Beneficial Bacteria in the Gut Microbiota May Lead to Improved Metabolic and Immunological Status in Chronic Obstructive Pulmonary Disease
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Evaluation of Clinical Parameters
2.3. Biochemical Analyses and Cytokine Assays
2.4. Gut Microbiota Analysis
2.5. Statistical Analyses
3. Results
3.1. Clinical, Biochemical and Immunological Markers in COPD Patients
3.2. Gut Microbiota Analysis and Associations with COPD Parameters
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Qin, J.; Li, R.; Raes, J.; Arumugam, M.; Burgdorf, K.S.; Manichanh, C.; Nielsen, T.; Pons, N.; Levenez, F.; Yamada, T.; et al. A Human Gut Microbial Gene Catalogue Established by Metagenomic Sequencing. Nature 2010, 464, 59–65. [Google Scholar] [CrossRef]
- Tremaroli, V.; Bäckhed, F. Functional Interactions between the Gut Microbiota and Host Metabolism. Nature 2012, 489, 242–249. [Google Scholar] [CrossRef]
- Rinninella, E.; Raoul, P.; Cintoni, M.; Franceschi, F.; Miggiano, G.; Gasbarrini, A.; Mele, M. What Is the Healthy Gut Microbiota Composition? A Changing Ecosystem across Age, Environment, Diet, and Diseases. Microorganisms 2019, 7, 14. [Google Scholar] [CrossRef]
- Jandhyala, S.M.; Talukdar, R.; Subramanyam, C.; Vuyyuru, H.; Sasikala, M.; Reddy, D.N. Role of the Normal Gut Microbiota. World J. Gastroenterol. WJG 2015, 21, 8787. [Google Scholar] [CrossRef] [PubMed]
- Gibiino, G.; Lopetuso, L.R.; Scaldaferri, F.; Rizzatti, G.; Binda, C.; Gasbarrini, A. Exploring Bacteroidetes: Metabolic Key Points and Immunological Tricks of Our Gut Commensals. Dig. Liver Dis. 2018, 50, 635–639. [Google Scholar] [CrossRef]
- Mariat, D.; Firmesse, O.; Levenez, F.; Guimarăes, V.D.; Sokol, H.; Doré, J.; Corthier, G.; Furet, J.-P.P.; Guimarǎes, V.D.; Sokol, H.; et al. The Firmicutes/Bacteroidetes Ratio of the Human Microbiota Changes with Age. BMC Microbiol. 2009, 9, 123. [Google Scholar] [CrossRef] [PubMed]
- Rajilić-Stojanović, M.; de Vos, W.M. The First 1000 Cultured Species of the Human Gastrointestinal Microbiota. FEMS Microbiol. Rev. 2014, 38, 996–1047. [Google Scholar] [CrossRef]
- Schwiertz, A.; Taras, D.; Schäfer, K.; Beijer, S.; Bos, N.A.; Donus, C.; Hardt, P.D. Microbiota and SCFA in Lean and Overweight Healthy Subjects. Obesity 2010, 18, 190–195. [Google Scholar] [CrossRef] [PubMed]
- Binda, C.; Lopetuso, L.R.; Rizzatti, G.; Gibiino, G.; Cennamo, V.; Gasbarrini, A. Actinobacteria: A Relevant Minority for the Maintenance of Gut Homeostasis. Dig. Liver Dis. 2018, 50, 421–428. [Google Scholar] [CrossRef] [PubMed]
- Dao, M.C.; Everard, A.; Aron-Wisnewsky, J.; Sokolovska, N.; Prifti, E.; Verger, E.O.; Kayser, B.D.; Levenez, F.; Chilloux, J.; Hoyles, L.; et al. Akkermansia Muciniphila and Improved Metabolic Health during a Dietary Intervention in Obesity: Relationship with Gut Microbiome Richness and Ecology. Gut 2016, 65, 426–436. [Google Scholar] [CrossRef]
- Ottman, N.; Reunanen, J.; Meijerink, M.; Pietilä, T.E.; Kainulainen, V.; Klievink, J.; Huuskonen, L.; Aalvink, S.; Skurnik, M.; Boeren, S. Pili-like Proteins of Akkermansia Muciniphila Modulate Host Immune Responses and Gut Barrier Function. PLoS ONE 2017, 12, e0173004. [Google Scholar] [CrossRef]
- Rooks, M.G.; Garrett, W.S. Gut Microbiota, Metabolites and Host Immunity. Nat. Rev. Immunol. 2016, 16, 341–352. [Google Scholar] [CrossRef] [PubMed]
- Budden, K.F.; Gellatly, S.L.; Wood, D.L.A.; Cooper, M.A.; Morrison, M.; Hugenholtz, P.; Hansbro, P.M. Emerging Pathogenic Links between Microbiota and the Gut-Lung Axis. Nat. Rev. Microbiol. 2017, 15, 55–63. [Google Scholar] [CrossRef]
- Zhang, D.; Li, S.; Wang, N.; Tan, H.-Y.; Zhang, Z.; Feng, Y. The Cross-Talk Between Gut Microbiota and Lungs in Common Lung Diseases. Front. Microbiol. 2020, 11, 301. [Google Scholar] [CrossRef] [PubMed]
- Passos, F.C.; de Oliveira, L.M.G.; Leal Neto, O.L.; Jesus, F.R.; Falcão, M.M.L.; Neves, M.C.L.C.; Lemos, A.C.M.; Baccan, G.C. Gut Microbiota Changes in Airway Diseases: A Systematic Review. Rev. Ciências Médicas Biológicas 2020, 19, 353. [Google Scholar] [CrossRef]
- Burke, D.G.; Fouhy, F.; Harrison, M.J.; Rea, M.C.; Cotter, P.D.; O’Sullivan, O.; Stanton, C.; Hill, C.; Shanahan, F.; Plant, B.J.; et al. The Altered Gut Microbiota in Adults with Cystic Fibrosis. BMC Microbiol. 2017, 17, 58. [Google Scholar] [CrossRef]
- Begley, L.; Madapoosi, S.; Opron, K.; Ndum, O.; Baptist, A.; Rysso, K.; Erb-Downward, J.R.; Huang, Y.J. Gut Microbiota Relationships to Lung Function and Adult Asthma Phenotype: A Pilot Study. BMJ Open Respir. Res. 2018, 5, e000324. [Google Scholar] [CrossRef]
- Dumas, A.; Bernard, L.; Poquet, Y.; Lugo-Villarino, G.; Neyrolles, O. The Role of the Lung Microbiota and the Gut-Lung Axis in Respiratory Infectious Diseases. Cell Microbiol. 2018, 20, e12966. [Google Scholar] [CrossRef] [PubMed]
- Barcik, W.; Boutin, R.C.T.; Sokolowska, M.; Finlay, B.B. The Role of Lung and Gut Microbiota in the Pathology of Asthma. Immunity 2020, 52, 241–255. [Google Scholar] [CrossRef]
- Wei, Y.; Lu, X.; Liu, C. Gut Microbiota and Chronic Obstructive Pulmonary Disease: A Mendelian Randomization Study. Front. Microbiol. 2023, 14, 1196751. [Google Scholar]
- Li, N.; Yi, X.; Chen, C.; Dai, Z.; Deng, Z.; Pu, J.; Zhou, Y.; Li, B.; Wang, Z.; Ran, P. The Gut Microbiome as a Potential Source of Non-Invasive Biomarkers of Chronic Obstructive Pulmonary Disease. Front. Microbiol. 2023, 14, 1173614. [Google Scholar] [CrossRef] [PubMed]
- Bowerman, K.L.; Rehman, S.F.; Vaughan, A.; Lachner, N.; Budden, K.F.; Kim, R.Y.; Wood, D.L.A.; Gellatly, S.L.; Shukla, S.D.; Wood, L.G.; et al. Disease-Associated Gut Microbiome and Metabolome Changes in Patients with Chronic Obstructive Pulmonary Disease. Nat. Commun. 2020, 11, 5886. [Google Scholar] [CrossRef]
- Chiu, Y.-C.; Lee, S.-W.; Liu, C.-W.; Lan, T.-Y.; Wu, L.S.-H. Relationship between Gut Microbiota and Lung Function Decline in Patients with Chronic Obstructive Pulmonary Disease: A 1-Year Follow-up Study. Respir. Res. 2022, 23, 1. [Google Scholar] [CrossRef] [PubMed]
- Hevia, A.; Milani, C.; López, P.; Donado, C.D.; Cuervo, A.; González, S.; Suárez, A.; Turroni, F.; Gueimonde, M.; Ventura, M.; et al. Allergic Patients with Long-Term Asthma Display Low Levels of Bifidobacterium adolescentis. PLoS ONE 2016, 11, e0147809. [Google Scholar] [CrossRef]
- Fouhy, F.; Ronan, N.J.; O’Sullivan, O.; McCarthy, Y.; Walsh, A.M.; Murphy, D.M.; Daly, M.; Flanagan, E.T.; Fleming, C.; McCarthy, M.; et al. A Pilot Study Demonstrating the Altered Gut Microbiota Functionality in Stable Adults with Cystic Fibrosis. Sci. Rep. 2017, 7, 6685. [Google Scholar] [CrossRef] [PubMed]
- Manor, O.; Levy, R.; Pope, C.E.; Hayden, H.S.; Brittnacher, M.J.; Carr, R.; Radey, M.C.; Hager, K.R.; Heltshe, S.L.; Ramsey, B.W.; et al. Metagenomic Evidence for Taxonomic Dysbiosis and Functional Imbalance in the Gastrointestinal Tracts of Children with Cystic Fibrosis. Sci. Rep. 2016, 6, 22493. [Google Scholar] [CrossRef]
- Chiu, Y.-C.; Lee, S.-W.; Liu, C.-W.; Lin, R.C.-J.; Huang, Y.-C.; Lan, T.-Y.; Wu, L.S.-H. Comprehensive Profiling of the Gut Microbiota in Patients with Chronic Obstructive Pulmonary Disease of Varying Severity. PLoS ONE 2021, 16, e0249944. [Google Scholar] [CrossRef] [PubMed]
- Barnes, P.J. Inflammatory Mechanisms in Patients with Chronic Obstructive Pulmonary Disease. J. Allergy Clin. Immunol. 2016, 138, 16–27. [Google Scholar] [CrossRef] [PubMed]
- Agustí, A.; Hogg, J.C. Update on the Pathogenesis of Chronic Obstructive Pulmonary Disease. N. Engl. J. Med. 2019, 381, 1248–1256. [Google Scholar] [CrossRef]
- Moermans, C.; Heinen, V.; Nguyen, D.; Henket, M.; Seve, J.; Manise, M.; Corhay, J.; Louis, R. Local and Systemic Cellular Inflammation And Cytokine Release In Chronic Obstructive Pulmonary Disease (COPD). Am. J. Respir. Crit. Care Med. 2011, 183, A4482. [Google Scholar]
- Jesus, F.R.; Moraes, A.C.S.; da Silva, I.L.N.; Passos, F.C.; Salles, C.; Neves, M.C.L.C.; Baccan, G.C. Analysis of Endocrine and Inflammatory Markers in Preserved Ratio Impaired Spirometry. Med. Sci. 2024, 12, 18. [Google Scholar] [CrossRef] [PubMed]
- Al-Shamma, Y.M.; Hadi, N.R.; Jasim, A.E.; Al-Khafaji, A.A.A.; Janabi, A.M. The Relationship between Some Pro-Inflammatory Markers and BODE Index in Patients with Chronic Obstructive Pulmonary Disease. Syst. Rev. Pharm. 2020, 11, 51–56. [Google Scholar]
- Vujic, T.; Nagorni, O.; Maric, G.; Popovic, L.; Jankovic, J.; Vujic, T.; Nagorni, O.; Maric, G.; Popovic, L.; Jankovic, J. Metabolic Syndrome in Patients with Chronic Obstructive Pulmonary Disease: Frequency and Relationship with Systemic Inflammation. Hippokratia 2016, 20, 110–114. [Google Scholar] [PubMed]
- Vogelmeier, C.F.; Criner, G.J.; Martinez, F.J.; Anzueto, A.; Barnes, P.J.; Bourbeau, J.; Celli, B.R.; Chen, R.; Decramer, M.; Fabbri, L.M.; et al. Global Strategy for the Diagnosis, Management, and Prevention of Chronic Obstructive Lung Disease 2017 Report. GOLD Executive Summary. Am. J. Respir. Crit. Care Med. 2017, 195, 557–582. [Google Scholar] [CrossRef]
- Miller, M.R. Standardisation of Spirometry. Eur. Respir. J. 2005, 26, 319–338. [Google Scholar] [CrossRef]
- Iwama, A.M.; de Andrade, G.N.; Shima, P.; Tanni, S.E.; de Godoy, I.; Dourado, V.Z. The Six-Minute Walk Test and Body Weight-Walk Distance Product in Healthy Brazilian Subjects. Braz. J. Med. Biol. Res. 2009, 42, 1080–1085. [Google Scholar] [CrossRef] [PubMed]
- Ferrer, M.; Alonso, J.; Morera, J.; Marrades, R.M.; Khalaf, A.; Aguar, M.C.; Plaza, V.; Prieto, L.; Antó, J.M. Chronic Obstructive Pulmonary Disease Stage and Health-Related Quality of Life. Ann. Intern. Med. 1997, 127, 1072–1079. [Google Scholar] [CrossRef]
- Celli, B.R.; Cote, C.G.; Marin, J.M.; Casanova, C.; Montes de Oca, M.; Mendez, R.A.; Pinto Plata, V.; Cabral, H.J. The Body-Mass Index, Airflow Obstruction, Dyspnea, and Exercise Capacity Index in Chronic Obstructive Pulmonary Disease. N. Engl. J. Med. 2004, 350, 1005–1012. [Google Scholar] [CrossRef]
- Mujico, J.R.; Baccan, G.C.; Gheorghe, A.; Díaz, L.E.; Marcos, A. Changes in Gut Microbiota Due to Supplemented Fatty Acids in Diet-Induced Obese Mice. Br. J. Nutr. 2013, 110, 711–720. [Google Scholar] [CrossRef]
- Murri, M.; Leiva, I.; Gomez-Zumaquero, J.M.; Tinahones, F.J.; Cardona, F.; Soriguer, F.; Queipo-Ortuño, M.I. Gut Microbiota in Children with Type 1 Diabetes Differs from That in Healthy Children: A Case-Control Study. BMC Med. 2013, 11, 46. [Google Scholar] [CrossRef]
- Queipo-Ortuño, M.I.; Seoane, L.M.; Murri, M.; Pardo, M.; Gomez-Zumaquero, J.M.; Cardona, F.; Casanueva, F.; Tinahones, F.J. Gut Microbiota Composition in Male Rat Models under Different Nutritional Status and Physical Activity and Its Association with Serum Leptin and Ghrelin Levels. PLoS ONE 2013, 8, e65465. [Google Scholar] [CrossRef]
- Penders, J.; Vink, C.; Driessen, C.; London, N.; Thijs, C.; Stobberingh, E.E. Quantification of Bifidobacterium Spp., Escherichia Coli and Clostridium Difficile in Faecal Samples of Breast-Fed and Formula-Fed Infants by Real-Time PCR. FEMS Microbiol. Lett. 2005, 243, 141–147. [Google Scholar] [CrossRef]
- Collado, M.C.; Derrien, M.; Isolauri, E.; de Vos, W.M.; Salminen, S. Intestinal Integrity and Akkermansia Muciniphila, a Mucin-Degrading Member of the Intestinal Microbiota Present in Infants, Adults, and the Elderly. Appl. Environ. Microbiol. 2007, 73, 7767–7770. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2−ΔΔCT Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Khan, N.A.; Daga, M.K.; Ahmad, I.; Mawari, G.; Kumar, S.; Kumar, N.; Husain, S.A. Evaluation of BODE Index and Its Relationship with Systemic Inflammation Mediated by Proinflammatory Biomarkers in Patients with COPD. J. Inflamm. Res. 2016, 9, 187–198. [Google Scholar] [CrossRef]
- Alexopoulos, E.C.; Malli, F.; Mitsiki, E.; Bania, E.G.; Varounis, C.; Gourgoulianis, K.I. Frequency and Risk Factors of COPD Exacerbations and Hospitalizations: A Nationwide Study in Greece (Greek Obstructive Lung Disease Epidemiology and Health EcoNomics: GOLDEN Study). Int. J. Chron. Obs. Pulmon Dis. 2015, 10, 2665–2674. [Google Scholar]
- Baker, E.H.; Janaway, C.H.; Philips, B.J.; Brennan, A.L.; Baines, D.L.; Wood, D.M.; Jones, P.W. Hyperglycaemia Is Associated with Poor Outcomes in Patients Admitted to Hospital with Acute Exacerbations of Chronic Obstructive Pulmonary Disease. Thorax 2006, 61, 284–289. [Google Scholar] [CrossRef] [PubMed]
- Thomsen, M.; Dahl, M.; Lange, P.; Vestbo, J.; Nordestgaard, B.G. Inflammatory Biomarkers and Comorbidities in Chronic Obstructive Pulmonary Disease. Am. J. Respir. Crit. Care Med. 2012, 186, 982–988. [Google Scholar] [CrossRef]
- Ribeiro, M.; Ribeiro, G. Study Assoicção between Severity Stages of Chronic Obstructive Pulmonary Disease and Fasting Glucose in Patients with This Disease. Eur. Respir. J. 2013, 42, P2085. [Google Scholar]
- Markelić, I.; Hlapčić, I.; Rogić, D.; Rako, I.; Samaržija, M.; Popović-Grle, S.; Rumora, L.; Vukić Dugac, A. Lipid Profile and Atherogenic Indices in Patients with Stable Chronic Obstructive Pulmonary Disease. Nutr. Metab. Cardiovasc. Dis. 2020, 31, 153–161. [Google Scholar] [CrossRef]
- Singh, S.; Verma, S.K.; Kumar, S.; Ahmad, M.K.; Nischal, A.; Singh, S.K.; Dixit, R.K. Correlation of Severity of Chronic Obstructive Pulmonary Disease with Potential Biomarkers. Immunol. Lett. 2018, 196, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Archer, J.R.H.; Baker, E.H. Diabetes and Metabolic Dysfunction in COPD. Respir. Med. COPD Update 2009, 5, 67–74. [Google Scholar] [CrossRef]
- Mirrakhimov, A.E. Chronic Obstructive Pulmonary Disease and Glucose Metabolism: A Bitter Sweet Symphony. Cardiovasc. Diabetol. 2012, 11, 132. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Li, Z.; Dong, L.; Wu, Y.; Shen, H.; Chen, Z. Lipid Metabolism in Chronic Obstructive Pulmonary Disease. Int. J. Chron. Obs. Pulmon Dis. 2019, 14, 1009–1018. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zheng, H.; Zhang, H.; Ma, W.; Wang, F.; Liu, C.; He, S. Increased Interleukin (IL)-8 and Decreased IL-17 Production in Chronic Obstructive Pulmonary Disease (COPD) Provoked by Cigarette Smoke. Cytokine 2011, 56, 717–725. [Google Scholar] [CrossRef]
- Silva, B.S.A.; Lira, F.S.; Ramos, D.; Uzeloto, J.S.; Rossi, F.E.; Freire, A.P.C.F.; Silva, R.N.; Trevisan, I.B.; Gobbo, L.A.; Ramos, E.M.C. Severity of COPD and Its Relationship with IL-10. Cytokine 2018, 106, 95–100. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Lu, J.; Liu, C. Akkermansia Muciniphila Ameliorates Lung Injury in Smoke-Induced COPD Mice by IL-17 and Autophagy. Cell Microbiol. 2023, 2023, 4091825. [Google Scholar] [CrossRef]
- Li, N.; Dai, Z.; Wang, Z.; Deng, Z.; Zhang, J.; Pu, J.; Cao, W.; Pan, T.; Zhou, Y.; Yang, Z.; et al. Gut Microbiota Dysbiosis Contributes to the Development of Chronic Obstructive Pulmonary Disease. Respir. Res. 2021, 22, 274. [Google Scholar] [CrossRef] [PubMed]
- Chiu, Y.-C.; Chang, W.-P.; Tang, G.-J.; Lan, T.-Y.; Lee, K.-Y.; Su, V.Y.-F. Chronic Obstructive Pulmonary Disease Is Associated with a Higher Risk of Functional Gastrointestinal Disorders. Respir. Med. 2022, 197, 106833. [Google Scholar] [CrossRef]
- Vutcovici, M.; Bitton, A.; Ernst, P.; Kezouh, A.; Suissa, S.; Brassard, P. Inflammatory Bowel Disease and Risk of Mortality in COPD. Eur. Respir. J. 2016, 47, 1357–1364. [Google Scholar] [CrossRef] [PubMed]
- Sprooten, R.T.M.; Lenaerts, K.; Braeken, D.C.W.; Grimbergen, I.; Rutten, E.P.; Wouters, E.F.M.; Rohde, G.G.U. Increased Small Intestinal Permeability during Severe Acute Exacerbations of COPD. Respiration 2018, 95, 334–342. [Google Scholar] [CrossRef]
- Koliada, A.; Syzenko, G.; Moseiko, V.; Budovska, L.; Puchkov, K.; Perederiy, V.; Gavalko, Y.; Dorofeyev, A.; Romanenko, M.; Tkach, S.; et al. Association between Body Mass Index and Firmicutes/Bacteroidetes Ratio in an Adult Ukrainian Population. BMC Microbiol. 2017, 17, 120. [Google Scholar] [CrossRef] [PubMed]
- Kusnadi, Y.; Saleh, M.I.; Ali, Z.; Hermansyah, H.; Murti, K.; Hafy, Z.; Yuristo, E. Firmicutes/Bacteroidetes Ratio of Gut Microbiota and Its Relationships with Clinical Parameters of Type 2 Diabetes Mellitus: A Systematic Review. Open Access Maced. J. Med. Sci. 2023, 11, 67–72. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhi, F. Lower Level of Bacteroides in the Gut Microbiota Is Associated with Inflammatory Bowel Disease: A Meta-Analysis. Biomed. Res. Int. 2016, 2016, 5828959. [Google Scholar] [CrossRef]
- Lee, S.H.; Yun, Y.; Kim, S.J.; Lee, E.-J.; Chang, Y.; Ryu, S.; Shin, H.; Kim, H.-L.; Kim, H.-N.; Lee, J.H. Association between Cigarette Smoking Status and Composition of Gut Microbiota: Population-Based Cross-Sectional Study. J. Clin. Med. 2018, 7, 282. [Google Scholar] [CrossRef] [PubMed]
- Bathoorn, E.; Liesker, J.J.W.; Postma, D.S.; Koëter, G.H.; van der Toorn, M.; van der Heide, S.; Ross, H.A.; van Oosterhout, A.J.M.; Kerstjens, H.A.M. Change in Inflammation in Out-Patient COPD Patients from Stable Phase to a Subsequent Exacerbation. Int. J. Chron. Obs. Pulmon Dis. 2009, 4, 101–109. [Google Scholar] [CrossRef]
- Palmnäs-Bedard, M.S.A.; Costabile, G.; Vetrani, C.; Åberg, S.; Hjalmarsson, Y.; Dicksved, J.; Riccardi, G.; Landberg, R. The Human Gut Microbiota and Glucose Metabolism: A Scoping Review of Key Bacteria and the Potential Role of SCFAs. Am. J. Clin. Nutr. 2022, 116, 862–874. [Google Scholar] [CrossRef]
- Schoeler, M.; Caesar, R. Dietary Lipids, Gut Microbiota and Lipid Metabolism. Rev. Endocr. Metab. Disord. 2019, 20, 461–472. [Google Scholar] [CrossRef]
- Sedighi, M.; Razavi, S.; Navab-Moghadam, F.; Khamseh, M.E.; Alaei-Shahmiri, F.; Mehrtash, A.; Amirmozafari, N. Comparison of Gut Microbiota in Adult Patients with Type 2 Diabetes and Healthy Individuals. Microb. Pathog. 2017, 111, 362–369. [Google Scholar] [CrossRef]
- Teixeira, T.F.S.; Grześkowiak, Ł.M.; Salminen, S.; Laitinen, K.; Bressan, J.; Gouveia Peluzio, M.D.C. Faecal Levels of Bifidobacterium and Clostridium Coccoides but Not Plasma Lipopolysaccharide Are Inversely Related to Insulin and HOMA Index in Women. Clin. Nutr. 2013, 32, 1017–1022. [Google Scholar] [CrossRef]
- Utzschneider, K.M.; Kratz, M.; Damman, C.J.; Hullarg, M. Mechanisms Linking the Gut Microbiome and Glucose Metabolism. J. Clin. Endocrinol. Metab. 2020, 101, 1445–1454. [Google Scholar] [CrossRef] [PubMed]
- Bo, T.; Wen, J.; Zhao, Y.; Tian, S.; Zhang, X.; Wang, D. Bifidobacterium pseudolongum Reduces Triglycerides by Modulating Gut Microbiota in Mice Fed High-Fat Food. J. Steroid Biochem. Mol. Biol. 2020, 198, 105602. [Google Scholar] [CrossRef] [PubMed]
- Horiuchi, H.; Kamikado, K.; Aoki, R.; Suganuma, N.; Nishijima, T.; Nakatani, A.; Kimura, I. Bifidobacterium animalis subsp. lactis GCL2505 Modulates Host Energy Metabolism via the Short-Chain Fatty Acid Receptor GPR43. Sci. Rep. 2020, 10, 4158. [Google Scholar] [CrossRef]
- Zhao, D.; Zhu, H.; Gao, F.; Qian, Z.; Mao, W.; Yin, Y.; Tan, J.; Chen, D. Antidiabetic Effects of Selenium-Enriched Bifidobacterium Longum DD98 in Type 2 Diabetes Model of Mice. Food Funct. 2020, 11, 6528–6541. [Google Scholar] [CrossRef] [PubMed]
- Rerksuppaphol, S.; Rerksuppaphol, L. A Randomized Double-Blind Controlled Trial of Lactobacillus acidophilus plus Bifidobacterium bifidum versus Placebo in Patients with Hypercholesterolemia. J. Clin. Diagn. Res. 2015, 9, KC01. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Yu, X.; Li, Y.; Guo, Y.; Ge, L.; Pu, F.; Ma, X.; Cui, W.; Marrota, F.; He, F.; et al. Bifidobacterium bifidum TMC3115 Can Characteristically Influence Glucose and Lipid Profile and Intestinal Microbiota in the Middle-Aged and Elderly. Probiotics Antimicrob. Proteins 2019, 11, 1182–1194. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Lin, Q.; Zhuo, D.; Cui, J. Elevated Blood Glucose Is Associated with Severe Exacerbation of Chronic Obstructive Pulmonary Disease. Int. J. COPD 2022, 17, 2453–2459. [Google Scholar] [CrossRef] [PubMed]
- López, P.; González-Rodríguez, I.; Gueimonde, M.; Margolles, A.; Suárez, A. Immune Response to Bifidobacterium bifidum Strains Support Treg/Th17 Plasticity. PLoS ONE 2011, 6, e24776. [Google Scholar] [CrossRef]
- O’Neill, I.; Schofield, Z.; Hall, L.J. Exploring the Role of the Microbiota Member Bifidobacterium in Modulating Immune-Linked Diseases. Emerg. Top. Life Sci. 2017, 1, 333–349. [Google Scholar] [CrossRef]
- Castaner, O.; Goday, A.; Park, Y.-M.; Lee, S.-H.; Magkos, F.; Shiow, S.-A.T.E.; Schröder, H. The Gut Microbiome Profile in Obesity: A Systematic Review. Int. J. Endocrinol. 2018, 2018, 4095789. [Google Scholar] [CrossRef]
- Gomes, A.C.; Hoffmann, C.; Mota, J.F. The Human Gut Microbiota: Metabolism and Perspective in Obesity. Gut Microbes 2018, 9, 308–325. [Google Scholar] [CrossRef] [PubMed]
- Skovbjerg, S.; Martner, A.; Hynsjö, L.; Hessle, C.; Olsen, I.; Dewhirst, F.E.; Tham, W.; Wold, A.E. Gram-Positive and Gram-Negative Bacteria Induce Different Patterns of Cytokine Production in Human Mononuclear Cells Irrespective of Taxonomic Relatedness. J. Interferon Cytokine Res. 2010, 30, 23–32. [Google Scholar] [CrossRef] [PubMed]
- Vignali, D.A.A.; Kuchroo, V.K. IL-12 Family Cytokines: Immunological Playmakers. Nat. Immunol. 2012, 13, 722–728. [Google Scholar] [CrossRef] [PubMed]
- Hackett, T.-L.; Shaheen, F.; Zhou, S.; Wright, J.L.; Churg, A. Fibroblast Signal Transducer and Activator of Transcription 4 Drives Cigarette Smoke–Induced Airway Fibrosis. Am. J. Respir. Cell Mol. Biol. 2014, 51, 830–839. [Google Scholar] [CrossRef]
- Vitenberga, Z.; Pilmane, M.; Babjoniševa, A. The Evaluation of Inflammatory, Anti-Inflammatory and Regulatory Factors Contributing to the Pathogenesis of COPD in Airways. Pathol. Res. Pract. 2019, 215, 97–105. [Google Scholar] [CrossRef]
- Opstelten, J.L.; Plassais, J.; van Mil, S.W.C.; Achouri, E.; Pichaud, M.; Siersema, P.D.; Oldenburg, B.; Cervino, A.C.L. Gut Microbial Diversity Is Reduced in Smokers with Crohn’s Disease. Inflamm. Bowel Dis. 2016, 22, 2070–2077. [Google Scholar] [CrossRef]
- Jiang, S.; Shan, F.; Zhang, Y.; Jiang, L.; Cheng, Z. Increased Serum IL-17 and Decreased Serum IL-10 and IL-35 Levels Correlate with the Progression of COPD. Int. J. COPD 2018, 13, 2483–2494. [Google Scholar] [CrossRef] [PubMed]
- Čitar, M.; Hacin, B.; Tompa, G.; Štempelj, M.; Rogelj, I.; Dolinšek, J.; Narat, M.; Matijašić, B.B. Human Intestinal Mucosa-Associated Lactobacillus and Bifidobacterium Strains with Probiotic Properties Modulate IL-10, IL-6 and IL-12 Gene Expression in THP-1 Cells. Benef. Microbes 2015, 6, 325–336. [Google Scholar] [CrossRef]
- Medina, M.; Izquierdo, E.; Ennahar, S.; Sanz, Y. Differential Immunomodulatory Properties of Bifidobacterium Logum Strains: Relevance to Probiotic Selection and Clinical Applications. Clin. Exp. Immunol. 2007, 150, 531–538. [Google Scholar] [CrossRef] [PubMed]
- López, P.; Gueimonde, M.; Margolles, A.; Suárez, A. Distinct Bifidobacterium Strains Drive Different Immune Responses in Vitro. Int. J. Food Microbiol. 2010, 138, 157–165. [Google Scholar] [CrossRef]
- Verma, R.; Lee, C.; Jeun, E.-J.; Yi, J.; Kim, K.S.; Ghosh, A.; Byun, S.; Lee, C.-G.; Kang, H.-J.; Kim, G.-C. Cell Surface Polysaccharides of Bifidobacterium bifidum Induce the Generation of Foxp3+ Regulatory T Cells. Sci. Immunol. 2018, 3, eaat6975. [Google Scholar] [CrossRef] [PubMed]
- Jeon, S.G.; Kayama, H.; Ueda, Y.; Takahashi, T.; Asahara, T.; Tsuji, H.; Tsuji, N.M.; Kiyono, H.; Ma, J.S.; Kusu, T.; et al. Probiotic Bifidobacterium breve Induces IL-10-Producing Tr1 Cells in the Colon. PLoS Pathog. 2012, 8, e1002714. [Google Scholar] [CrossRef] [PubMed]
- Sagar, S.; Morgan, M.E.; Chen, S.; Vos, A.P.; Garssen, J.; van Bergenhenegouwen, J.; Boon, L.; Georgiou, N.A.; Kraneveld, A.D.; Folkerts, G. Bifidobacterium breve and Lactobacillus Rhamnosus Treatment Is as Effective as Budesonide at Reducing Inflammation in a Murine Model for Chronic Asthma. Respir. Res. 2014, 15, 46. [Google Scholar] [CrossRef]
- Verheijden, K.A.T.; van Bergenhenegouwen, J.; Garssen, J.; Bezemer, G.F.G.; Kraneveld, A.D.; Folkerts, G. Treatment with Specific Prebiotics or Probiotics Prevents the Development of Lung Emphysema in a Mouse Model of COPD. Eur. J. Pharmacol. 2011, 668, e12–e13. [Google Scholar] [CrossRef]
- Carvalho, J.L.; Sá, A.K.; Britto, A.; Ferreira, M.; Anatriello, E.; Keller, A.; Aimbire, F. Bifidobacterium breve Significantly Reduces Cigarette Smoke-Induced COPD in C57Bl/6 Mice. Eur. Respir. J. 2018, 52, PA4244. [Google Scholar]
Bacterial Group | Oligonucleotide Sequence | Product Size (bp) | Annealing Temp (°C) | Ref. |
---|---|---|---|---|
Total bacteria (16S) | F: 5′ACTCCTACGGGAGGCAGCAG3′ R: 5′ATTACCGCGGCTGCTGG3′ | 200 | 60 | [38] |
Phylum Firmicutes | F: 5′ATGTGGTTTAATTCGAAGCA3′ R: 5′AGCTGACGACAACCATGCAC3′ | 126 | 60 | [40,41] |
Phylum Bacteroidetes | F: 5′CATGTGGTTTAATTCGATGAT3′ R: 5′AGCTGACGACAACCATGCAG3′ | 126 | 60 | [40,41] |
Bifidobacterium spp. | F: 5′GCGTGCTTAACACATGCAAGTC3′ R: 5′CACCCGTTTCCAGGAGCTATT3′ | 126 | 60 | [42] |
A. muciniphila | F: 5′CAGCACGTGAAGGTGGGGAC3′ R: 5′CCTTGCGGTTGGCTTCAGAT3′ | 327 | 60 | [43] |
Clinical Markers | COPD | CTL |
---|---|---|
FEV1 %pred, (%); median (IQR) | 46.00 (32.00–58.00) | 95.50 (85.00–108.00) * |
FVC %pred, (%); median (IQR) | 65.00 (49.00–68.00) | 81.00 (73.00–90.25) ** |
FEV1/FVC, (%); median (IQR) | 65.00 (46.00–69.00) | 92.75 (87.20–97.85) |
6MWT (%predicted) | 71.66 (61.05–82.17) | --- |
mMRC dyspnea scale | 3.00 (2.00–3.00) | --- |
BODE index | 4.00 (3.00–7.00) | --- |
Emergency visits | 2.00 (0.75–5.75) | --- |
Hospitalization (days) | 0.50 (0.00–1.25) | --- |
Parameter | COPD | CTL |
---|---|---|
Glucose (mg/dL) | 112.00 (90.25–130.5) | 103.2 (88.75–119.8) |
Triglycerides (mg/dL) | 129.50 (92.30–186.00) | 117.7 (85.70–160.6) |
Total cholesterol (mg/dL) | 211.50 (169.8–230.5) | 192.5 (169.8–222.0) |
HDL-C (mg/dL) | 46.0 (44.00–55.00) | 52.00 (43.13–65.70) |
LDL-C (mg/dL) | 128.00 (95.25–150.6) | 100.70 (95.00–141.0) |
IL-6 (pg/mL) | 3.82 (3.69–8.13) | --- |
IL-8 (pg/mL) | 6.05 (5.30–7.65) | --- |
IL-10 (pg/mL) | 8.23 (8.23–8.49) | --- |
IL-12 (pg/mL) | 9.91 (9.18–10.92) | --- |
TNF (pg/mL) | 12.66 (9.61–18.02) | --- |
IL-6/IL-10 ratio | 0.48 (0.45–0.98) | --- |
IL-8/IL-10 ratio | 0.73 (0.64–1.01) | --- |
IL-12/IL-10 ratio | 1.29 (1.17–1.34) | --- |
TNF/IL-10 ratio | 1.92 (1.08–2.37) | --- |
Bacteria (Fold-Change) a | COPD | CTL | p |
---|---|---|---|
Firmicutes | 1.04 (0.49–1.81) | 0.95 (0.46–1.82) | 0.78 |
Bacteroidetes | 0.77 (0.52–1.29) | 0.93 (0.50–1.87) | 0.61 |
Firmicutes/Bacteroidetes ratio | 1.64 (0.39–2.92) | 1.32 (0.49–1.89) | 0.46 |
Bifidobacterium spp. | 1.39 (0.20–13.55) | 1.59 (0.59–4.34) | 0.79 |
A. muciniphila | 2.18 (0.16–14.32) | 1.00 (0.053–2.4) | 0.30 |
Parameter | Phylum Firmicutes | Phylum Bacteroidetes | Firmicutes/Bacteroidetes | Bifidobacterium spp. | A. muciniphila | |||||
---|---|---|---|---|---|---|---|---|---|---|
R | p | r | p | r | p | r | p | r | p | |
FEV1 %predicted | −0.2033 | 0.2527 | 0.0373 | 0.4495 | −0.1868 | 0.2706 | 0.0545 | 0.4405 | −0.2545 | 0.2255 |
FVC %predicted | −0.1928 | 0.2594 | 0.0618 | 0.4168 | −0.2121 | 0.2433 | 0.3526 | 0.1588 | −0.0548 | 0.4323 |
FEV1/FVC % | −0.2897 | 0.1553 | −0.1156 | 0.3470 | −0.1950 | 0.2616 | −0.4502 | 0.0958 | −0.2294 | 0.2404 |
6MWT %predicted | −0.3099 | 0.1403 | 0.2571 | 0.1774 | −0.5879 | 0.0190 | 0.0818 | 0.4055 | −0.2273 | 0.2517 |
mMRC | 0.2584 | 0.1997 | 0.2718 | 0.1736 | 0.1818 | 0.2761 | −0.2774 | 0.2189 | −0.1430 | 0.1768 |
BODE index | 0.3971 | 0.0894 | −0.298 | 0.4597 | 0.3942 | 0.0913 | −0.1228 | 0.3677 | 0.2343 | 0.2416 |
Emergency visits | 0.4983 | 0.0508 | −0.5631 | 0.0225 | 0.6431 | 0.0120 | 0.1532 | 0.3469 | 0.1739 | 0.3031 |
Hospitalization (days) | 0.3751 | 0.1137 | −0.0481 | 0.4380 | 0.2970 | 0.1743 | 0.1287 | 0.3707 | 0.2585 | 0.2193 |
Cytokines | Phylum Firmicutes | Phylum Bacteroidetes | Firmicutes/Bacteroidetes | Bifidobacterium spp. | A. muciniphila | |||||
---|---|---|---|---|---|---|---|---|---|---|
R | p | r | p | r | p | r | p | r | p | |
Glucose (mg/dL) | −0.4549 | 0.0522 | 0.0750 | 0.3953 | −0.3978 | 0.0795 | −0.6364 | 0.0176 | −0.2818 | 0.2012 |
Triglycerides (mg/dL) | −0.2640 | 0.1773 | 0.2539 | 0.1986 | −0.2970 | 0.1512 | −0.6273 | 0.0194 | 0.1185 | 0.3639 |
Total cholesterol (mg/dL) | 0.1562 | 0.2955 | −0.3414 | 0.1065 | 0.3432 | 0.1148 | 0.1000 | 0.3849 | 0.4601 | 0.0780 |
HDL-C (mg/dL) | 0.0599 | 0.4195 | −0.3783 | 0.0822 | 0.2042 | 0.2419 | 0.7051 | 0.0077 | 0.3945 | 0.1148 |
LDL-C (mg/dL) | 0.2618 | 0.1814 | −0.3128 | 0.1282 | 0.4092 | 0.0731 | 0.1276 | 0.3543 | 0.4510 | 0.0825 |
HDL-C/LDL-C | −0.1209 | 0.3409 | 0.1036 | 0.3567 | −0.2176 | 0.2275 | −0.1182 | 0.3646 | −0.2545 | 0.2255 |
IL-6 (pg/mL) | −0.4636 | 0.1155 | 0.0678 | 0.4312 | −0.2928 | 0.2408 | −0.2883 | 0.2653 | 0.07207 | 0.4444 |
IL-8 (pg/mL) | −0.3293 | 0.1707 | 0.0411 | 0.4523 | −0.2500 | 0.2430 | 0.1786 | 0.3508 | 0.2185 | 0.2856 |
IL-10 (pg/mL) | −0.1158 | 0.2211 | −0.3360 | 0.1428 | −0.0315 | 0.4633 | 0.6390 | 0.0320 | 0.3303 | 0.1971 |
IL-12 (pg/mL) | 0.4469 | 0.0634 | −0.3157 | 0.1358 | 0.4110 | 0.0815 | 0.5000 | 0.0706 | 0.6220 | 0.0301 |
TNF (pg/mL) | 0.2371 | 0.2533 | −0.227 | 0.4735 | 0.1277 | 0.3626 | 0.2162 | 0.3207 | 0.4048 | 0.1634 |
IL-6/IL-10 | 0.3473 | 0.1907 | 0.0920 | 0.4069 | −0.2515 | 0.2740 | −0.3571 | 0.2158 | −0.1071 | 0.4198 |
IL-8/IL-10 | −0.4268 | 0.1211 | 0.3465 | 0.1633 | −0.4100 | 0.1365 | −0.1429 | 0.3800 | −0.1557 | 0.3461 |
IL-12/IL-10 | 0.5604 | 0.0384 | −0.1786 | 0.2893 | 0.5877 | 0.0286 | 0.2510 | 0.2573 | 0.2500 | 0.2603 |
TNF/IL-10 | −0.1429 | 0.3913 | 0.1905 | 0.3257 | −0.2143 | 0.3223 | 0.7000 | 0.0941 | 0.3929 | 0.1978 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Passos, F.C.; Oliveira, L.M.G.d.; Jesus, F.R.; Zanette, D.L.; Neto, O.L.L.; Neves, M.C.L.C.; Lemos, A.C.M.; Baccan, G.C. Beneficial Bacteria in the Gut Microbiota May Lead to Improved Metabolic and Immunological Status in Chronic Obstructive Pulmonary Disease. Med. Sci. 2024, 12, 41. https://doi.org/10.3390/medsci12030041
Passos FC, Oliveira LMGd, Jesus FR, Zanette DL, Neto OLL, Neves MCLC, Lemos ACM, Baccan GC. Beneficial Bacteria in the Gut Microbiota May Lead to Improved Metabolic and Immunological Status in Chronic Obstructive Pulmonary Disease. Medical Sciences. 2024; 12(3):41. https://doi.org/10.3390/medsci12030041
Chicago/Turabian StylePassos, Fabine Correia, Lucas Matheus Gonçalves de Oliveira, Fabíola Ramos Jesus, Dalila Lucíola Zanette, Odilon Lobão Leal Neto, Margarida Célia Lima Costa Neves, Antônio Carlos Moreira Lemos, and Gyselle Chrystina Baccan. 2024. "Beneficial Bacteria in the Gut Microbiota May Lead to Improved Metabolic and Immunological Status in Chronic Obstructive Pulmonary Disease" Medical Sciences 12, no. 3: 41. https://doi.org/10.3390/medsci12030041
APA StylePassos, F. C., Oliveira, L. M. G. d., Jesus, F. R., Zanette, D. L., Neto, O. L. L., Neves, M. C. L. C., Lemos, A. C. M., & Baccan, G. C. (2024). Beneficial Bacteria in the Gut Microbiota May Lead to Improved Metabolic and Immunological Status in Chronic Obstructive Pulmonary Disease. Medical Sciences, 12(3), 41. https://doi.org/10.3390/medsci12030041