Prediction of One Repetition Maximum Using Reference Minimum Velocity Threshold Values in Young and Middle-Aged Resistance-Trained Males
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Study Design
2.3. Maximal Strength Testing (Session 1)
2.4. Assessment of Mean Velocity (Session 2)
2.5. Statistical Analysis
3. Results
3.1. Bench Press
3.2. Back Squat
3.3. Bent-over-Row
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lexell, J.; Taylor, C.C.; Sjöström, M. What is the cause of the ageing atrophy? Total number, size and proportion of different fiber types studied in whole vastus lateralis muscle from 15- to 83-year-old men. J. Neurol. Sci. 1988, 84, 275–294. [Google Scholar] [CrossRef]
- Fernandes, J.F.T.; Lamb, K.L.; Norris, J.P.; Moran, J.; Drury, B.; Borges, N.R.; Twist, C. Aging and recovery after resistance-exercise-induced muscle damage: Current evidence and implications for future research. J. Aging Phys. Act. 2020, 1–8, in press. [Google Scholar]
- Fernandes, J.F.T.; Lamb, K.L.; Twist, C. Exercise-induced muscle damage and recovery in young and middle-aged males with different resistance training experience. Sports 2019, 7, 132. [Google Scholar] [CrossRef] [Green Version]
- Newton, R.U.; Häkikinen, K.; Häkikinen, A.; Mccormick, M.; Volek, J.; Kraemer, W. Mixed-methods of resistance training increases power and strength of young and older men. Med. Sci. Sports Exerc. 2002, 34, 1367–1375. [Google Scholar] [CrossRef]
- Roth, S.M.; Martel, G.F.; Ivey, F.M.; Lemmer, J.T.; Tracy, B.L.; Hurlbut, D.E.; Metter, E.J.; Hurley, B.F.; Rogers, M.A. Ultrastructural muscle damage in young vs. older men after high-volume, heavy-resistance strength training. J. Appl. Physiol. 1999, 86, 1833–1840. [Google Scholar] [CrossRef]
- Tanaka, H.; Seals, D.R. Endurance exercise performance in Masters athletes: Age-associated changes and underlying physiological mechanisms. J. Physiol. 2008, 586, 55–63. [Google Scholar] [CrossRef]
- Scott, B.R.; Duthie, G.M.; Thornton, H.R.; Dascombe, B.J. Training monitoring for resistance exercise: Theory and applications. Sports Med. 2016, 46, 687–698. [Google Scholar] [CrossRef]
- Halson, S.L. Monitoring training load to understand fatigue in athletes. Sports Med. 2014, 44, 139–147. [Google Scholar] [CrossRef] [Green Version]
- Bell, L.; Ruddock, A.; Maden-Wilkinson, T.; Rogerson, D. Overreaching and overtraining in strength sports and resistance training: A scoping review. J. Sports Sci. 2020. [CrossRef]
- García-Ramos, A.; Haff, G.G.; Pestaña-Melero, F.L.; Pérez-Castilla, A.; Rojas, F.J.; Balsalobre-Fernández, C.; Jaric, S. Feasibility of the 2-point method for determining the 1-repetition maximum in the bench press exercise. Int. J. Sports Physiol. Perform. 2018, 13, 474–481. [Google Scholar] [CrossRef]
- Weakley, J.; Mann, B.; Banyard, H.; Mclaren, S.; Scott, T.; Garcia-ramos, A. Velocity-based training: From theory to application. Strength Cond. J. 2020, 43, 31–49. [Google Scholar] [CrossRef]
- Banyard, H.G.; Nosaka, K.; Haff, G.G. Reliability and validity of the load-velocity relationship to predict the 1RM back squat. J. Strength Cond. Res. 2017, 31, 1897–1904. [Google Scholar] [CrossRef]
- Hughes, L.J.; Banyard, H.G.; Dempsey, A.R.; Scott, B.R. Using a load-velocity relationship to predict one repetition maximum in free-weight exercise: A comparison of the different methods. J. Strength Cond. Res. 2019, 33, 2409–2419. [Google Scholar] [CrossRef] [PubMed]
- Caven, E.J.G.; Bryan, T.J.E.; Dingley, A.F.; Drury, B.; Garcia-Ramos, A.; Perez-Castilla, A.; Arede, J.; Fernandes, J.F.T. Group versus individualised minimum velocity thresholds in the prediction of maximal strength in trained female athletes. Int. J. Environ. Res. Public Health 2020, 17, 7811. [Google Scholar] [CrossRef] [PubMed]
- Perez-Castilla, A.; Fernandes, J.F.T.; Garcia-Ramos, A. Validity of the bench press one-repetition maximum test predicted through individualized load-velocity relationship using different repetition criteria and minimal velocity thresholds. Isokinet. Exerc. Sci. 2021, 1–9, in press. [Google Scholar]
- Marcos-Pardo, P.J.; González-Hernández, J.M.; García-Ramos, A.; López-Vivancos, A.; Jiménez-Reyes, P. Movement velocity can be used to estimate the relative load during the bench press and leg press exercises in older women. PeerJ 2019, 7, e7533. [Google Scholar] [CrossRef] [Green Version]
- Fernandes, J.F.T.; Lamb, K.L.; Twist, C. A comparison of load-velocity and load-power relationships between well-trained young and middle-aged males during three popular resistance exercises. J. Strength Cond. Res. 2018, 32, 1440–1447. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, J.F.T.; Lamb, K.L.; Twist, C. Internal loads, but not external loads and fatigue, are similar in young and middle-aged resistance-trained males during high volume squatting exercise. J. Funct. Morphol. Kinesiol. 2018, 3, 45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Demura, S.; Aoki, H.; Sugiura, H. Gender differences in hand grip power in the elderly. Arch. Gerontol. Geriatr. 2011, 53, 76–78. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pallarés, J.G.; Sánchez-Medina, L.; Pérez, C.E.; De La Cruz-Sánchez, E.; Mora-Rodriguez, R. Imposing a pause between the eccentric and concentric phases increases the reliability of isoinertial strength assessments. J. Sports Sci. 2014, 32, 1165–1175. [Google Scholar] [CrossRef]
- Perez-Castilla, A.; Suzovic, D.; Domanovic, A.; Fernandes, J.F.T.; Garcia-Ramos, A. Validity of different velocity-based methods and repetitions-to-failure equations for predicting the 1 repetition maximum during 2 upper-body pulling exercises. J. Strength Cond. Res. 2019. [CrossRef]
- Stock, M.; Beck, T.W.; DeFreitas, J.; Dillon, M. Test-retest reliability of barbell velocity during the free-weight bench-pres exercise. J. Strenght Cond. Res. 2011, 25, 171–177. [Google Scholar] [CrossRef]
- Reynolds, J.; Gordon, T.; Robergs, R. Prediction of one repetition maximum strength from multiple repetition maximum testing and anthropometry. J. Strength Cond. Res. 2006, 20, 584–592. [Google Scholar] [PubMed] [Green Version]
- Bazuelo-Ruiz, B.; Padial, P.; García-Ramos, A.; Morales-Artacho, A.J.; Miranda, M.T.; Feriche, B. Predicting maximal dynamic strength from the load-velocity relationship in squat exercise. J. Strength Cond. Res. 2015, 29, 1999–2005. [Google Scholar] [CrossRef]
- Fernandes, J.F.T.; Lamb, K.L.; Twist, C. The intra- and inter-day reproducibility of the FitroDyne as a measure of multi-jointed muscle function. Isokinet. Exerc. Sci. 2016, 24, 39–49. [Google Scholar] [CrossRef]
- Garcia-Ramos, A.; Jukic, I.; Weakley, J.; Janicijevic, D. Bench press one-repetition maximum estimation through the individualised load-velocity relationship: Comparison of different regression models and minimal velocity thresholds. Int. J. Sports Physiol. Perform. 2020. [CrossRef]
- Fernandes, J.F.T.; Lamb, K.L.; Clark, C.C.T.; Moran, J.; Drury, B.; Garcia-Ramos, A.; Twist, C. Comparison of the FitroDyne and GymAware rotary encoders for quantifying peak and mean velocity during traditional multijointed exercises. J. Strength Cond. Res. 2018. [CrossRef] [PubMed]
- Hopkins, W.G.; Marshall, S.W.; Batterham, A.M.; Hanin, J. Progressive statistics for studies in sports medicine and exercise science. Med. Sci. Sports Exerc. 2009, 41, 3–12. [Google Scholar] [CrossRef] [Green Version]
- Atkinson, G.; Nevill, A.M. Statistical methods for assessing measurement error (reliability) in variables relevant to sports medicine. Sports Med. 1998, 26, 217–238. [Google Scholar] [CrossRef]
- Pérez-Castilla, A.; Piepoli, A.; Garrido-Blanca, G.; Delgado-García, G.; Balsalobre-Fernández, C.; García-Ramos, A. Precision of 7 commercially available devices for predicting bench-press 1-repetition maximum from the individual load–velocity relationship. Int. J. Sports Physiol. Perform. 2019, 14, 1442–1446. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Castilla, A.; Jerez-Mayorga, D.; Martínez-García, D.; Rodríguez-Perea, Á.; Chirosa-Ríos, L.J.; García-Ramos, A. Comparison of the bench press one-repetition maximum obtained by different procedures: Direct assessment vs. lifts-to-failure equations vs. two-point method. Int. J. Sports Sci. Coach. 2020, 15, 337–346. [Google Scholar] [CrossRef]
- Pérez-Castilla, A.; Piepoli, A.; Delgado-García, G.; Garrido-Blanca, G.; García-Ramos, A. Reliability and concurrent validity of seven commercially available devices for the assessment of movement velocity at different intensities during the bench press. J. Strength Cond. Res. 2019, 33, 1258–1265. [Google Scholar] [CrossRef]
- Conlon, J.A.; Newton, R.U.; Tufano, J.J.; Banyard, H.G.; Hopper, A.J.; Ridge, A.J.; Haff, G.G. Periodization strategies in older adults: Impact on physical function and health. Med. Sci. Sports Exerc. 2016, 48, 2426–2436. [Google Scholar] [CrossRef]
- Hoffman, J.R.; Kang, J. Strength changes during an in-season resistance-training program for football. J. Strength Cond. Res. 2003, 17, 109–114. [Google Scholar] [PubMed]
- Candow, D.G.; Chilibeck, P.D. Differences in size, strength, and power of upper and lower body muscle groups in young and older men. J. Gerontol. Biol. Sci. 2005, 60, 148–156. [Google Scholar] [CrossRef] [Green Version]
- Frontera, W.R.; Suh, D.; Krivickas, L.S.; Hughes, V.A.; Goldstein, R.; Roubenoff, R. Skeletal muscle fiber quality in older men and women. Am. J. Physiol. Cell Physiol. 2000, 279, C611–C618. [Google Scholar] [CrossRef]
- Raj, I.S.; Bird, S.R.; Shield, A.J. Aging and the force-velocity relationship of muscles. Exp. Gerontol. 2010, 45, 81–90. [Google Scholar] [CrossRef] [Green Version]
- Macaluso, A.; De Vito, G. Muscle strength, power and adaptations to resistance training in older people. Eur. J. Appl. Physiol. 2004, 91, 450–472. [Google Scholar] [CrossRef]
- Larsson, L.; Li, X.; Frontera, W.R. Effects of aging on shortening velocity and myosin isoform composition in single human skeletal muscle cells. Am. J. Physiol. 1997, 272, C638–C649. [Google Scholar] [CrossRef]
- Lynch, N.A.; Metter, E.J.; Lindle, R.S.; Fozard, J.L.; Tobin, J.D.; Roy, T.A.; Fleg, J.L.; Hurley, B.F. Muscle quality. I. Age-associated differences between arm and leg muscle groups. J. Appl. Physiol. 1999, 86, 188–194. [Google Scholar] [CrossRef] [PubMed]
- Bompa, T.; Haff, G.G. Periodization: Theory and Methodology of Training, 5th ed.; Human Kinetics: Champaign, IL, USA, 2017; ISBN 9780736074834. [Google Scholar]
- Loturco, I.; Suchomel, T.; Kobal, R.; Arruda, A.F.S.; Guerriero, A.; Pereira, L.A.; Pai, C.N. Force-velocity relationship in three different variations of prone row exercises. J. Strength Cond. Res. 2018, 35, 300–309. [Google Scholar] [CrossRef] [Green Version]
- García-Ramos, A.; Barboza-González, P.; Ulloa-Díaz, D.; Rodriguez-Perea, A.; Martinez-Garcia, D.; Guede-Rojas, F.; Hinojosa-Riveros, H.; Chirosa-Ríos, L.J.; Cuevas-Aburto, J.; Janicijevic, D.; et al. Reliability and validity of different methods of estimating the one-repetition maximum during the free-weight prone bench pull exercise. J. Sports Sci. 2019, 37, 2205–2212. [Google Scholar] [CrossRef]
- Ratamess, N.A.; Beller, N.A.; Gonzalez, A.M.; Spatz, G.E.; Hoffman, J.R.; Ross, R.E.; Faigenbaum, A.D.; Kang, J. The effects of multiple-joint isokinetic resistance training on maximal isokinetic and dynamic muscle strength and local muscular endurance. J. Sports Sci. Med. 2016, 15, 34–40. [Google Scholar]
- Samson, A.; Pillai, P.S. Effect of cluster training versus traditional training on muscular strength among recreationally active males - A comparative study. Indian J. Physiother. Occup. Ther. Int. J. 2018, 12, 122. [Google Scholar] [CrossRef]
- Wilhite, M.R.; Cohen, E.R.; Wilhite, S.C. Reliability of concentric and eccentric measurements of quadriceps performance using the KIN-COM dynamometer: The effect of testing order for three different speeds. J. Orthop. Sports Phys. Ther. 1992, 15, 175–182. [Google Scholar] [CrossRef] [PubMed]
- Morse, C.I.; Thom, J.M.; Birch, K.M.; Narici, M.V. Changes in triceps surae muscle architecture with sarcopenia. Acta Physiol. Scand. 2005, 183, 291–298. [Google Scholar] [CrossRef]
- Valour, D.; Ochala, J.; Ballay, Y.; Pousson, M. The influence of ageing on the force-velocity-power characteristics of human elbow flexor muscles. Exp. Gerontol. 2003, 38, 387–395. [Google Scholar] [CrossRef]
Group | 1RM Prediction Method | Raw Diff (kg) | p-Value | ES | r (Pearson) | r (heteroscedasticity) |
---|---|---|---|---|---|---|
Whole | Multiple-point (n = 40) | −0.4 ± 10.4 | 0.815 | −0.02 | 0.85 | 0.00 |
Distant two-point (n = 40) | 1.0 ± 9.6 | 0.531 | 0.05 | 0.87 | −0.01 | |
Low-load (n = 33) | 4.3 ± 19.6 | 0.220 | 0.21 | 0.58 | 0.38 ^ | |
High-load (n = 40) | 1.6 ± 9.9 | 0.324 | 0.08 | 0.87 | 0.09 | |
Young | Multiple-point (n = 20) | −2.1 ± 11.8 | 0.438 | −0.12 | 0.79 | 0.13 |
Distant two-point (n = 20) | −0.9 ± 11.4 | 0.743 | −0.05 | 0.80 | 0.14 | |
Low-load (n = 19) | −0.7 ± 17.7 | 0.870 | −0.03 | 0.63 | 0.31 | |
High-load (n = 20) | −0.3 ± 11.7 | 0.902 | −0.02 | 0.81 | 0.21 | |
Middle-aged | Multiple-point (n = 20) | 1.3 ± 8.7 | 0.504 | 0.08 | 0.86 | 0.04 |
Distant two-point (n =20) | 2.8 ± 7.1 | 0.098 | 0.17 | 0.90 | 0.02 | |
Load-load (n = 14) | 11.0 ± 20.7 | 0.069 | 0.56 | 0.61 | 0.68 ^ | |
High-load (n = 20) | 3.5 ± 7.6 | 0.056 | 0.20 | 0.90 | 0.21 |
Group | 1RM Prediction Method | Raw Diff (kg) | p-Value | ES | r (Pearson) | r (heteroscedasticity) |
---|---|---|---|---|---|---|
Whole | Multiple-point (n = 38) | −1.3 ± 18.8 | 0.570 | −0.04 | 0.92 | 0.45 ^ |
Distant two-point (n = 38) | −1.7 ± 14.4 | 0.463 | −0.05 | 0.91 | 0.42 ^ | |
Load-load (n = 31) | −1.0 ± 24.1 | 0.814 | −0.03 | 0.74 | 0.39 ^ | |
High-load (n = 38) | −4.0 ± 13.4 | 0.071 | −0.13 | 0.93 | 0.48 ^ | |
Young | Multiple-point (n = 19) | 1.1 ± 12.1 | 0.689 | 0.04 | 0.95 | 0.66 ^ |
Distant two-point (n = 19) | 0.1 ± 10.8 | 0.965 | 0.00 | 0.96 | 0.68 ^ | |
Load-load (n = 18) | −0.5 ± 24.9 | 0.927 | −0.02 | 0.71 | 0.36 ^ | |
High-load (n = 19) | −0.9 ± 12.5 | 0.755 | −0.03 | 0.95 | 0.65 ^ | |
Middle-aged | Multiple-point (n = 19) | −3.7 ± 15.3 | 0.306 | −0.16 | 0.78 | 0.21 |
Distant two-point (n =19) | −3.6 ± 17.4 | 0.382 | −0.16 | 0.73 | 0.26 | |
Load-load (n = 13) | −1.7 ± 23.8 | 0.802 | −0.07 | 0.62 | 0.59 ^ | |
High-load (n = 19) | −7.2 ± 13.9 | 0.037 * | −0.32 | 0.81 | 0.18 |
Group | 1RM Prediction Method | Raw Diff (kg) | p-Value | ES | r (Pearson) | r (heteroscedasticity) |
---|---|---|---|---|---|---|
Whole | Multiple-point (n = 35) | 6.4 ± 14.1 | 0.011 * | 0.34 | 0.77 | 0.50 ^ |
Distant two-point (n = 35) | 10.3 ± 14.5 | <0.001 * | 0.56 | 0.74 | 0.44 ^ | |
Load-load (n = 30) | −2.4 ± 20.8 | 0.403 | −0.14 | 0.72 | 0.68 ^ | |
High-load (n = 33) | 10.1 ± 17.0 | 0.002 * | 0.50 | 0.77 | 0.66 ^ | |
Young | Multiple-point (n = 19) | 8.3 ± 16.9 | 0.046 * | 0.43 | 0.71 | 0.56 ^ |
Distant two-point (n = 19) | 10.4 ± 16.6 | 0.014 * | 0.54 | 0.71 | 0.54 ^ | |
Load-load (n = 18) | 0.3 ± 23.6 | 0.964 | 0.01 | 0.68 | 0.74 ^ | |
High-load (n = 19) | 10.9 ± 19.1 | 0.023 * | 0.52 | 0.72 | 0.66 ^ | |
Middle-aged | Multiple-point (n = 16) | 4.2 ± 9.9 | 0.110 | 0.29 | 0.78 | 0.31 |
Distant two-point (n = 16) | 10.3 ±12.1 | 0.004 * | 0.69 | 0.70 | 0.35 ^ | |
Load-load (n = 12) | −8.4 ± 15.2 | 0.080 | −0.56 | 0.55 | 0.47 ^ | |
High-load (n = 14) | 9.0 ± 14.4 | 0.035 * | 0.50 | 0.81 | 0.71 ^ |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fernandes, J.F.T.; Dingley, A.F.; Garcia-Ramos, A.; Perez-Castilla, A.; Tufano, J.J.; Twist, C. Prediction of One Repetition Maximum Using Reference Minimum Velocity Threshold Values in Young and Middle-Aged Resistance-Trained Males. Behav. Sci. 2021, 11, 71. https://doi.org/10.3390/bs11050071
Fernandes JFT, Dingley AF, Garcia-Ramos A, Perez-Castilla A, Tufano JJ, Twist C. Prediction of One Repetition Maximum Using Reference Minimum Velocity Threshold Values in Young and Middle-Aged Resistance-Trained Males. Behavioral Sciences. 2021; 11(5):71. https://doi.org/10.3390/bs11050071
Chicago/Turabian StyleFernandes, John F. T., Amelia F. Dingley, Amador Garcia-Ramos, Alejandro Perez-Castilla, James J. Tufano, and Craig Twist. 2021. "Prediction of One Repetition Maximum Using Reference Minimum Velocity Threshold Values in Young and Middle-Aged Resistance-Trained Males" Behavioral Sciences 11, no. 5: 71. https://doi.org/10.3390/bs11050071
APA StyleFernandes, J. F. T., Dingley, A. F., Garcia-Ramos, A., Perez-Castilla, A., Tufano, J. J., & Twist, C. (2021). Prediction of One Repetition Maximum Using Reference Minimum Velocity Threshold Values in Young and Middle-Aged Resistance-Trained Males. Behavioral Sciences, 11(5), 71. https://doi.org/10.3390/bs11050071