New Estimation of the Post Little Ice Age Relative Sea Level Rise
Abstract
:1. Introduction
The Little Ice Age
2. The Study Area
2.1. Alghero Spanish Domination
2.2. Geographical Setting
2.3. Present Climate
2.4. Geological Setting
3. Material and Methods
4. Results
4.1. Stratigraphy and Main Sedimentological Characters of the Studied Area
4.2. Archaeology
4.2.1. Alghero Quarries
- 90 (to 80) × 40 (to 50) cm → (5 × 2 + 1/2 palmi—palms) during the 14th to the first half of 16th Centuries (i.e., Palazzo Machin, Cathedral, St. Barbara Church Figure 13);
- 20 (to 18) × 40 (to 60) during the last part of 18th to 19th Centuries (i.e., Theatre, Figure 14C–E).
4.2.2. El Trò Quarry
4.2.3. The Cantaro Quarry
4.2.4. Zio Peppino Quarry
5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Clark, P.U.; Dyke, A.S.; Shakun, J.S.; Carlson, A.E.; Clark, J.; Wohlfarth, B.; Mitrovica, J.X.; Hostetler, S.W.; McCabe, A.M. The Last Glacial Maximum. Science 2009, 325, 710–714. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lambeck, K.; Antonioli, F.; Anzidei, M.; Ferranti, L.; Leoni, G.; Scicchitano, G.; Silenzi, S. Sea level change along the Italian coast during the Holocene and projections for the future. Quat. Int. 2011, 232, 250–257. [Google Scholar] [CrossRef]
- Stranne, C.; Jakobsson, M.; Björk, G. Arctic Ocean perennial sea ice breakdown during the Early Holocene Insolation Maximum. Quat. Sci. Rev. 2014, 92, 123–132. [Google Scholar] [CrossRef]
- Davis, B.A.S.; Brewer, S.; Stevenson, A.C.; Guiot, J. The temperature of Europe during the Holocene reconstructed from pollen data. Quat. Sci. Rev. 2003, 22, 1701–1716. [Google Scholar] [CrossRef]
- Perry, C.A.; Hsu, K.J. Geophysical, archaeological, and historical evidence support a solar-output model for climate change. Proc. Natl. Acad. Sci. 2000, 97, 12433–12438. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pascucci, V.; De Falco, G.; Del Vais, C.; Melis, R.T.; Sanna, I.; Andreucci, S. Climate changes and human impact on the Mistras coastal barrier system (W Sardinia, Italy). Mar. Geol. 2018, 395, 271–284. [Google Scholar] [CrossRef]
- Helama, S.; Jones, P.D.; Briffa, K.R. Dark Ages Cold Period: A literature review and directions for future research. Holocene 2017, 27, 1600–1606. [Google Scholar] [CrossRef] [Green Version]
- Easterbrook, D.J. Evidence-Based Climate Science: Data opposing CO2 emissions as the primary source of global warming, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2016; pp. 1–432. [Google Scholar]
- Fagan, B.M. The Little Ice Age: How Climate Made History, 1300–1850; Basic Books: New York, NY, USA, 2000; p. 272. [Google Scholar]
- Grinsted, A.; Moore, J.C.; Jevrejeva, S. Reconstructing sea level from paleo and projected temperatures 200 to 2100 AD. Clim. Dyn. 2009, 34, 461–472. [Google Scholar] [CrossRef]
- Le Roy Ladurie, E. Historie et Climat. Annales 1959, 14, 3–34. [Google Scholar] [CrossRef]
- Mann, M.E. Little Ice Age. In The Earth System: Physical and Chemical Dimensions of Global Environmental Change; MacCracken, M.C., Perry, J.S., Eds.; Wiley & Sons, Ltd.: Chichester, UK, 2002; Volume 1, pp. 504–509. [Google Scholar]
- Calvisius, S. Opus Chronologicum ex Authoritate Potissimum Sacrae Scripturae et Historicorum Fide Dignissimorum, ad Motum Luminarium Coelestium....; Editio Tertia multis in locis emendata & ad praesentem 1629 usque annum continuata (updated by J. Zhym); Impensis Johannis Thymii: Frankfurt, Germany, 1629. [Google Scholar]
- Kuijpers, A.; Mikkelsen, N.; Ribeiro, S.; Seidenkrantz, M.S. Impact of Medieval Fjord Hydrography and Climate on the Western and Eastern Settlements in Norse Greenland. J. N. Atl. 2014, 6, 1–13. [Google Scholar] [CrossRef]
- Little Ice Age. Available online: https://www.eh-resources.org/little-ice-age/ (accessed on 7 August 2019).
- Zasadni, J. The Little Ice Age in The Alps: Its record in glacial deposits and rock glacier formation. Stud. Geomorph. Carpatho-Balc. 2007, 41, 117–137. [Google Scholar]
- Camuffo, D. Freezing of the Venetian Lagoon since the 6th Century AD, in Comparison to the Climate of Western Europe and England. Clim. Change 1987, 10, 43–66. [Google Scholar] [CrossRef]
- Camuffo, D.; Bertolin, C.; Schenal, P.; Craievich, A.; Granziero, R. The Little Ice Age in Italy from documentary proxies and early instrumental records. Méditerranée 2014, 122, 17–30. [Google Scholar] [CrossRef]
- Budruni, A. Breve Storia di Alghero, 1478–1720; Edizioni del Sole: Sassari, Italy, 1989; p. 37. [Google Scholar]
- Milanese, M. Archeologia delle piazzeforti spagnole della Sardegna nord-occidentale (Alghero Bosa e Castelsardo). APM—Archeol. Postmedievale 2009, 13, 141–170. [Google Scholar]
- Schintu, F. L’Alguer e la Corona d’Aragona: architettura civile catalana di Alghero tra XV e XVI secolo: Tipi, stile e tecniche. PhD Thesis, Università degli studi Roma Tre, Roma, Italy, 20 June 2016; p. 344. [Google Scholar]
- Longhitano, S. The record of tidal cycles in mixed silici–bioclastic deposits: examples from small Plio–Pleistocene peripheral basins of the microtidal Central Mediterranean Sea. Sedimentology 2010, 58, 691–719. [Google Scholar] [CrossRef]
- Sechi, D.; Andreucci, S.; Pascucci, V. Intertidal Upper Pleistocene algal build-ups (Trottoir) of NW Sardinia (Italy): A tool for past sea level reconstruction. J. Mediterr. Earth Sci. 2018, 10, 167–171. [Google Scholar]
- Manca, E.; Pascucci, V.; De Luca, M.; Cossu, A.; Andreucci, S. Shoreline evolution related to coastal development of a managed beach in Alghero, Sardinia, Italy. Ocean Coast. Manag. 2013, 85, 65–76. [Google Scholar] [CrossRef]
- Köppen, W. Das geographische System der Klimate; Köppen, W., Geiger, R., Eds.; Gebrüder Borntraeger: Berlin, Germany, 1936; pp. 1–44. [Google Scholar]
- Belda, M.; Holtanová, E.; Halenka, T.; Kalvová, J. Climate classification revisited from Köppen to Trewartha. Clim. Res. 2014, 59, 1–13. [Google Scholar] [CrossRef]
- Carmignani, L.; Oggiano, G.; Funedda, A.; Conti, P.; Pasci, S. The geological map of Sardinia (Italy) at 1:250,000 scale. J. Maps 2016, 12, 826–835. [Google Scholar] [CrossRef]
- Doglioni, C.; Gueguen, E.; Harabaglia, P.; Mongelli, F. On the origin of W-directed subduction zones and applications to the western Mediterranean. In The Mediterranean Basins: Tertiary Extension within the Alpine Orogen; Durand, B., Jolivet, L., Horvath, F., Séranne, M., Eds.; Special Publication: London, UK, 1998; pp. 541–561. [Google Scholar]
- Casula, G.; Cherchi, A.; Montadert, L.; Murru, M.; Sarria, E. The Cenozoic grabens system of Sardinia: Geodynamic evolution from new seismic and field data. Mar. Pet. Geol. 2001, 18, 863–888. [Google Scholar] [CrossRef]
- Ferranti, L.; Antonioli, F.; Mauz, B.; Amorosi, A.; Dai Pra, G.; Mastronuzzi, G.; Monaco, C.; Orrù, P.; Pappalardo, M.; Radtke, U.; et al. Markers of the last interglacial sea level high stand along the coast of Italy: Tectonic implications. Quat. Int. 2006, 146, 30–54. [Google Scholar] [CrossRef]
- Cocco, F.; Andreucci, S.; Sechi, D.; Cossu, G.; Funedda, A. Upper Pleistocene tectonics in western Sardinia (Italy): Insights from the Sinis peninsula structural high. Terra Nova 2019. [Google Scholar] [CrossRef]
- Lobo, J.F.; Ridente, D. Stratigraphic architecture and spatio-temporal variability of high frequency (Milankovitch) depositional cycles on modern continental margins: An overview. Mar. Geol. 2014, 352, 215–247. [Google Scholar] [CrossRef]
- Pascucci, V.; Sechi, D.; Andreucci, S. Middle Pleistocene to Holocene coastal evolution of NW Sardinia (Mediterranean Sea, Italy). Quat. Int. 2014, 328, 3–20. [Google Scholar] [CrossRef]
- Andreucci, S.; Clemmensen, L.B.; Murray, A.; Pascucci, V. Middle to late Pleistocene coastal deposits of Alghero, northwest Sardinia (Italy): Chronology and evolution. Quat. Int. 2010, 222, 3–16. [Google Scholar] [CrossRef]
- Pascucci, V.; Andreucci, S.; Sechi, D.; Casini, L. Late Quaternary stratigraphy of Western Sardinia (Central Mediterranean) based on luminescence age dating. Alp. Mediterr. Quat. 2018, 31, 181–184. [Google Scholar]
- Andreucci, S.; Clemmensen, L.B.; Pascucci, V. Transgressive dune formation along a cliffed coast at 75 ka in Sardinia, Western Mediterranean: A record of sea-level fall and increased windiness. Terra Nova 2010, 22, 424–433. [Google Scholar] [CrossRef]
- Martrat, B.; Grimalt, J.O.; Lopez-Martinez, C.; Cacho, I.; Sierro, F.J.; Abel Flores, J.; Zahn, R.; Canals, M.; Curtis, J.H.; Hodell, D.A. Abrupt temperature changes in the Western Mediterranean over the past 250,000 years. Science 2004, 306, 1762–1765. [Google Scholar] [CrossRef]
- Rovere, A.; Raymo, M.E.; Vacchi, M.; Lorscheid, T.; Stocchi, P.; Gómez-Pujol, L.; Harris, D.L.; Casella, E.; O’Leary, M.J.; Heartyh, P.J. The analysis of Last Interglacial (MIS 5e) relative sea-level indicators: Reconstructing sea-level in a warmer world. Earth Sci. Rev. 2016, 159, 404–427. [Google Scholar] [CrossRef] [Green Version]
- Peltier, W.R. Global glacial isostasy and the surface of the ice-age Earth: the ICE-5G (VM2) Model and Grace. Annu. Rev. Earth Planet. Sci. 2004, 32, 111–149. [Google Scholar] [CrossRef]
- Fanelli, F.; Palombo, M.R.; Pillola, G.L.; Ibba, A. Tracks and trackways of “Praemegaceros” cazioti” (Depéret, 1897) (Artiodactyla, Cervidae) in Pleistocene, Italy. Boll. della Soc. Paleontol. Ital. 2007, 46, 47–54. [Google Scholar]
- Pascucci, V.; Martini, I.P.; Endres, A. Facies and ground-penetrating-radar (GPR) characteristics of coarse-grained beach deposits of the uppermost Pleistocene glacialLake Algonquin, Ontario Canada. Sedimentology 2009, 56, 529–545. [Google Scholar] [CrossRef]
- Frulio, G. L’organizzazione del cantiere e della produzione edilizia ad Alghero nel XVII secolo. Archeol. Archit. 2001, 6, 37–48. [Google Scholar]
- Floris, G. Le abitazioni del Centro Storico di Alghero nel XIX Secolo e i Materiali da Costruzione Impiegati; Giuffrè Editore: Alghero, Italy, 2009; p. 34. [Google Scholar]
- Budruni, A. Storia di Alghero. Il Cinquecento e il Seicento; Edizioni del Sole: Sassari, Italy, 2010; p. 192. [Google Scholar]
- Castellaccio, A. Alghero e le sue mura nel libro dei conti di Bartolomeo Clotes (1417-1419); Diesse: Sassari, Italy, 1981; pp. 525–536. [Google Scholar]
- Castellaccio, A. Le fortificazioni e le strutture difensive di Alghero (XVI-XV sec.); Mattone, A., Sanna, P., Eds.; Gallizzi: Sassari, Italy, 1994; pp. 125–148. [Google Scholar]
- Piras, V. Bocca di Miniera; Carlo Delfino Editore: Sassari, Italy, 2011; p. 320. ISBN 9788871386157. [Google Scholar]
- Bradley, R.S.; Jones, P.D. ‘Little Ice Age’ Summer Temperature Variations: Their Nature and Relevance to Recent Global Warming Trends. Holocene 1993, 3, 367–376. [Google Scholar] [CrossRef]
- Jones, P.D.; Briffa, K.R.; Barnett, T.P.; Tett, S.F.B. High-resolution Palaeoclimatic Records for the Last Millennium: Interpretation, Integration and Comparison with General Circulation Model Control Run Temperatures. Holocene 1998, 8, 477–483. [Google Scholar] [CrossRef]
- Mann, M.E.; Bradley, R.S.; Hughes, M.K. Global-scale Temperature Patterns and Climate Forcing Over the Past Six Centuries. Nature 1998, 392, 779–787. [Google Scholar] [CrossRef]
- Mann, M.E.; Bradley, R.S.; Hughes, M.K. Northern Hemisphere Temperatures during the Past Millennium: Inferences, Uncertainties, and Limitations. Geophys. Res. Lett. 1999, 26, 759–762. [Google Scholar] [CrossRef]
- Mann, M.E.; Zhang, Z.; Rutherford, S.; Bradley, R.S.; Hughes, M.K.; Shindell, D.; Ammann, C.; Faluvegi, G.; Ni, F. Global Signatures and Dynamical Origins of the Little Ice Age and Medieval Climate Anomaly. Science 2009, 326, 1256–1260. [Google Scholar] [CrossRef] [Green Version]
- Grove, J.M. The Little Ice Age; Routledge: Methuen, MA, USA, 1988; p. 498. [Google Scholar]
- Hoyt, D.V.; Schatten, K.H. The Role of the Sun in Climate Change; Oxford University Press: Oxford, UK, 1997; p. 278. [Google Scholar]
- Pan, K.D.; Yau, K.K. Ancient observations link changes in sun’s brightness and earth’s climate. EOS, Transactions. Am. Geophys. Union 2002, 83, 489–490. [Google Scholar]
- Crutzen, P.J. The “Anthropocene”. In Earth System Science in the Anthropocene; Ehlers, E., Krafft, T., Eds.; Springer: Berlin, Germany, 2006; pp. 13–18. [Google Scholar]
- Chambers, F.M. The ‘Little Ice Age’: The first virtual issue of The Holocene. Holocene 2016, 25, 1–3. [Google Scholar] [CrossRef]
- Mateos, R.M.; Durán, J.J.; Robledo, P.A. Marès Quarries on the Majorcan Coast (Spain) as Geological Heritage Sites. Geoheritage 2011, 3, 41–54. [Google Scholar] [CrossRef]
- Andreucci, S.; Pascucci, V.; Clemmensen, L.B. Upper Pleistocene coastal deposits of West Sardinia: A record of sea-level and climatic change. GeoActa 2006, 5, 79–96. [Google Scholar]
- Kemp, A.C.; Horton, B.P.; Donnelly, J.P.; Mann, M.E.; Vermeer, M.; Rahmstorf, S. Climate related sea-level variations over the past two millennia. Proc. Natl. Am. Soc. 2011, 108, 11017–11022. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morner, N.A. The Approaching New Grand Solar Minimum and Little Ice Age Climate Conditions. Natl. Sci. 2015, 7, 510. [Google Scholar] [CrossRef]
- Raible, C.C.; Yoshimori, M.; Stocker, T.F.; Casty, C. Extreme midlatitude cyclones and their implications to precipitation and wind speed extremes in simulations of the Maunder Minimum versus present day conditions. Clim. Dyn. 2007, 28, 409–423. [Google Scholar] [CrossRef]
- Dezileau, L.; Castaings, J. Extreme storms during the last 500 years from lagoonal sedimentary archives in Languedoc (SE France). Méditerranée 2014, 122, 131–137. [Google Scholar] [CrossRef]
- Esper, J.; Frank, D.C.; Timonen, M.; Zorita, E.; Wilson, R.J.S.; Luterbacher, J.; Holzkämper, S.; Fischer, N.; Wagner, S.; Nievergelt, D.; et al. Orbital forcing of tree-ring data. Nat. Clim. Change 2012, 2, 862–866. [Google Scholar] [CrossRef]
- Stocchi, P.; Spada, G. Influence of glacial isostatic adjustment upon current sea level variations in the Mediterranean. Tectonophysics 2009, 474, 56–68. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pascucci, V.; Frulio, G.; Andreucci, S. New Estimation of the Post Little Ice Age Relative Sea Level Rise. Geosciences 2019, 9, 348. https://doi.org/10.3390/geosciences9080348
Pascucci V, Frulio G, Andreucci S. New Estimation of the Post Little Ice Age Relative Sea Level Rise. Geosciences. 2019; 9(8):348. https://doi.org/10.3390/geosciences9080348
Chicago/Turabian StylePascucci, Vincenzo, Gabriela Frulio, and Stefano Andreucci. 2019. "New Estimation of the Post Little Ice Age Relative Sea Level Rise" Geosciences 9, no. 8: 348. https://doi.org/10.3390/geosciences9080348
APA StylePascucci, V., Frulio, G., & Andreucci, S. (2019). New Estimation of the Post Little Ice Age Relative Sea Level Rise. Geosciences, 9(8), 348. https://doi.org/10.3390/geosciences9080348