Processes |
---|---|---|---|---|
1 | 4.5 | Coarse clay, coarse silt, medium sand | Soils in both regions, refe-rence samples, Turonian paleosol | In-situ weathering, local redistribution |
2 | 8.5 | Fine silt (& coarse silt, medium sand) | All Negev samples, ruin soils & snow and rainstorm dust near Petra | Long-range dust transport |
3 | 9 | Medium-coarse silt, medium sand | Negev references, one Negev dust storm, Petra dust storms, sandstones | Locally re-distributed rock particles |
4 | 19 | Coarse silt | All Negev soils and dust storms, Petra soils and dust storms with rainfall | Long-range and intermediate dust transport |
5 | 18 | Coarse silt-fine sand, coarse clay | Negev soils & dust storms, Petra soils & dust storms | Long-range and intermediate dust transport |
6 | 31 | Medium sand, fine clay | Ruin soils in both regions, most samples of Petra region | Rock weathering and short-range transport from sandstones |
7 | 10 | Coarse sand (& coarse silt, medium clay) | Some sandstone rocks near Petra and few dry dust storms | Rock weathering and strong winds e.g., by dust devils |
Sample No. | Fe(o) (mg/g) | Fe(d) (mg/g) | Fe (d/t) | CIA Quotient A | CIA Quotient B | K/Al2O3-Ratio | CaCO3 % | Clay % | χ (m³/kg) E-8 | χFD % | χOx-diff % | χDi-diff % |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Negev | ||||||||||||
Ruin Western Wadi | ||||||||||||
HH-WW R1 10 cm | 0.21 | 2.52 | 0.14 | 0.92 | 0.80 | 0.09 | 35 | 13 | 44 | 4 | 8 | 31 |
Ruin Central Wadi | ||||||||||||
HH-CW-R 10 cm | 0.49 | 4.27 | 0.20 | 0.91 | 0.80 | 0.16 | 40 | 26 | 64 | 6 | ||
HH-CW-R 60 cm | 0.23 | 1.84 | 0.11 | 0.92 | 0.80 | 0.13 | 32 | 13 | 61 | 5 | 2 | 35 |
Haroa Loess Aprons | ||||||||||||
NH-LA-30 cm | 0.38 | 4.64 | 0.20 | 0.92 | 0.73 | 0.16 | 27 | 15 | 61 | 3 | 10 | 23 |
Petra region | ||||||||||||
Monastery Ruin Soil on Jabal Haroun | ||||||||||||
FJHP Site 1, Trench R | 0.05 | 3.79 | 0.50 | 0.97 | 0.62 | 0.11 | 7 | 8 | 18 | 7 | ||
Jabal Farasha Hilltop Ruin | ||||||||||||
JF site 124/1 15 cm | 0.30 | 6.72 | 0.45 | 0.91 | 0.49 | 0.07 | 10 | 12 | 26 | 6 | ||
Umm Saysaban | ||||||||||||
Umm Saysaban 5 cm | 0.25 | 5.56 | 0.34 | 0.91 | 0.52 | 0.06 | 12 | 14 | 28 | 7 | ||
Abu Suwwan Paleosol below Ruins | ||||||||||||
Abu Suwwan below nw 65 cm | 0.14 | 4.02 | 0.39 | 0.96 | 0.76 | 0.07 | 18 | 15 | 82 | 6 | ||
Shkarat Msaied Paleosol below Ruins | ||||||||||||
Shkarat Msaied 1 | 0.27 | 4.42 | 0.31 | 0.95 | 0.69 | 0.14 | 15 | 22 | 22 | 5 | ||
Natural Soil on Sandstone Plateau | ||||||||||||
Sandplateau 1 | 0.05 | 2.47 | 0.41 | 0.96 | 0.32 | 0.06 | 2 | 8 | 20 | −4 | ||
Sandplateau Stein (sandstone) | 0.00 | 0.14 | 0.20 | 0.96 | 0.03 | 0.01 | 0 | 4 | 0 | |||
Baja Sandstein Oberfläche (sandstone) | 0.03 | 0.23 | 0.15 | 0.86 | 0.09 | 0.01 | 1 | 17 | 0 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lucke, B.; Roskin, J.; Vanselow, K.A.; Bruins, H.J.; Abu-Jaber, N.; Deckers, K.; Lindauer, S.; Porat, N.; Reimer, P.J.; Bäumler, R.; et al. Character, Rates, and Environmental Significance of Holocene Dust Accumulation in Archaeological Hilltop Ruins in the Southern Levant. Geosciences 2019, 9, 190. https://doi.org/10.3390/geosciences9040190
Lucke B, Roskin J, Vanselow KA, Bruins HJ, Abu-Jaber N, Deckers K, Lindauer S, Porat N, Reimer PJ, Bäumler R, et al. Character, Rates, and Environmental Significance of Holocene Dust Accumulation in Archaeological Hilltop Ruins in the Southern Levant. Geosciences. 2019; 9(4):190. https://doi.org/10.3390/geosciences9040190
Chicago/Turabian StyleLucke, Bernhard, Joel Roskin, Kim André Vanselow, Hendrik J. Bruins, Nizar Abu-Jaber, Katleen Deckers, Susanne Lindauer, Naomi Porat, Paula J. Reimer, Rupert Bäumler, and et al. 2019. "Character, Rates, and Environmental Significance of Holocene Dust Accumulation in Archaeological Hilltop Ruins in the Southern Levant" Geosciences 9, no. 4: 190. https://doi.org/10.3390/geosciences9040190
APA StyleLucke, B., Roskin, J., Vanselow, K. A., Bruins, H. J., Abu-Jaber, N., Deckers, K., Lindauer, S., Porat, N., Reimer, P. J., Bäumler, R., Erickson-Gini, T., & Kouki, P. (2019). Character, Rates, and Environmental Significance of Holocene Dust Accumulation in Archaeological Hilltop Ruins in the Southern Levant. Geosciences, 9(4), 190. https://doi.org/10.3390/geosciences9040190