Effects of General Fatigue Induced by Exhaustive Exercise on Posture and Gait Stability of Healthy Young Men
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Procedure
2.3. Measures
2.3.1. Posture and Gait Assessment
2.3.2. Exhaustive Exercise
2.3.3. Blood Lactate
2.4. Statistical Analysis
3. Results
3.1. Participants
3.2. Postural Control
3.3. Gate Control
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ijspeert, A.J.; Nakanishi, J.; Schaal, S. Learning rhythmic movements by demonstration using nonlinear oscillators. In Proceedings of the IEEE International Conference on Intelligent Robots and Systems (IROS 2002), Lausanne, Switzerland, 30 September–4 October 2002; Volume 1, pp. 958–963. [Google Scholar]
- Riemann, B.L.; Lephart, S.M. The Sensorimotor System, Part I: The Physiologic Basis of Functional Joint Stability. J. Athl. Train. 2002, 37, 71–79. [Google Scholar] [PubMed]
- Kandel, E.R.; Schwartz, J.H.; Jessell, T.M. Principles of Neural Science, 4th ed.; McGraw-Hill Medical: New York, NY, USA, 2000. [Google Scholar]
- Nielsen, J.B. How we walk: Central control of muscle activity during human walking. Neuroscientist 2003, 9, 195–204. [Google Scholar] [CrossRef] [PubMed]
- Rogers, M.; Page, P.; Takeshima, N. Balance training for the older athlete. Int. J. Sports Phys. Ther. 2013, 8, 517–530. [Google Scholar] [PubMed]
- Larson, D.J.; Brown, S.H.M. The effects of trunk extensor and abdominal muscle fatigue on postural control and trunk proprioception in young healthy individuals. Hum. Mov. Sci. 2018, 57, 13–20. [Google Scholar] [CrossRef]
- Nardone, A.; Tarantola, J.; Giordano, A.; Schieppati, M. Fatigue effects on body balance. Electroencephalogr. Clin. Neurophysiol. 1997, 105, 309–320. [Google Scholar] [CrossRef]
- Paillard, T. Effects of general and local fatigue on postural control. A review. Neurosci. Biobehav. Rev. 2012, 36, 162–176. [Google Scholar] [CrossRef] [PubMed]
- Strang, A.J.; Choi, H.J.; Berg, W.P. The effect of exhausting aerobic exercise on the timing of anticipatory postural adjustment. Sports Med. Phys. Fit. 2008, 1, 9–16. [Google Scholar]
- Bangsbo, J. Quantification of anaerobic energy production during intense exercise. Med. Sci. Sports Exerc. 1998, 30, 47–52. [Google Scholar] [CrossRef]
- Moscatelli, F.; Messina, G.; Valenzano, A.; Petito, A.; Triggiani, A.I.; Ciliberti, M.A.P.; Monda, V.; Messina, A.; Tafuri, D.; Capranica, L.; et al. Relationship between RPE and Blood Lactate after Fatiguing Handgrip Exercise in Taekwondo and Sedentary Subjects. Biol. Med. 2015, 1, S3008. [Google Scholar] [CrossRef]
- Coco, M.; Buscemi, A.; Guerrera, C.S.; Di Corrado, D.; Cavallari, P.; Zappalà, A.; Di Nuovo, S.; Parenti, R.; Maci, T.; Razza, G.; et al. Effects of a Bout of Intense Exercise on Some Executive Functions. Int. J. Environ. Res. Public Health 2020, 17, 898. [Google Scholar] [CrossRef] [Green Version]
- Coco, M.; Buscemi, A.; Cavallari, P.; Massimino, S.; Rinella, S.; Tortorici, M.M.; Maci, T.; Perciavalle, V.; Tusak, M.; Di Corrado, D.; et al. Executive Functions During Submaximal Exercises in Male Athletes: Role of Blood Lactate. Front. Psychol. 2020, 11, 537922. [Google Scholar] [CrossRef] [PubMed]
- Coco, M.; Perciavalle, V.; Cavallari, P.; Perciavalle, V. Effects of an Exhaustive Exercise on Motor Skill Learning and on the Excitability of Primary Motor Cortex and Supplementary Motor Area. Medicine 2016, 95, e2978. [Google Scholar] [CrossRef] [PubMed]
- Coco, M.; Buscemi, A.; Ramaci, T.; Tusak, M.; Di Corrado, D.; Perciavalle, V.; Maugeri, G.; Perciavalle, V.; Musumeci, G. Influences of Blood Lactate Levels on Cognitive Domains and Physical Health during a Sports Stress. Brief Review. Int. J. Environ. Res. Public Health 2020, 17, 9043. [Google Scholar] [CrossRef]
- Capaday, C.; Lavoie, B.A.; Barbeau, H.; Schneider, C.; Bonnard, M. Studies on the corticospinal control of human walking. I. Responses to focal transcranial magnetic stimulation of the motor cortex. J. Neurophysiol. 1999, 81, 129–139. [Google Scholar] [CrossRef] [PubMed]
- Petersen, T.H.; Willerslev-Olsen, M.; Conway, B.A.; Nielsen, J.B. The motor cortex drives the muscles during walking in human subjects. J. Physiol. 2012, 590, 2443–2452. [Google Scholar] [CrossRef]
- Schubert, M.; Curt, A.; Jensen, L.; Dietz, V. Corticospinal input in human gait: Modulation of magnetically evoked motor responses. Exp. Brain Res. 1997, 115, 234–246. [Google Scholar] [CrossRef]
- Coco, M.; Di Corrado, D.; Calogero, R.A.; Perciavalle, V.; Maci, T.; Perciavalle, V. Attentional processes and blood lactate levels. Brain Res. 2009, 1302, 205–211. [Google Scholar] [CrossRef]
- Coco, M.; Alagona, G.; Rapisarda, G.; Costanzo, E.; Calogero, R.A.; Perciavalle, V.; Perciavalle, V. Elevated blood lactate is associated with increased motor cortex excitability. Somatosens. Mot. Res. 2010, 27, 1–8. [Google Scholar] [CrossRef]
- Coco, M.; Alagona, G.; Perciavalle, V.; Cicirata, V.; Perciavalle, V. Spinal cord excitability is not influenced by elevated blood lactate levels. Somatosens. Mot. Res. 2011, 28, 19–24. [Google Scholar] [CrossRef]
- Coco, M.; Alagona, G.; De Maria, G.; Rapisarda, G.; Costanzo, E.; Perciavalle, V.; Perciavalle, V. Relationship of high blood lactate levels with latency of visual-evoked potentials. Neurol. Sci. 2015, 36, 541–546. [Google Scholar] [CrossRef]
- Boyle, J.; Danjou, P.; Alexander, R.; Calder, N.; Gargano, C.; Agrawal, N.; Fu, I.; McCrea, J.B.; Murphy, M.G. Tolerability, pharmacokinetics and night-time effects on postural sway and critical flicker fusion of gaboxadol and zolpidem in elderly subjects. Br. J. Clin. Pharm. 2009, 67, 180–190. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Norris, V.; Baisley, K.J.; Calder, N.; van Troostenburg, A.R.; Warrington, S.J. Assessment of the AccuSwayPLUS System in Measuring the Effect of Lorazepam on Body Sway in Healthy Volunteers. Int. J. Pharm. Med. 2005, 19, 233–238. [Google Scholar] [CrossRef]
- Perciavalle, V.; Alagona, G.; De Maria, G.; Rapisarda, G.; Costanzo, E.; Perciavalle, V.; Coco, M. Somatosensory evoked potentials and blood lactate levels. Neurol. Sci. 2015, 36, 1597–1601. [Google Scholar] [CrossRef] [PubMed]
- Buckley, J.D.; Bourdon, P.C.; Woolford, S.M. Effect of measuring blood lactate concentrations using different automated lactate analysers on blood lactate transition thresholds. J. Sci. Med. Sport 2003, 6, 408–421. [Google Scholar] [CrossRef]
- Seliga, R.; Bhattacharya, A.; Succop, P.; Wixkstrom, R.; Smith, D.; Willeke, K. Effect of work load and respirator wear on postural stability, heart rate, and perceived exertion. Am. Ind. Hyg. Assoc. J. 1991, 52, 417–422. [Google Scholar] [CrossRef]
- Lepers, R.; Bigard, A.X.; Diard, J.P.; Gouteyron, J.F.; Guezennec, C.Y. Posture control after prolonged exercise. Eur. J. Appl. Physiol. Occup. Physiol. 1997, 76, 55–61. [Google Scholar] [CrossRef]
- Gauchard, G.C.; Gangloff, P.; Vouriot, A.; Mallie, J.P.; Perrin, P.P. Effects of exercise-induced fatigue with and without hydration on static postural control in adult human subjects. Int. J. Neurosci. 2002, 112, 1191–1206. [Google Scholar] [CrossRef]
- Zemková, E.; Hamar, D.; Dzurenková, D.; Schickhofer, P. Readjustment of postural stability after maximal exercise bouts on cycle ergometer and treadmill. In Proceedings of the 9th Sport Kinetics International Scientific Conference, Rimini, Italy, 16–18 September 2005; pp. 199–200. [Google Scholar]
- Surenkok, O.; Kin-Isler, A.; Aytar, A.; Gültekin, Z. Effect of trunk-muscle fatigue and lactic acid accumulation on balance in healthy subjects. J. Sport Rehabil. 2008, 17, 380–386. [Google Scholar] [CrossRef] [PubMed]
- Santos, L.; Fernández-Río, J.; Iglesias-Soler, E.; Blanco-Traba, M.; Jakobsen, M.D.; González-Díez, V.; Franchini, E.; Gutiérrez, C.; Dopico-Calvo, X.; Carballeira-Fernández, E.; et al. Postural control and physiological responses to a simulated match in U-20 judo competitors. Sports Biomech. 2020, 19, 281–294. [Google Scholar] [CrossRef] [PubMed]
- Jastrzębska, A.D. Gender Differences in Postural Stability among 13-Year-Old Alpine Skiers. Int. J. Environ. Res. Public Health 2020, 17, 3859. [Google Scholar] [CrossRef] [PubMed]
Participant | Age (years) | Height (cm) | Weight (kg) | BMI (kg/m2) | Shoes Size (US) |
---|---|---|---|---|---|
1 | 21 | 176 | 78 | 25.18 | 9 |
2 | 21 | 180 | 82 | 25.31 | 10 |
3 | 22 | 178 | 80 | 25.25 | 9.5 |
4 | 22 | 170 | 74 | 25.61 | 9 |
5 | 20 | 171 | 76 | 25.99 | 9 |
6 | 21 | 180 | 83 | 25.62 | 10 |
7 | 23 | 171 | 70 | 23.94 | 8.5 |
8 | 22 | 168 | 71 | 25.16 | 8.5 |
9 | 20 | 176 | 77 | 24.86 | 9 |
10 | 21 | 177 | 80 | 25.54 | 9.5 |
11 | 24 | 169 | 74 | 25.91 | 8.5 |
12 | 21 | 170 | 74 | 25.61 | 9 |
13 | 21 | 175 | 75 | 24.49 | 9.5 |
14 | 21 | 181 | 87 | 26.56 | 10 |
15 | 23 | 174 | 79 | 26.09 | 9 |
16 | 24 | 171 | 70 | 23.94 | 9 |
17 | 22 | 170 | 72 | 24.91 | 8.5 |
18 | 23 | 173 | 79 | 26.40 | 9 |
M | 21.78 | 173.89 | 76.72 | 25.35 | 9.14 |
SD | 1.22 | 4.14 | 4.71 | 0.74 | 0.51 |
Gait Variable | Velocity (km/h) | Cadence (steps/min) | Step Length (cm) | Step Time (s) | Single Support Phases (%GC) | Double Support Phases (%GC) | Width between Steps (cm) |
---|---|---|---|---|---|---|---|
Pre | 3.54 (±0.32) | 92.33 (±4.94) | 58.76 (±4.98) | 0.60 (±0.02) | 35.56 (±1.94) | 28.89 (±3.89) | 11.06 (±1.35) |
Post | 3.03 (±0.29) | 92.39 (±5.02) | 54.76 (±4.94) | 0.65 (±0.03) | 33.89 (±1.75) | 32.22 (±3.50) | 15.11 (±2.13) |
Pre-post Wilcoxon | <0.001 | Non significant | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
Cohen’s d | 7.28 | −0.04 | −0.05 | −7.02 | 4.34 | −4.34 | −3.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Coco, M.; Di Corrado, D.; Cirillo, F.; Iacono, C.; Perciavalle, V.; Buscemi, A. Effects of General Fatigue Induced by Exhaustive Exercise on Posture and Gait Stability of Healthy Young Men. Behav. Sci. 2021, 11, 72. https://doi.org/10.3390/bs11050072
Coco M, Di Corrado D, Cirillo F, Iacono C, Perciavalle V, Buscemi A. Effects of General Fatigue Induced by Exhaustive Exercise on Posture and Gait Stability of Healthy Young Men. Behavioral Sciences. 2021; 11(5):72. https://doi.org/10.3390/bs11050072
Chicago/Turabian StyleCoco, Marinella, Donatella Di Corrado, Francesco Cirillo, Chiara Iacono, Vincenzo Perciavalle, and Andrea Buscemi. 2021. "Effects of General Fatigue Induced by Exhaustive Exercise on Posture and Gait Stability of Healthy Young Men" Behavioral Sciences 11, no. 5: 72. https://doi.org/10.3390/bs11050072
APA StyleCoco, M., Di Corrado, D., Cirillo, F., Iacono, C., Perciavalle, V., & Buscemi, A. (2021). Effects of General Fatigue Induced by Exhaustive Exercise on Posture and Gait Stability of Healthy Young Men. Behavioral Sciences, 11(5), 72. https://doi.org/10.3390/bs11050072