Antibiotic Resistance & Extended-Spectrum ß-Lactamase Production in Clinical and Non-Clinical Isolates in Tabuk
Abstract
:1. Introduction
2. Materials and Methods
2.1. Specimens
2.2. Specimen Collection and Processing
2.3. Clinical Specimen Collection and Processing
2.4. Extended-Spectrum Beta-Lactamase (ESβL)
2.4.1. Screening for Potential ESBLs
2.4.2. Confirmation for ESBLs
2.4.3. Preparation of DNA Template
2.4.4. Detection of Bla Genes by PCR
3. Results
3.1. Bacterial Isolates Obtained from Food Specimens
3.2. Bacterial Isolates Obtained from Clinical Specimens
3.3. Antibiotic Resistance Pattern
3.3.1. Isolates from Food Specimens
3.3.2. Isolates from Clinical Specimens
3.4. The Magnitude of ESBL Detection
3.4.1. In Clinical Samples
3.4.2. In Food Specimens
3.5. Occurrence of Bla Genes
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Murray, C.J.; Ikuta, K.S.; Sharara, F.; Swetschinski, L.; Aguilar, G.R.; Gray, A.; Han, C.; Bisignano, C.; Rao, P.; Wool, E.; et al. Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. Lancet 2022, 399, 629–655. [Google Scholar] [CrossRef] [PubMed]
- Shaikh, S.; Fatima, J.; Shakil, S.; Rizvi SM, D.; Kamal, M.A. Antibiotic resistance and extended spectrum beta-lactamases: Types, epidemiology and treatment. Saudi J. Biol. Sci. 2015, 22, 90–101. [Google Scholar] [CrossRef] [PubMed]
- Alqahtani, T.M.T.; Alelyani, A.A.; Yousuf, M.M.M.; Alhujayri, W.M.K.; Husain, F.M.; Zubair, M. Study of Plasmid-Mediated Extended-Spectrum Beta-Lactamase-Producing Clinical Strains of Enterobacteriaceae From Tabuk Region. Cureus 2023, 15, e40183. [Google Scholar] [CrossRef] [PubMed]
- Collee, J.G.; Miles, R.S.; Watt, B. Mackie and McCartney Practical Microbiology; Collee, J.G., Marmion, B.P., Fraser, A.G., Simmons, A., Eds.; Churchill Livingstone: London, UK, 2014. [Google Scholar]
- CLSI. Performance Standard for Antimicrobial Susceptibility Testing; CLSI: Wayne, PA, USA, 2016; Volume 27, p. M100. [Google Scholar] [CrossRef]
- Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing: Seventeenth Informational Supplement. In CLSI Supplement M100; CLSI: Wayne, PA, USA, 2020; Available online: https://clsi.org/standards/products/microbiology/documents/m100/ (accessed on 14 August 2024).
- Shahid, M.; Malik, A.; Adil, M.; Jahan, N.; Malik, R. Comparison of beta-lactamase genes in clinical and food bacterial isolates in India. J. Infect. Dev. Ctries. 2009, 3, 593–598. [Google Scholar] [CrossRef] [PubMed]
- Shahid, M.; Ensor, V.M.; Hawkey, P.M. Emergence and dissemination of Enterobacteriaceae with plasmid-mediated CMY-6 and CTX-M-15 beta-lactamases in a community in North-India. World J. Micribiol. Biotechniol. 2009, 25, 1439–1446. [Google Scholar] [CrossRef]
- Ventola, C.L. The antibiotic resistance crisis: Part 1: Causes and threats. Pharm. Ther. 2015, 40, 277–283. [Google Scholar]
- Pitout, J.D.; Laupland, K.B. Extended-spectrum β-lactamase-producing Enterobacteriaceae: An emerging public-health concern. Lancet Infect. Dis. 2008, 8, 159–166. [Google Scholar] [CrossRef]
- Beuchat, L.R.; Ryu, J. Produce handling and processing practices. Emerg. Infect. Dis. 1997, 3, 459–465. [Google Scholar] [CrossRef] [PubMed]
- Scallan, E.; Hoekstra, R.M.; Angulo, F.J.; Tauxe, R.V.; Widdowson, M.A.; Roy, S.L.; Griffin, P.M. Foodborne illness acquired in the United States—Major pathogens. Emerg. Infect. Dis. 2011, 17, 7–15. [Google Scholar] [CrossRef]
- Garrido, A.; Atxaerandio, R.; Vergara, A.; Bustamante, H.; Ruiz, J. Pseudomonas spp. in the milk environment: An emerging problem in the dairy industry. J. Dairy Sci. 2014, 97, 4060–4071. [Google Scholar]
- Vincent, J.L.; Bihari, D.J.; Suter, P.M.; Bruining, H.A.; White, J.; Nicolas-Chanoin, M.H. The prevalence of nosocomial infection in intensive care units in Europe. JAMA 1995, 274, 639–644. [Google Scholar] [CrossRef]
- Richards, M.J.; Edwards, J.R.; Culver, D.H.; Gaynes, R.P. Nosocomial infections in medical intensive care units in the United States. National Nosocomial Infections Surveillance System. Crit. Care Med. 2000, 27, 887–892. [Google Scholar] [CrossRef]
- Jacobsen, S.M.; Stickler, D.J.; Mobley, H.L.; Shirtliff, M.E. Complicated catheter-associated urinary tract infections due to Escherichia coli and Proteus mirabilis. Clin. Microbiol. Rev. 2008, 21, 26–59. [Google Scholar] [CrossRef] [PubMed]
- Lynch, M.F.; Tauxe, R.V.; Hedberg, W.C. The growing burden of foodborne outbreaks due to contaminated fresh produce: Risks and opportunities. Epidemiol. Infect 2009, 137, 307–315. [Google Scholar] [CrossRef] [PubMed]
- Van Boeckel, T.P.; Brower, C.; Gilbert, M.; Grenfell, B.T.; Levin, S.A.; Robinson, T.P.; Laxminarayan, R. Global trends in antimicrobial use in animals. Proc. Natl. Acad. Sci. USA 2015, 112, 5649–5654. [Google Scholar] [CrossRef]
- Nordmann, P.; Poirel, L. Epidemiology and diagnostics of carbapenem resistance in Gram-negative bacteria. Clin. Infect. Dis. 2019, 69, S521–S528. [Google Scholar] [CrossRef] [PubMed]
- Paterson, D.L.; Bonomo, R.A. Extended-spectrum β-lactamases: A clinical update. Clin. Microbiol. Rev. 2005, 18, 657–686. [Google Scholar] [CrossRef]
- Laxminarayan, R.; Duse, A.; Wattal, C.; Zaidi, A.K.M.; Wertheim, H.F.L.; Sumpradit, N.; Vlieghe, E.; Hara, G.L.; Gould, I.M.; Goossens, H.; et al. Antibiotic resistance—The need for global solutions. Lancet Infect. Dis. 2013, 13, 1057–1098. [Google Scholar] [CrossRef]
- Bassetti, M.; Peghin, M.; Vena, A.; Giacobbe, D.R. Treatment of Infections Due to MDR Gram-Negative Bacteria. Front. Med. 2018, 5, 74. [Google Scholar] [CrossRef]
- Morgan, D.J.; Okeke, I.N.; Laxminarayan, R.; Perencevich, E.N.; Weisenberg, S. Non-prescription antimicrobial use worldwide: A systematic review. Lancet Infect. Dis. 2011, 11, 692–701. [Google Scholar] [CrossRef] [PubMed]
- Zubair, M.; Mohammad, I. Interrelationship of Extended Spectrum Beta-Lactamase Producers and Biofilm Formation among the Gram-Negative Bacteria from Tabuk, KSA. Open Access Maced. J. Med. Sci. 2023, 11, 15–22. [Google Scholar] [CrossRef]
- Al-Maary, K.S.; Abbass, F.M.; El-Ghany, W.A.; Ibrahim, S.M. Prevalence and molecular characterization of ESBL-producing Enterobacteriaceae from different clinical samples in Saudi Arabia. Antibiotics 2021, 10, 421. [Google Scholar] [CrossRef]
- Colodner, R.; Rock, W.; Chazan, B.; Sakran, W. Risk factors for developing extended-spectrum beta-lactamase-producing bacteria in non-hospitalized patients. Eur. J. Clin. Microbiol. Infect. Dis. 2004, 3, 163–167. [Google Scholar] [CrossRef]
- Al-Bulushi, I.M.; Poole, S.E.; Barlow, R.; Katouli, M.; Hart, C.A. Antibiotic resistance of Escherichia coli and Listeria spp. isolated from fresh produce and ready-to-eat salads marketed in Saudi Arabia. Antibiotics 2020, 9, 152. [Google Scholar] [CrossRef]
- Ensor, V.M.; Shahid, M.; Evans, J.T.; Hawkey, P.M. Occurrence, Prevalence and Genetic Environment of CTX-M Beta-lactamase in Enterobacteriaceae from Indian Hospitals. J. Antimicrob. Chemother. 2006, 58, 1260–1263. [Google Scholar] [CrossRef] [PubMed]
- Dioli, C.; Pappa, O.; Siatravani, E.; Bratakou, S.; Tatsiopoulos, A.; Giakkoupi, P.; Miriagou, V.; Beloukas, A. Molecular Characterization and Prevalence of Antimicrobial-Resistant Escherichia coli Isolates Derived from Clinical Specimens and Environmental Habitats. Microorganisms 2023, 11, 1399. [Google Scholar] [CrossRef]
- Hassan, A.A.; Al-Mousa, H.A.; Al-Zahrani, I.A. Prevalence and characterization of antibiotic-resistant Enterobacteriaceae in retail seafood from Saudi Arabian markets. Antibiotic 2021, 10, 752. [Google Scholar] [CrossRef]
- Babiker, A.M.; Bukhari, E.E.; Hawsawi, Z.A. Molecular characterization of extended-spectrum β-lactamase-producing Enterobacteriaceae in a tertiary care hospital in Saudi Arabia. J. Infect. Dev. Ctries. 2021, 14, 858–866. [Google Scholar] [CrossRef]
- Vahaboglu, H.; Budak, F.; Kasap, M.; Gacar, G.; Torol, S.; Karadenizli, A.; Kolayli, F.; Eroglu, C. High prevalence of OXA-51-type class D beta-lactamases among ceftazidime-resistant clinical isolates of Acinetobacter spp.: Co-existence with OXA-58 in multiple centres. J. Antimicrob. Chemother. 2006, 58, 537–542. [Google Scholar] [CrossRef] [PubMed]
Targets | Primer Sequence (5′ to 3′) | Amplicon Size (bp) |
---|---|---|
blaCTX-M | F-ATGTGCAGYACCAGTAARGT | 593 |
R-TGGGTRAARTARGTSACCAGA | ||
blaTEM | F-KACAATAACCCTGRTAAATGC | 936 |
R-AGTATATATGAGTAAACTTGG | ||
blaSHV | F-TTTATCGGCCYTCACTCAAGG | 930 |
R-GCTGCGGGCCGGATAACG | ||
blaAmpC | F-CCCCGCTTATAGAGCAACAA | 634 |
R-TCAATGGTCGACTTCACACC |
Clinical Isolates | N | % | Non-Clinical Isolates | N | % |
---|---|---|---|---|---|
E. coli | 8 | 22.2 | Klebsiella pneumoniae | 7 | 33.3 |
Pseudomonas sp. | 8 | 22.2 | E. coli | 8 | 38.1 |
Klebsiella oxytoca | 4 | 11.1 | Pseudomonas sp. | 4 | 19.0 |
Klebsiella pneumoniae | 3 | 8.3 | Citrobacter koseri | 1 | 4.8 |
Proteus vulgaris | 4 | 11.1 | Acinetobacter sp. | 1 | 4.8 |
Proteus mirabilis | 5 | 13.9 | |||
Morganella morganii | 1 | 2.8 | |||
Citrobacter sp. | 3 | 8.3 |
Antibiotic Resistance Profile | Clinical [N (%)] | Non-Clinical [N (%)] |
---|---|---|
Amikacin | 22 (61.1) | 1 (4.8) |
Ceftazidime | 29 (80.6) | 2 (9.5) |
Cefepime | 23 (63.9) | 2 (9.5) |
Levofloxacin | 19 (52.8) | 1 (4.8) |
Piperacillin | 18 (50.0) | 1 (4.8) |
Cefotaxime | 32 (88.9) | 2 (9.5) |
Ofloxacin | 16 (44.4) | 2 (9.5) |
Imipenem | 2 (5.6) | 0 (0.0) |
Cefoxitin | 21 (58.3) | 2 (9.5) |
Gentamicin | 14 (38.9) | 4 (19.0) |
Amoxicillin | 16 (44.4) | 3 (14.3) |
Clinical | Phenotypic ESBL N (%) | Confirmatory ESBL N (%) |
---|---|---|
E. coli | 8 (25.0) | 7 (21.9) |
Pseudomonas sp. | 5 (15.6) | 3 (9.4) |
Klebsiella oxytoca | 3 (9.4) | 1 (3.1) |
Klebsiella pneumoniae | 3 (9.4) | 2 (6.3) |
Proteius vulgaris | 1 (3.1) | 0 (0.0) |
Proteus mirabilis | 1 (3.1) | 0 (0.0) |
Morganella morganii | 0 (0.0) | 0 (0.0) |
Citrobacter sp. | 0 (0.0) | 0 (0.0) |
Non-Clinical | ||
Klebsiella pneumoniae | 1 (50) | 0 (0) |
E. coli | 1 (50) | 0 (0) |
Pseudomonas sp. | 0 (0) | 0 (0) |
Citrobacter koseri | 0 (0) | 0 (0) |
Acinetobacter sp. | 0 (0) | 0 (0) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alanazi, B.; Muhiuddin, G.; Albalawi, Y.; Alhazmi, K.; Alzahrani, O.; Alamri, M.; Alshadfan, H.; Zubair, M. Antibiotic Resistance & Extended-Spectrum ß-Lactamase Production in Clinical and Non-Clinical Isolates in Tabuk. Med. Sci. 2024, 12, 42. https://doi.org/10.3390/medsci12030042
Alanazi B, Muhiuddin G, Albalawi Y, Alhazmi K, Alzahrani O, Alamri M, Alshadfan H, Zubair M. Antibiotic Resistance & Extended-Spectrum ß-Lactamase Production in Clinical and Non-Clinical Isolates in Tabuk. Medical Sciences. 2024; 12(3):42. https://doi.org/10.3390/medsci12030042
Chicago/Turabian StyleAlanazi, Badriah, Ghulam Muhiuddin, Yazeed Albalawi, Khalid Alhazmi, Othman Alzahrani, Marai Alamri, Hisham Alshadfan, and Mohammad Zubair. 2024. "Antibiotic Resistance & Extended-Spectrum ß-Lactamase Production in Clinical and Non-Clinical Isolates in Tabuk" Medical Sciences 12, no. 3: 42. https://doi.org/10.3390/medsci12030042
APA StyleAlanazi, B., Muhiuddin, G., Albalawi, Y., Alhazmi, K., Alzahrani, O., Alamri, M., Alshadfan, H., & Zubair, M. (2024). Antibiotic Resistance & Extended-Spectrum ß-Lactamase Production in Clinical and Non-Clinical Isolates in Tabuk. Medical Sciences, 12(3), 42. https://doi.org/10.3390/medsci12030042