Warm Deep Water Variability During the Last Millennium in the CESM–LME: Pre-Industrial Scenario versus Late 20th Century Changes
Abstract
:1. Introduction
2. Data and Methods
Optimum Multiparameter Analysis—OMP
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
AABW | Antarctic Bottom Water |
ACC | Antarctic Circumpolar Current |
AMOC | Atlantic Meridional Overturning Circulation |
CDW | Circumpolar Deep Water |
CESM–LME | Community Earth System Model Last Millennium Ensemble (experiment) |
FRIS | Filchner–Ronne Ice Shelf |
LIA | Little Ice Age |
LM | Last Millennium |
MCA | Medieval Climate Anomaly |
MOC | Meridional Overturning Circulation |
OMP | Optimum Multiparameter Analysis |
PV | Potential Vorticity |
SO | Southern Ocean |
SWT | Source Water Types |
WDW | Warm Deep Water |
WG | Weddell Gyre |
WS | Weddell Sea |
WSBW | Weddell Sea Bottom Water |
WSDW | Weddell Sea Deep Water |
References
- Orsi, A.H.; Jacobs, S.S.; Gordon, A.L.; Visbeck, M. Cooling and ventilating the abyssal ocean. Geophys. Res. Lett. 2001, 28, 2923–2926. [Google Scholar] [CrossRef]
- Orsi, A.H.; Smethie, W.M., Jr.; Bullister, J.L. On the total input of Antarctic waters to the deep ocean: A preliminary estimate from chlorofluorocarbon measurements. J. Geophys. Res. Ocean. 2002, 107, 31-1–31-14. [Google Scholar] [CrossRef]
- Talley, L.D. Closure of the global overturning circulation through the Indian, Pacific, and Southern Oceans: Schematics and transports. Oceanography 2013, 26, 80–97. [Google Scholar] [CrossRef]
- Kerr, R.; Heywood, K.; Mata, M.; Garcia, C. On the outflow of dense water from the Weddell and Ross Seas in OCCAM model. Ocean Sci. 2012, 8, 369–388. [Google Scholar] [CrossRef] [Green Version]
- Van Sebille, E.; Spence, P.; Mazloff, M.R.; England, M.H.; Rintoul, S.R.; Saenko, O.A. Abyssal connections of Antarctic Bottom Water in a Southern Ocean state estimate. Geophys. Res. Lett. 2013, 40, 2177–2182. [Google Scholar] [CrossRef]
- Orsi, A.H.; Nowlin, W.D., Jr.; Whitworth, T., III. On the circulation and stratification of the Weddell Gyre. Deep Sea Res. Part I Oceanogr. Res. Pap. 1993, 40, 169–203. [Google Scholar] [CrossRef]
- Fahrbach, E.; Rohardt, G.; Scheele, N.; Schröder, M.; Strass, V.; Wisotzki, A. Formation and discharge of deep and bottom water in the northwestern Weddell Sea. J. Mar. Res. 1995, 53, 515–538. [Google Scholar] [CrossRef]
- Naveira Garabato, A.C.; McDonagh, E.L.; Stevens, D.P.; Heywood, K.J.; Sanders, R.J. On the export of Antarctic bottom water from the Weddell Sea. Deep Sea Res. Part II Top. Stud. Oceanogr. 2002, 49, 4715–4742. [Google Scholar] [CrossRef]
- Robertson, R.; Visbeck, M.; Gordon, A.; Fahrbach, E. Long-term temperature trends in the deep waters of the Weddell Sea. Deep Sea Res. Part II Top. Stud. Oceanogr. 2002, 49, 4791–4806. [Google Scholar] [CrossRef]
- Jullion, L.; Garabato, A.C.N.; Bacon, S.; Meredith, M.P.; Brown, P.J.; Torres-Valdés, S.; Speer, K.G.; Holland, P.R.; Dong, J.; Bakker, D.; et al. The contribution of the Weddell Gyre to the lower limb of the Global Overturning Circulation. J. Geophys. Res. Ocean. 2014, 119, 3357–3377. [Google Scholar] [CrossRef] [Green Version]
- Nicholls, K.; Østerhus, S.; Makinson, K.; Gammelsrød, T.; Fahrbach, E. Ice-ocean processes over the continental shelf of the southern Weddell Sea, Antarctica: A review. Rev. Geophys. 2009, 47, RG3003. [Google Scholar] [CrossRef]
- Mantyla, A.W.; Reid, J.L. On the origins of deep and bottom waters of the Indian Ocean. J. Geophys. Res. Ocean. 1995, 100, 2417–2439. [Google Scholar] [CrossRef]
- Sloyan, B.M.; Rintoul, S.R. The Southern Ocean limb of the global deep overturning circulation. J. Phys. Oceanogr. 2001, 31, 143–173. [Google Scholar] [CrossRef]
- Gille, S.T. Warming of the Southern Ocean since the 1950s. Science 2002, 295, 1275–1277. [Google Scholar] [CrossRef] [PubMed]
- Gille, S.T. Decadal-scale temperature trends in the Southern Hemisphere ocean. J. Clim. 2008, 21, 4749–4765. [Google Scholar] [CrossRef]
- Jacobs, S.S. Bottom water production and its links with the thermohaline circulation. Antarct. Sci. 2004, 16, 427–437. [Google Scholar] [CrossRef]
- Jacobs, S. Observations of change in the Southern Ocean. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2006, 364, 1657–1681. [Google Scholar] [CrossRef]
- Aoki, S.; Bindoff, N.L.; Church, J.A. Interdecadal water mass changes in the Southern Ocean between 30∘ E and 160∘ E. Geophys. Res. Lett. 2005, 32. [Google Scholar] [CrossRef]
- Rintoul, S.R. Rapid freshening of Antarctic Bottom Water formed in the Indian and Pacific oceans. Geophys. Res. Lett. 2007, 34. [Google Scholar] [CrossRef]
- Jullion, L.; Naveira Garabato, A.C.; Meredith, M.P.; Holland, P.R.; Courtois, P.; King, B.A. Decadal freshening of the Antarctic Bottom Water exported from the Weddell Sea. J. Clim. 2013, 26, 8111–8125. [Google Scholar] [CrossRef]
- Heuzé, C.; Heywood, K.J.; Stevens, D.P.; Ridley, J.K. Southern Ocean bottom water characteristics in CMIP5 models. Geophys. Res. Lett. 2013, 40, 1409–1414. [Google Scholar] [CrossRef] [Green Version]
- Carsey, F.D. Microwave Observation of the Weddell Polynya. Mon. Weather Rev. 1980, 108, 2032–2044. [Google Scholar] [CrossRef]
- Campbell, E.C.; Wilson, E.A.; Moore, G.K.; Riser, S.C.; Brayton, C.E.; Mazloff, M.R.; Talley, L.D. Antarctic offshore polynyas linked to Southern Hemisphere climate anomalies. Nature 2019, 570, 319–325. [Google Scholar] [CrossRef] [PubMed]
- Weijer, W.; Veneziani, M.; Stössel, A.; Hecht, M.W.; Jeffery, N.; Jonko, A.; Hodos, T.; Wang, H. Local Atmospheric Response to an Open-Ocean Polynya in a High-Resolution Climate Model. J. Clim. 2017, 30, 1629–1641. [Google Scholar] [CrossRef]
- Kurtakoti, P.; Veneziani, M.; Stössel, A.; Weijer, W. Preconditioning and Formation of Maud Rise Polynyas in a High-Resolution Earth System Model. J. Clim. 2018, 31, 9659–9678. [Google Scholar] [CrossRef] [Green Version]
- Tonelli, M.; Wainer, I.; Curchitser, E. A modelling study of the hydrographic structure of the Ross Sea. Ocean Sci. Discuss. 2012, 9, 3431–3449. [Google Scholar] [CrossRef]
- Meccia, V.; Wainer, I.; Tonelli, M.; Curchitser, E. Coupling a thermodynamically active ice shelf to a regional simulation of the Weddell Sea. Geosci. Model Dev. 2013, 6, 1209–1219. [Google Scholar] [CrossRef] [Green Version]
- Danabasoglu, G. A comparison of global ocean general circulation model solutions obtained with synchronous and accelerated integration methods. Ocean Model. 2004, 7, 323–341. [Google Scholar] [CrossRef]
- Sen Gupta, A.; England, M.H. Evaluation of interior circulation in a high-resolution global ocean model. Part I: Deep and bottom waters. J. Phys. Oceanogr. 2004, 34, 2592–2614. [Google Scholar] [CrossRef]
- Gupta, A.S.; Jourdain, N.C.; Brown, J.N.; Monselesan, D. Climate drift in the CMIP5 models. J. Clim. 2013, 26, 8597–8615. [Google Scholar] [CrossRef]
- Kerr, R.; Dotto, T.S.; Mata, M.M.; Hellmer, H.H. Three decades of deep water mass investigation in the Weddell Sea (1984–2014): Temporal variability and changes. Deep Sea Res. Part II Top. Stud. Oceanogr. 2018, 149, 70–83. [Google Scholar] [CrossRef]
- Fahrbach, E.; Hoppema, M.; Rohardt, G.; Boebel, O.; Klatt, O.; Wisotzki, A. Warming of deep and abyssal water masses along the Greenwich meridian on decadal time scales: The Weddell gyre as a heat buffer. Deep Sea Res. Part II Top. Stud. Oceanogr. 2011, 58, 2509–2523. [Google Scholar] [CrossRef]
- Hall, A.; Visbeck, M. Synchronous variability in the Southern Hemisphere atmosphere, sea ice, and ocean resulting from the annular mode. J. Clim. 2002, 15, 3043–3057. [Google Scholar] [CrossRef]
- Thompson, D.W.; Solomon, S. Interpretation of recent Southern Hemisphere climate change. Science 2002, 296, 895–899. [Google Scholar] [CrossRef] [PubMed]
- Sallée, J.; Speer, K.; Rintoul, S. Zonally asymmetric response of the Southern Ocean mixed-layer depth to the Southern Annular Mode. Nat. Geosci. 2010, 3, 273–279. [Google Scholar] [CrossRef]
- Kerr, R.; Wainer, I.; Mata, M.M. Representation of the Weddell Sea deep water masses in the ocean component of the NCAR-CCSM model. Antarct. Sci. 2009, 21, 301–312. [Google Scholar] [CrossRef]
- Ryan, S.; Schröder, M.; Huhn, O.; Timmermann, R. On the warm inflow at the eastern boundary of the Weddell Gyre. Deep Sea Res. Part I Oceanogr. Res. Pap. 2016, 107, 70–81. [Google Scholar] [CrossRef]
- Jones, P.; Osborn, T.; Briffa, K. The evolution of climate over the last millennium. Science 2001, 292, 662–667. [Google Scholar] [CrossRef]
- Jones, P.D.; Mann, M.E. Climate over past millennia. Rev. Geophys. 2004, 42. [Google Scholar] [CrossRef] [Green Version]
- Jones, P.D.; Briffa, K.; Osborn, T.; Lough, J.; Van Ommen, T.; Vinther, B.; Luterbacher, J.; Wahl, E.; Zwiers, F.; Mann, M.; et al. High-resolution palaeoclimatology of the last millennium: A review of current status and future prospects. Holocene 2009, 19, 3–49. [Google Scholar] [CrossRef]
- Bradley, R.S.; Briffa, K.R.; Cole, J.; Hughes, M.K.; Osborn, T.J. The climate of the last millennium. In Paleoclimate, Global Change and the Future; Springer: Berlin/Heidelberg, Germany, 2003; pp. 105–141. [Google Scholar]
- Mann, M.E.; Zhang, Z.; Rutherford, S.; Bradley, R.S.; Hughes, M.K.; Shindell, D.; Ammann, C.; Faluvegi, G.; Ni, F. Global Signatures and Dynamical Origins of the Little Ice Age and Medieval Climate Anomaly. Science 2009, 326, 1256–1260. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Solomon, S.; Qin, D.; Manning, M.; Chen, Z.; Marquis, M.; Averyt, K.B.; Tignor, M.; Miller, H.L. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- PAGES 2k Consortium. Continental-scale temperature variability during the past two millennia. Nat. Geosci. 2013, 6, 339–346. [Google Scholar] [CrossRef]
- Otto-Bliesner, B.L.; Brady, E.C.; Fasullo, J.; Jahn, A.; Landrum, L.; Stevenson, S.; Rosenbloom, N.; Mai, A.; Strand, G. Climate variability and change since 850 CE: An ensemble approach with the Community Earth System Model. Bull. Am. Meteorol. Soc. 2016, 97, 735–754. [Google Scholar] [CrossRef]
- Kay, J.; Deser, C.; Phillips, A.; Mai, A.; Hannay, C.; Strand, G.; Arblaster, J.; Bates, S.; Danabasoglu, G.; Edwards, J.; et al. The Community Earth System Model (CESM) large ensemble project: A community resource for studying climate change in the presence of internal climate variability. Bull. Am. Meteorol. Soc. 2015, 96, 1333–1349. [Google Scholar] [CrossRef]
- Danabasoglu, G.; Bates, S.C.; Briegleb, B.P.; Jayne, S.R.; Jochum, M.; Large, W.G.; Peacock, S.; Yeager, S.G. The CCSM4 ocean component. J. Clim. 2012, 25, 1361–1389. [Google Scholar] [CrossRef]
- Abram, N.J.; McGregor, H.V.; Tierney, J.E.; Evans, M.N.; McKay, N.P.; Kaufman, D.S.; Thirumalai, K.; Martrat, B.; Goosse, H.; Phipps, S.J.; et al. Early onset of industrial-era warming across the oceans and continents. Nature 2016, 536, 411–418. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, W.; Feng, S.; Liu, C.; Chen, J.; Chen, J.; Chen, F. Changes of climate regimes during the last millennium and the twenty-first century simulated by the Community Earth System Model. Quat. Sci. Rev. 2018, 180, 42–56. [Google Scholar] [CrossRef]
- Stevenson, S.; Overpeck, J.T.; Fasullo, J.; Coats, S.; Parsons, L.; Otto-Bliesner, B.; Ault, T.; Loope, G.; Cole, J. Climate variability, volcanic forcing, and last Millennium hydroclimate extremes. J. Clim. 2018, 31, 4309–4327. [Google Scholar] [CrossRef]
- Zambri, B.; LeGrande, A.N.; Robock, A.; Slawinska, J. Northern Hemisphere winter warming and summer monsoon reduction after volcanic eruptions over the last millennium. J. Geophys. Res. Atmos. 2017, 122, 7971–7989. [Google Scholar] [CrossRef]
- CESM–LME. Last Millennium Ensemble Publications. 2018. Available online: http://www.cesm.ucar.edu/projects/community-projects/LME/publications.html (accessed on 16 March 2019).
- Zhang, X.; Peng, S.; Ciais, P.; Wang, Y.P.; Silver, J.D.; Piao, S.; Rayner, P.J. Greenhouse gas concentration and volcanic eruptions controlled the variability of terrestrial carbon uptake over the last millennium. J. Adv. Model. Earth Syst. 2019, 11, 1715–1734. [Google Scholar] [CrossRef]
- Munoz, S.E.; Dee, S.G. El Niño increases the risk of lower Mississippi River flooding. Sci. Rep. 2017, 7, 1772. [Google Scholar] [CrossRef] [PubMed]
- Deser, C.; Phillips, A.S.; Tomas, R.A.; Okumura, Y.M.; Alexander, M.A.; Capotondi, A.; Scott, J.D.; Kwon, Y.O.; Ohba, M. ENSO and Pacific decadal variability in the Community Climate System Model version 4. J. Clim. 2012, 25, 2622–2651. [Google Scholar] [CrossRef]
- Ault, T.; Deser, C.; Newman, M.; Emile-Geay, J. Characterizing decadal to centennial variability in the equatorial Pacific during the last millennium. Geophys. Res. Lett. 2013, 40, 3450–3456. [Google Scholar] [CrossRef]
- Landrum, L.; Otto-Bliesner, B.L.; Wahl, E.R.; Conley, A.; Lawrence, P.J.; Rosenbloom, N.; Teng, H. Last millennium climate and its variability in CCSM4. J. Clim. 2013, 26, 1085–1111. [Google Scholar] [CrossRef]
- Phillips, A.S.; Deser, C.; Fasullo, J. Evaluating modes of variability in climate models. Eos Trans. Am. Geophys. Union 2014, 95, 453–455. [Google Scholar] [CrossRef]
- Wainer, I.; Gent, P.R. Changes in the Atlantic Sector of the Southern Ocean estimated from the CESM Last Millennium Ensemble. Antarct. Sci. 2019, 31, 37–51. [Google Scholar] [CrossRef]
- Tomczak, M. A multi-parameter extension of temperature/salinity diagram techniques for the analysis of non-isopycnal mixing. Prog. Oceanogr. 1981, 10, 147–171. [Google Scholar] [CrossRef]
- Tomczak, M.; Large, D. Optimum multiparameter analysis of mixing in the thermocline of the eastern Indian Ocean. J. Geophys. Res. 1989, 94, 16141–16149. [Google Scholar] [CrossRef]
- Tomczak, M.; Large, D.G.B.; Nancarrow, N. Identification of diapycnal mixing through optimum multiparameter analysis. 1. Test of feasibility and sensitivity. J. Geophys. Res. Ocean. 1994, 99, 25267–25274. [Google Scholar] [CrossRef]
- Tomczak, M. Some historical, theoretical and applied aspects of quantitative water mass analysis. J. Mar. Res. 1999, 57, 275–303. [Google Scholar] [CrossRef]
- Tomczak, M.; Leffanue, H.; Henry-Edwards, A. Time changes of water mass properties observed through OMP analysis. In Proceedings of the EGS-AGU-EUG Joint Assembly, Nice, France, 6–11 April 2003; p. 1092, abstract #1092. [Google Scholar]
- Poole, R.; Tomczak, M. Optimum multiparameter analysis of the water mass structure in the Atlantic Ocean thermocline. Deep Sea Res. Part I Oceanogr. Res. Pap. 1999, 46, 1895–1921. [Google Scholar] [CrossRef]
- Budillon, G.; Pacciaroni, M.; Cozzi, S.; Rivaro, P.; Catalano, G.; Ianni, C.; Cantoni, C. An optimum multiparameter mixing analysis of the shelf waters in the Ross Sea. Antarct. Sci. 2003, 15, 105–118. [Google Scholar] [CrossRef] [Green Version]
- Crowley, T.J. Causes of climate change over the past 1000 years. Science 2000, 289, 270–277. [Google Scholar] [CrossRef] [PubMed]
- Kaufman, D.S.; Schneider, D.P.; McKay, N.P.; Ammann, C.M.; Bradley, R.S.; Briffa, K.R.; Miller, G.H.; Otto-Bliesner, B.L.; Overpeck, J.T.; Vinther, B.M.; et al. Recent warming reverses long-term Arctic cooling. Science 2009, 325, 1236–1239. [Google Scholar] [CrossRef] [PubMed]
- McGregor, H.V.; Evans, M.N.; Goosse, H.; Leduc, G.; Martrat, B.; Addison, J.A.; Mortyn, P.G.; Oppo, D.W.; Seidenkrantz, M.S.; Sicre, M.A.; et al. Robust global ocean cooling trend for the pre-industrial Common Era. Nat. Geosci. 2015, 8, 671–677. [Google Scholar] [CrossRef] [Green Version]
- CESM–NCAR. Climate Variability Diagnostics Package. 2018. Available online: http://webext.cgd.ucar.edu/Multi-Case/CVDP_repository/cesm1.lm/ (accessed on 16 March 2019).
- Robock, A. Volcanic eruptions and climate. Rev. Geophys. 2000, 38, 191–219. [Google Scholar] [CrossRef]
- Deacon, G. The Weddell Gyre. Deep Sea Res. Part A. Oceanogr. Res. Pap. 1979, 26, 981–995. [Google Scholar] [CrossRef]
- Crowley, T.J.; Baum, S.K.; Kim, K.Y.; Hegerl, G.C.; Hyde, W.T. Modeling ocean heat content changes during the last millennium. Geophys. Res. Lett. 2003, 30. [Google Scholar] [CrossRef]
- Hawkins, E.; Ortega, P.; Suckling, E.; Schurer, A.; Hegerl, G.; Jones, P.; Joshi, M.; Osborn, T.J.; Masson-Delmotte, V.; Mignot, J.; et al. Estimating changes in global temperature since the preindustrial period. Bull. Am. Meteorol. Soc. 2017, 98, 1841–1856. [Google Scholar] [CrossRef]
- PAGES 2k-PMIP3 Group. Continental-scale temperature variability in PMIP3 simulations and PAGES 2k regional temperature reconstructions over the past millennium. Clim. Past 2015, 11, 1673–1699. [Google Scholar] [CrossRef] [Green Version]
- Emile-Geay, J.; McKay, N.P.; Kaufman, D.S.; Von Gunten, L.; Wang, J.; Anchukaitis, K.J.; Abram, N.J.; Addison, J.A.; Curran, M.A.; Evans, M.N.; et al. A global multiproxy database for temperature reconstructions of the Common Era. Sci. Data 2017, 4, 170088. [Google Scholar]
- Tardif, R.; Hakim, G.; Perkins, W.; Horlick, K.; Erb, M.; Emile-Geay, J.; Anderson, D.; Steig, E.; Noone, D. Last millennium reanalysis with an expanded proxy database and seasonal proxy modeling. Clim. Past Discuss. 2018, 2018, 1–37. [Google Scholar] [CrossRef]
- Neukom, R.; Gergis, J.; Karoly, D.J.; Wanner, H.; Curran, M.; Elbert, J.; González-Rouco, F.; Linsley, B.K.; Moy, A.D.; Mundo, I.; et al. Inter-hemispheric temperature variability over the past millennium. Nat. Clim. Chang. 2014, 4, 362–367. [Google Scholar] [CrossRef]
- Diaz, H.F.; Trigo, R.; Hughes, M.K.; Mann, M.E.; Xoplaki, E.; Barriopedro, D. Spatial and temporal characteristics of climate in medieval times revisited. Bull. Am. Meteorol. Soc. 2011, 92, 1487–1500. [Google Scholar] [CrossRef]
- Juckes, M.N.; Allen, M.R.; Briffa, K.R.; Esper, J.; Hegerl, G.; Moberg, A.; Osborn, T.; Weber, S. Millennial temperature reconstruction intercomparison and evaluation. Clim. Past 2007, 3, 591–609. [Google Scholar] [CrossRef] [Green Version]
- Mann, M.E.; Zhang, Z.; Hughes, M.K.; Bradley, R.S.; Miller, S.K.; Rutherford, S.; Ni, F. Proxy-based reconstructions of hemispheric and global surface temperature variations over the past two millennia. Proc. Natl. Acad. Sci. USA 2008, 105, 13252–13257. [Google Scholar] [CrossRef] [Green Version]
- Ljungqvist, F. A new reconstruction of temperature variability in the extra-tropical Northern Hemisphere during the last two millennia. Geogr. Ann. A 2010, 92, 339–351. [Google Scholar] [CrossRef]
- Smerdon, J.; Pollack, H. Reconstructing Earth’s surface temperature over the past 2000 years: The science behind the headlines. Wiley Interdiscip. Rev. Clim. Chang. 2016, 7, 746–771. [Google Scholar] [CrossRef]
- Gouretski, V.; Koltermann, K.P. WOCE global hydrographic climatology. Berichte Des. BSH 2004, 35, 1–52. [Google Scholar] [CrossRef]
- Van Wijk, E.M.; Rintoul, S.R. Freshening drives contraction of Antarctic Bottom Water in the Australian Antarctic Basin. Geophys. Res. Lett. 2014, 41, 1657–1664. [Google Scholar] [CrossRef]
AASW | WDW | AABW | ||||
---|---|---|---|---|---|---|
Time Slice (yr) | [C] | S | [C] | S | [C] | S |
1050 | −1.734 | 34.077 | 1.430 | 34.815 | 0.280 | 34.772 |
1850 | −1.734 | 34.114 | 1.291 | 34.814 | 0.215 | 34.792 |
1970 | −1.729 | 34.063 | 1.284 | 34.811 | 0.207 | 34.795 |
2000 | −1.709 | 34.072 | 1.260 | 34.822 | 0.208 | 34.796 |
1850–1950 | −1.731 | 34.106 | 1.279 | 34.812 | 0.200 | 34.792 |
1970–2000 | −1.718 | 34.073 | 1.269 | 34.816 | 0.209 | 34.795 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tonelli, M.; Marcello, F.; Ferrero, B.; Wainer, I. Warm Deep Water Variability During the Last Millennium in the CESM–LME: Pre-Industrial Scenario versus Late 20th Century Changes. Geosciences 2019, 9, 346. https://doi.org/10.3390/geosciences9080346
Tonelli M, Marcello F, Ferrero B, Wainer I. Warm Deep Water Variability During the Last Millennium in the CESM–LME: Pre-Industrial Scenario versus Late 20th Century Changes. Geosciences. 2019; 9(8):346. https://doi.org/10.3390/geosciences9080346
Chicago/Turabian StyleTonelli, Marcos, Fernanda Marcello, Bruno Ferrero, and Ilana Wainer. 2019. "Warm Deep Water Variability During the Last Millennium in the CESM–LME: Pre-Industrial Scenario versus Late 20th Century Changes" Geosciences 9, no. 8: 346. https://doi.org/10.3390/geosciences9080346
APA StyleTonelli, M., Marcello, F., Ferrero, B., & Wainer, I. (2019). Warm Deep Water Variability During the Last Millennium in the CESM–LME: Pre-Industrial Scenario versus Late 20th Century Changes. Geosciences, 9(8), 346. https://doi.org/10.3390/geosciences9080346