Relationships among Problematic Smartphone Use, Mathematics Achievement, Teacher–Student Relationships, and Subjective Well-Being: Results from a Large-Scale Survey in China
Abstract
:1. Introduction
1.1. PSU and Students’ Subjective Well-Being
1.2. The Mediating Role of Academic Achievement
1.3. The Moderating Role of Teacher–Student Relationships
1.4. The Present Study
2. Methods
2.1. Participants
2.2. Measures
2.2.1. Demographic Information
2.2.2. Problematic Smartphone Use
2.2.3. Students’ Subjective Well-Being
2.2.4. Academic Achievement Test
2.2.5. Teacher–Student Relationships
2.3. Procedure and Analysis
3. Results
3.1. Common Method Bias
3.2. Descriptive Statistics and Correlations
3.3. Testing for the Mediation Effect Model
3.4. Testing for the Moderated Mediation Effect Model
4. Discussion
5. Limitation and Recommendations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Samaha, M.; Hawi, N.S. Relationships among smartphone addiction, stress, academic performance, and satisfaction with life. Comput. Hum. Behav. 2016, 57, 321–325. [Google Scholar] [CrossRef]
- Zhou, D.; Liu, J.; Wang, T.; Liu, J.; Li, G. Relationships among problematic smartphone use, mathematics anxiety, learning interest, and achievement: A multiple mediation model. Comput. Hum. Behav. 2022, 129, 107171. [Google Scholar] [CrossRef]
- Statista. 2022. Available online: https://www.statista.com/topics/2711/us-smartphone-market/ (accessed on 14 August 2022).
- China Internet Information Center. The 47th China Statistical Report on Internet Development; China Internet Network Information Center: Beijing, China, 2021. [Google Scholar]
- Amez, S.; Baert, S. Smartphone use and academic performance: A literature review. Int. J. Educ. Res. 2020, 103, 101618. [Google Scholar] [CrossRef]
- Demirci, K.; Akgönül, M.; Akpinar, A. Relationship of smartphone use severity with sleep quality, depression, and anxiety in university students. J. Behav. Addict. 2015, 4, 85–92. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elhai, J.D.; Dvorak, R.D.; Levine, J.C.; Hall, B.J. Problematic smartphone use: A conceptual overview and systematic review of relations with anxiety and depression psychopathology. J. Affect. Disord. 2017, 207, 251–259. [Google Scholar] [CrossRef] [PubMed]
- Hawi, N.S.; Samaha, M. To excel or not to excel: Strong evidence on the adverse effect of smartphone addiction on academic performance. Comput. Educ. 2016, 98, 81–89. [Google Scholar] [CrossRef]
- Horvath, J.; Mundinger, C.; Schmitgen, M.M.; Wolf, N.D.; Sambataro, F.; Hirjak, D.; Kubera, K.M.; Koenig, J.; Christian Wolf, R. Structural and functional correlates of smartphone addiction. Addict. Behav. 2020, 105, 106334. [Google Scholar] [CrossRef]
- Horwood, S.; Anglim, J. Problematic smartphone usage and subjective and psychological well-being. Comput. Hum. Behav. 2019, 97, 44–50. [Google Scholar] [CrossRef] [Green Version]
- Kates, A.W.; Wu, H.; Coryn, C.L. The effects of mobile phone use on academic performance: A meta-analysis. Comput. Educ. 2018, 127, 107–112. [Google Scholar] [CrossRef]
- Lepp, A.; Barkley, J.E.; Karpinski, A.C. The relationship between cell phone use, academic performance, anxiety, and Satisfaction with Life in college students. Comput. Hum. Behav. 2014, 31, 343–350. [Google Scholar] [CrossRef]
- Kong, F.; Qin, J.; Huang, B.; Zhang, H.; Lei, L. The effect of social anxiety on mobile phone dependence among Chinese adolescents: A moderated mediation model. Child. Youth Serv. Rev. 2020, 108, 104517. [Google Scholar] [CrossRef]
- Amez, S.; Vujić, S.; De Marez, L.; Baert, S. Smartphone use and academic performance: First evidence from longitudinal data. New Media Soc. 2021, 14614448211012374. [Google Scholar] [CrossRef]
- Troll, E.S.; Friese, M.; Loschelder, D.D. How students’ self-control and smartphone-use explain their academic performance. Comput. Hum. Behav. 2021, 117, 106624. [Google Scholar] [CrossRef]
- Chan, M. Mobile phones and the good life: Examining the relationships among mobile use, social capital and subjective well-being. New Media Soc. 2015, 17, 96–113. [Google Scholar] [CrossRef]
- Hughes, N.; Burke, J. Sleeping with the frenemy: How restricting ‘bedroom use’ of smartphones impacts happiness and wellbeing. Comput. Hum. Behav. 2018, 85, 236–244. [Google Scholar] [CrossRef]
- Guo, M.; Hu, X.; Leung, F.K. Culture, Goal Orientations, and Mathematics Achievement among Chinese Students. Int. J. Sci. Math. Educ. 2022, 20, 1225–1245. [Google Scholar] [CrossRef]
- Nie, P.; Ma, W.; Sousa-Poza, A. The relationship between smartphone use and subjective well-being in rural China. Electron. Commer. Res. 2020, 21, 983–1009. [Google Scholar] [CrossRef]
- Jiang, X.; Shi, D.; Fang, L.; Ferraz, R.C. Teacher–student relationships and adolescents’ school satisfaction: Behavioural engagement as a mechanism of change. Br. J. Educ. Psychol. 2022, 92, 1444–1457. [Google Scholar] [CrossRef]
- Zhou, D.; Liu, J.; Liu, J. The effect of problematic Internet use on mathematics achievement: The mediating role of self-efficacy and the moderating role of teacher-student relationships. Child. Youth Serv. Rev. 2020, 118, 105372. [Google Scholar] [CrossRef]
- Gao, Y.; Li, H.; Zhu, T. Predicting subjective well-being by smartphone usage behaviors. In Proceedings of the International Conference on Health Informatic, Setubal, Portugal, 3 March 2014; pp. 317–322. [Google Scholar]
- Kohout, S.; Schumann, C. Five days without a smartphone. Smartphone use and subjective well-being: Results from a study comparing normal use with a deprivation condition. Stud. Commun. Media 2020, 9, 394–420. [Google Scholar] [CrossRef]
- Bae, S.-M. The relationship between smartphone use for communication, social capital, and subjective well-being in Korean adolescents: Verification using multiple latent growth modeling. Child. Youth Serv. Rev. 2019, 96, 93–99. [Google Scholar] [CrossRef]
- Liu, X.; Liu, X.; Wei, R. Maintaining social connectedness in a fast-changing world: Examining the effects of mobile phone uses on loneliness among teens in Tibet. Mob. Media Commun. 2014, 2, 318–334. [Google Scholar] [CrossRef]
- Pearson, C.; Hussain, Z. Smartphone Addiction and Associated Psychological Factors. ADDICTA Turk. J. Addict. 2016, 3, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Dai, C.; Tai, Z.; Ni, S. Smartphone Use and Psychological Well-Being Among College Students in China: A Qualitative Assessment. Front. Psychol. 2021, 12, 708970. [Google Scholar] [CrossRef]
- Koç, T.; Turan, A.H. The Relationships Among Social Media Intensity, Smartphone Addiction, and Subjective Wellbeing of Turkish College Students. Appl. Res. Qual. Life 2020, 16, 1999–2021. [Google Scholar] [CrossRef]
- Li, J.; Lepp, A.; Barkley, J.E. Locus of control and cell phone use: Implications for sleep quality, academic performance, and subjective well-being. Comput. Hum. Behav. 2015, 52, 450–457. [Google Scholar] [CrossRef]
- Tangmunkongvorakul, A.; Musumari, P.M.; Thongpibul, K.; Srithanaviboonchai, K.; Techasrivichien, T.; Suguimoto, S.P.; Ono-Kihara, M.; Kihara, M. Association of excessive smartphone use with psychological well-being among university students in Chiang Mai, Thailand. PLoS ONE 2019, 14, e0210294. [Google Scholar] [CrossRef] [Green Version]
- Yang, Z.; Asbury, K.; Griffiths, M.D. An Exploration of Problematic Smartphone Use among Chinese University Students: Associations with Academic Anxiety, Academic Procrastination, Self-Regulation and Subjective Wellbeing. Int. J. Ment. Health Addict. 2019, 17, 596–614. [Google Scholar] [CrossRef] [Green Version]
- Organisation for Economic Co-Operation and Development (OECD). PISA 2015 Technical Report. 2017. Available online: http://www.oecd.org/pisa/sitedocument/PISA-2015-technical-report-final.pdf (accessed on 14 August 2022).
- Bücker, S.; Nuraydin, S.; Simonsmeier, B.A.; Schneider, M.; Luhmann, M. Subjective well-being and academic achievement: A meta-analysis. J. Res. Pers. 2018, 74, 83–94. [Google Scholar] [CrossRef]
- Choi, C.; Lee, J.; Yoo, M.S.; Ko, E. South Korean children’s academic achievement and subjective well-being: The mediation of academic stress and the moderation of perceived fairness of parents and teachers. Child. Youth Serv. Rev. 2019, 100, 22–30. [Google Scholar] [CrossRef]
- Bortes, C.; Ragnarsson, S.; Strandh, M.; Petersen, S. The Bidirectional Relationship Between Subjective Well-Being and Academic Achievement in Adolescence. J. Youth Adolesc. 2021, 50, 992–1002. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Gai, X.; Wang, W. Subjective well-being and academic performance among middle schoolers: A two-wave longitudinal study. J. Adolesc. 2020, 84, 11–22. [Google Scholar] [CrossRef] [PubMed]
- Wilder, R. Evolution of Mathematical Concepts: An Elementary Study; Dover Publications: New York, NY, USA, 2013. [Google Scholar]
- Seo, D.G.; Park, Y.; Kim, M.K.; Park, J. Mobile phone dependency and its impacts on adolescents’ social and academic behaviors. Comput. Hum. Behav. 2016, 63, 282–292. [Google Scholar] [CrossRef]
- Hughes, J.N. Teacher–student relationships and school adjustment: Progress and remaining challenges. Attach. Hum. Dev. 2012, 14, 319–327. [Google Scholar] [CrossRef] [PubMed]
- Zhou, D.; Du, X.; Hau, K.-T.; Luo, H.; Feng, P.; Liu, J. Teacher-student relationship and mathematical problem-solving ability: Mediating roles of self-efficacy and mathematical anxiety. Educ. Psychol. 2020, 40, 473–489. [Google Scholar] [CrossRef]
- Clem, A.-L.; Rudasill, K.M.; Hirvonen, R.; Aunola, K.; Kiuru, N. The roles of teacher–student relationship quality and self-concept of ability in adolescents’ achievement emotions: Temperament as a moderator. Eur. J. Psychol. Educ. 2021, 36, 263–286. [Google Scholar] [CrossRef] [Green Version]
- Hughes, J.N.; Im, M.H. Teacher-Student Relationship and Peer Disliking and Liking Across Grades 1–4. Child Dev. 2016, 87, 593–611. [Google Scholar] [CrossRef] [Green Version]
- Olivier, E.; Azarnia, P.; Morin, A.J.; Houle, S.A.; Dubé, C.; Tracey, D.; Maïano, C. The moderating role of teacher-student relationships on the association between peer victimization and depression in students with intellectual disabilities. Res. Dev. Disabil. 2020, 98, 103572. [Google Scholar] [CrossRef]
- Bowlby, J. Attachment and Loss. Vol 3. In Loss, Sadness, and Depression; Basic Books: New York, NY, USA, 1980. [Google Scholar]
- Pianta, R.C. Beyond the Parent: The Role of Other Adults in Children’s Lives; Jossey-Bass: San Francisco, CA, USA, 1992. [Google Scholar]
- Cook, C.R.; Coco, S.; Zhang, Y.; Fiat, A.E.; Duong, M.T.; Renshaw, T.L.; Long, A.C.; Frank, S. Cultivating Positive Teacher–Student Relationships: Preliminary Evaluation of the Establish–Maintain–Restore (EMR) Method. Sch. Psychol. Rev. 2018, 47, 226–243. [Google Scholar] [CrossRef]
- Wang, M.-T.; Brinkworth, M.; Eccles, J. Moderating effects of teacher–student relationship in adolescent trajectories of emotional and behavioral adjustment. Dev. Psychol. 2013, 49, 690–705. [Google Scholar] [CrossRef]
- Luo, Y.; Wu, A.; Zhang, H. Parental Punishment and Adolescents’ Loneliness: A Moderated Mediation Model of General Self-Concept and Teacher–Student Relationships. Front. Psychol. 2021, 12, 693222. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.; Lee, Y.; Lee, J.; Nam, J.K.; Chung, Y. Development of Korean Smartphone Addiction Proneness Scale for Youth. PLoS ONE 2014, 9, e97920. [Google Scholar] [CrossRef] [PubMed]
- Lai, X.; Huang, S.; Zhang, C.; Tang, B.; Zhang, M.; Zhu, C.; Wang, Y. The association between smartphone addiction, interpersonal relationships, subjective well-being and school identity among primary and middle school students. Chin. J. Sch. Health 2020, 41, 613–616. [Google Scholar] [CrossRef]
- Li, L.; Mei, S.; Niu, Z.; Song, Y. Loneliness and sleep quality in university students: Mediator of smartphone addiction and moderator of gender. Chin. J. Clin. Psychol. 2016, 24, 345–348. [Google Scholar] [CrossRef]
- Wang, J.-L.; Wang, H.-Z.; Gaskin, J.; Wang, L.-H. The role of stress and motivation in problematic smartphone use among college students. Comput. Hum. Behav. 2015, 53, 181–188. [Google Scholar] [CrossRef]
- Hu, L.T.; Bentler, P.M. Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Struct. Equ. Model. Multidiscip. J. 1999, 6, 1–55. [Google Scholar] [CrossRef]
- Campbell, A. Subjective measures of well-being. Am. Psychol. 1976, 31, 117–124. [Google Scholar] [CrossRef]
- Zhang, X.; He, L.; Zheng, X. Adolescent students’ life satisfaction: Its construct and scale development. Psychol. Sci. 2004, 27, 1257–1260. [Google Scholar] [CrossRef]
- Liu, Q.; Du, X.; Zhao, S.; Liu, J.; Cai, J. The role of memorization in students’ self-reported mathematics learning: A large-scale study of Chinese eighth-grade students. Asia Pac. Educ. Rev. 2019, 20, 361–374. [Google Scholar] [CrossRef]
- Cortina, J.M. What is coefficient alpha? An examination of theory and applications. J. Appl. Psychol. 1993, 78, 98–104. [Google Scholar] [CrossRef]
- Aguirre-Urreta, M.I.; Hu, J. Detecting common method bias: Performance of the harman’s single-factor test. ACM SIGMIS Database 2019, 50, 45–70. [Google Scholar] [CrossRef]
- Guo, L.; Tian, L.; Huebner, E.S. Family dysfunction and anxiety in adolescents: A moderated mediation model of self-esteem and perceived school stress. J. Sch. Psychol. 2018, 69, 16–27. [Google Scholar] [CrossRef] [PubMed]
- Podsakoff, P.M.; MacKenzie, S.B.; Lee, J.-Y.; Podsakoff, N.P. Common method biases in behavioral research: A critical review of the literature and recommended remedies. J. Appl. Psychol. 2003, 88, 879–903. [Google Scholar] [CrossRef] [PubMed]
- Hayes, A.F. Introduction to Mediation, Moderation, and Conditional Process Analysis: A Regression-Based Approach; Guilford Press: New York, NY, USA, 2017. [Google Scholar]
- Gootzeit, J.; Markon, K. Factors of PTSD: Differential specificity and external correlates. Clin. Psychol. Rev. 2011, 31, 993–1003. [Google Scholar] [CrossRef]
- Ma, Z.; Idris, S.; Zhang, Y.; Zewen, L.; Wali, A.; Ji, Y.; Pan, Q.; Baloch, Z. The impact of COVID-19 pandemic outbreak on education and mental health of Chinese children aged 7–15 years: An online survey. BMC Pediatr. 2021, 21, 95. [Google Scholar] [CrossRef]
- Chen, T.; Peng, L.; Jing, B.; Wu, C.; Yang, J.; Cong, G. The Impact of the COVID-19 Pandemic on User Experience with Online Education Platforms in China. Sustainability 2020, 12, 7329. [Google Scholar] [CrossRef]
- Lapierre, M.A.; Lewis, M.N. Should it stay or should it go now? Smartphones and relational health. Psychol. Popul. Media Cult. 2018, 7, 384–398. [Google Scholar] [CrossRef]
- Montt, G.; Borgonovi, F. Combining Achievement and Well-Being in the Assessment of Education Systems. Soc. Indic. Res. 2018, 138, 271–296. [Google Scholar] [CrossRef]
- Gao, Q.; Sun, R.; Fu, E.; Jia, G.; Xiang, Y. Parent–child relationship and smartphone use disorder among Chinese adolescents: The mediating role of quality of life and the moderating role of educational level. Addict. Behav. 2020, 101, 106065. [Google Scholar] [CrossRef]
- Lin, C.-Y.; Tsai, M.-C. Effects of Family Context on Adolescents’ Psychological Problems: Moderated by Pubertal Timing, and Mediated by Self-Esteem and Interpersonal Relationships. Appl. Res. Qual. Life 2016, 11, 907–923. [Google Scholar] [CrossRef]
- Dobewall, H.; Hakulinen, C.; Keltikangas-Järvinen, L.; Pulkki-Råback, L.; Seppälä, I.; Lehtimäki, T.; Raitakari, O.T.; Hintsanen, M. Oxytocin receptor gene (OXTR) variant rs1042778 moderates the influence of family environment on changes in perceived social support over time. J. Affect. Disord. 2018, 235, 480–488. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, W.; Li, D.; Bao, Z.; Yan, Y.; Zhou, Z. The Impact of Parent-Child Attachment on Adolescent Problematic Internet Use: A Moderated Mediation Model. Acta Psychol. Sin. 2015, 47, 611. [Google Scholar] [CrossRef]
Variable | Gender | SES | PSU | MA | SWB | TSRs |
---|---|---|---|---|---|---|
Gender | 1 | |||||
SES | 0.02 * | 1 | ||||
PSU | −0.09 ** | −0.15 ** | 1 | |||
MA | −0.03 ** | 0.34 ** | −0.21 ** | 1 | ||
SWB | 0.04 ** | 0.15 ** | −0.21 ** | 0.19 ** | 1 | |
TSRs | 0.04 ** | 0.15 ** | −0.24 ** | 0.13 ** | 0.24 ** | 1 |
Min | 1 | −1.98 | 1 | 200 | 1 | 1 |
Max | 2 | 1.77 | 4 | 800 | 7 | 5 |
Mean | 1.5 | 0.26 | 1.62 | 552.82 | 5.25 | 4.16 |
SD | 0.5 | 0.66 | 0.8 | 84.11 | 1.95 | 0.93 |
Predictors | Model 1 (SWB) | Model 2 (MA) | Model 3 (SWB) | |||
---|---|---|---|---|---|---|
t | t | t | ||||
Gender | 0.02 | 1.98 * | −0.05 | −5.37 *** | 0.03 | 2.73 ** |
SES | 0.12 | 13.19 *** | 0.32 | 35.62 *** | 0.08 | 8.32 *** |
PSU | −0.19 | −20.08 *** | −0.16 | −18.41 *** | −0.17 | −17.67 *** |
MA | 0.13 | 13.44 *** | ||||
0.06 | 0.14 | 0.07 | ||||
F | 227.53 *** | 614.24 *** | 218.99 *** | |||
Indirect effect | B | Boot SE | LLCI | ULCI | ||
MA | −0.02 | 0.002 | −0.03 | −0.02 |
Predictors | Model 1 (MA) | Model 2 (SWB) | ||
---|---|---|---|---|
t | t | |||
Gender | −0.05 | −5.45 *** | 0.02 | 2.38 * |
SES | 0.31 | 34.58 *** | 0.06 | 6.35 *** |
PSU | −0.16 | −17.07 *** | −0.13 | −13.58 *** |
TSRs | 0.05 | 5.35 *** | 0.19 | 19.82 *** |
PSU × TSRs | −0.02 | −2.94 ** | −0.02 | −2.54 * |
MA | 0.12 | 12.69 *** | ||
0.14 | 0.10 | |||
F | 375.49 *** | 216.49 *** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, D.; Liu, J.; Ye, G.; Wang, T.; Xia, X.; Liu, J. Relationships among Problematic Smartphone Use, Mathematics Achievement, Teacher–Student Relationships, and Subjective Well-Being: Results from a Large-Scale Survey in China. Behav. Sci. 2022, 12, 454. https://doi.org/10.3390/bs12110454
Zhou D, Liu J, Ye G, Wang T, Xia X, Liu J. Relationships among Problematic Smartphone Use, Mathematics Achievement, Teacher–Student Relationships, and Subjective Well-Being: Results from a Large-Scale Survey in China. Behavioral Sciences. 2022; 12(11):454. https://doi.org/10.3390/bs12110454
Chicago/Turabian StyleZhou, Da, Jinqing Liu, Guizhen Ye, Ting Wang, Xiaogang Xia, and Jian Liu. 2022. "Relationships among Problematic Smartphone Use, Mathematics Achievement, Teacher–Student Relationships, and Subjective Well-Being: Results from a Large-Scale Survey in China" Behavioral Sciences 12, no. 11: 454. https://doi.org/10.3390/bs12110454
APA StyleZhou, D., Liu, J., Ye, G., Wang, T., Xia, X., & Liu, J. (2022). Relationships among Problematic Smartphone Use, Mathematics Achievement, Teacher–Student Relationships, and Subjective Well-Being: Results from a Large-Scale Survey in China. Behavioral Sciences, 12(11), 454. https://doi.org/10.3390/bs12110454