Explaining the Consumption Technology Acceptance in the Elderly Post-Pandemic: Effort Expectancy Does Not Matter
Abstract
:1. Introduction
2. Literature Review
2.1. UTAU2 and Elders
2.2. Generations and Technology Readiness as Moderators of Information Technologies Acceptance
2.2.1. Generations as Moderators of Information Technologies Acceptance
2.2.2. Technology Readiness Index as Moderator of Information Technologies Acceptance
3. Materials and Methods
3.1. Procedure and Participants
3.2. Measures
Latent Variable | Number of Indicators | Original Scale in English | Scale in Spanish |
---|---|---|---|
Performance expectancy | 4 | [35] | [67] |
Effort expectancy | 3 | [35] | [67] |
Social influence | 4 | [35] | [68] |
Facilitating conditions | 4 | [35] | [68] |
Hedonic motivation | 3 | [35] | [67] |
Habit | 5 | [35] | [68] |
Intention to use | 2 | [35] | [68] |
Use of SNS | 4 | [69] | [67] |
3.3. Analysis of Results
4. Results
4.1. Evaluation of the Measurement Model
4.2. Evaluation of the Structural Model
4.3. Multigroup Analysis
5. Discussion
6. Conclusions
6.1. Theoretical Implications
6.2. Practical Implications
6.3. Limitations and Future Research
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Niu, G.; Ni, X.; Xie, X. Frontiers in Cyberpsychology: The Influences of Internet and Online Applications in Daily Life [Special Issue]. Behavioral Sciences 2023. Available online: https://www.mdpi.com/journal/behavsci/special_issues/Cyber_psychology (accessed on 11 January 2023).
- OCDE. Preventing Ageing Unequally; OECD Publishing: Paris, France, 2017; ISBN 978-92-64-27907-0. [Google Scholar]
- Lissitsa, S.; Zychlinski, E.; Kagan, M. The Silent Generation vs Baby Boomers: Sociodemographic and Psychological Predictors of the “Gray” Digital Inequalities. Comput. Human Behav. 2022, 128, 107098. [Google Scholar] [CrossRef]
- Sixsmith, A.; Horst, B.R.; Simeonov, D.; Mihailidis, A. Older People’s Use of Digital Technology During the COVID-19 Pandemic. Bull. Sci. Technol. Soc. 2022, 42, 19–24. [Google Scholar] [CrossRef]
- Orea-Giner, A.; Muñoz-Mazón, A.; Villacé-Molinero, T.; Fuentes-Moraleda, L. Cultural Tourist and User Experience with Artificial Intelligence: A Holistic Perspective from the Industry 5.0 Approach. J. Tour. Futures. ahead-of-print. [CrossRef]
- Nunan, D.; di Domenico, M.L. Older Consumers, Digital Marketing, and Public Policy: A Review and Research Agenda. J. Public Policy Mark. 2019, 38, 469–483. [Google Scholar] [CrossRef] [Green Version]
- Berg, H.; Liljedal, K.T. Elderly Consumers in Marketing Research: A Systematic Literature Review and Directions for Future Research. Int. J. Consum. Stud. 2022, 46, 1640–1664. [Google Scholar] [CrossRef]
- Boll, F.; Brune, P. Online Support for the Elderly—Why Service and Social Network Platforms Should Be Integrated. Procedia Comput. Sci. 2016, 58, 395–400. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.T.; Li, X. The Contribution of Mobile Social Media to Social Capital and Psychological Well-Being: Examining the Role of Communicative Use, Friending and Self-Disclosure. Comput. Human Behav. 2017, 75, 958–965. [Google Scholar] [CrossRef]
- Aldana González, M.G.; Gacía Gómez, M.L.; Jacobo Mata, A. Las Tecnologías de La Información y Comunicación (TIC) Como Alternativa Para La Estimulación de Los Procesos Cognitivos En La Vejez. CPU-E Rev. Investig. Educ. 2012, 14, 153–166. [Google Scholar] [CrossRef] [Green Version]
- O’Rourke, H.M.; Sidani, S. Definition, Determinants, and Outcomes of Social Connectedness for Older Adults: A Scoping Review. J. Gerontol. Nurs. 2017, 43, 43–52. [Google Scholar] [CrossRef]
- Zhong, Y.; Shapoval, V.; Busser, J. The Role of Parasocial Relationship in Social Media Marketing: Testing a Model among Baby Boomers. Int. J. Contemp. Hosp. Manag. 2021, 33, 1870–1891. [Google Scholar] [CrossRef]
- Humphrey, A.; March, E.; Lavender, A.P.; Miller, K.J.; Alvarenga, M.; Mesagno, C. Buffering the Fear of COVID-19: Social Connectedness Mediates the Relationship between Fear of COVID-19 and Psychological Wellbeing. Behav. Sci. 2022, 12, 86. [Google Scholar] [CrossRef] [PubMed]
- Kovacs, B.; Caplan, N.; Grob, S.; King, M. Social Networks and Loneliness During the COVID-19 Pandemic. Socius 2021, 7, 2378023120985254. [Google Scholar] [CrossRef]
- Li, J.; Zhou, L.; van der Heijden, B.; Li, S.; Tao, H.; Guo, Z. Social Isolation, Loneliness and Well-Being: The Impact of WeChat Use Intensity During the COVID-19 Pandemic in China. Front. Psychol. 2021, 12, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Nitschke, J.P.; Forbes, P.A.G.; Ali, N.; Cutler, J.; Apps, M.A.J.; Lockwood, P.L.; Lamm, C. Resilience during Uncertainty? Greater Social Connectedness during COVID-19 Lockdown Is Associated with Reduced Distress and Fatigue. Br. J. Health Psychol. 2021, 26, 553–569. [Google Scholar] [CrossRef]
- Sayin Kasar, K.; Karaman, E. Life in Lockdown: Social Isolation, Loneliness and Quality of Life in the Elderly during the COVID-19 Pandemic: A Scoping Review. Geriatr. Nurs. 2021, 42, 1222–1229. [Google Scholar] [CrossRef]
- Armitage, R.; Nellums, L.B. COVID-19 and the Consequences of Isolating the Elderly. Lancet Public Health 2020, 5, 256. [Google Scholar] [CrossRef] [Green Version]
- Acevedo-Cisternas, M.T.; Ramírez-Pereira, M.; Ramírez-Correa, P.; Ramírez-Santana, M. Percepciones de Personas Mayores Chilenas Respecto Del Uso de Las Redes Sociales Digitales y Su Relación Con El Bienestar Subjetivo, En Contexto de Pandemia SARS CoV-2. Rev. Ibérica Sist. Tecnol. Inf. 2022, E48, 518–534. [Google Scholar]
- Simon, J.; Helter, T.M.; White, R.G.; van der Boor, C.; Łaszewska, A. Impacts of the Covid-19 Lockdown and Relevant Vulnerabilities on Capability Well-Being, Mental Health and Social Support: An Austrian Survey Study. BMC Public Health 2021, 21, 314. [Google Scholar] [CrossRef]
- Venkatesh, V.; Morris, M.G.; Davis, G.B.; Davis, F.D. User Acceptance of Information Technology: Toward a Unified View. MIS Q 2003, 27, 425–478. [Google Scholar] [CrossRef] [Green Version]
- Ajzen, I.; Fishbein, M. Understanding Attitudes and Predicting Social Behaviour; Prentice-Hall: Englewood Cliffs, NJ, USA, 1980; ISBN 0139364439. [Google Scholar]
- Motamedi, S.; Masrahi, A.; Bopp, T.; Wang, J.H. Different Level Automation Technology Acceptance: Older Adult Driver Opinion. Transp. Res. Part Traffic Psychol. Behav. 2021, 80, 75–84. [Google Scholar] [CrossRef]
- Wang, Q.; Sun, X. Investigating Gameplay Intention of the Elderly Using an Extended Technology Acceptance Model (ETAM). Technol. Forecast. Soc. Chang. 2016, 107, 59–68. [Google Scholar] [CrossRef]
- Su, J.; Tong, X. Catching Silver Consumers in China: An Integrated Model of Chinese Older Adults’ Use of Social Networking Technology. Asia Pac. J. Mark. Logist. 2021, 33, 1903–1917. [Google Scholar] [CrossRef]
- Macedo, I.M. Predicting the Acceptance and Use of Information and Communication Technology by Older Adults: An Empirical Examination of the Revised UTAUT2. Comput. Human Behav. 2017, 75, 935–948. [Google Scholar] [CrossRef]
- Braun, M.T. Obstacles to Social Networking Website Use among Older Adults. Comput. Human Behav. 2013, 29, 673–680. [Google Scholar] [CrossRef]
- Li, J.; Ma, Q.; Chan, A.H.; Man, S.S. Health Monitoring through Wearable Technologies for Older Adults: Smart Wearables Acceptance Model. Appl. Ergon. 2019, 75, 162–169. [Google Scholar] [CrossRef] [PubMed]
- Ma, Q.; Chan, A.H.S.; Chen, K. Personal and Other Factors Affecting Acceptance of Smartphone Technology by Older Chinese Adults. Appl. Ergon. 2016, 54, 62–71. [Google Scholar] [CrossRef]
- Lian, J.W.; Yen, D.C. Online Shopping Drivers and Barriers for Older Adults: Age and Gender Differences. Comput. Human Behav. 2014, 37, 133–143. [Google Scholar] [CrossRef]
- Yap, Y.Y.; Tan, S.H.; Choon, S.W. Elderly’s Intention to Use Technologies: A Systematic Literature Review. Heliyon 2022, 8, e08765. [Google Scholar] [CrossRef]
- Talukder, M.S.; Sorwar, G.; Bao, Y.; Ahmed, J.U.; Palash, M.A.S. Predicting Antecedents of Wearable Healthcare Technology Acceptance by Elderly: A Combined SEM-Neural Network Approach. Technol. Forecast. Soc. Chang. 2020, 150, 119793. [Google Scholar] [CrossRef]
- Hoque, R.; Sorwar, G. Understanding Factors Influencing the Adoption of MHealth by the Elderly: An Extension of the UTAUT Model. Int. J. Med. Inform. 2017, 101, 75–84. [Google Scholar] [CrossRef]
- Tian, X.-F.; Wu, R.-Z. Determinants of the Mobile Health Continuance Intention of Elders with Chronic Diseases: An Integrated Framework of ECM-ISC and UTAUT. Int. J. Environ. Res. Public Health 2022, 19, 9980. [Google Scholar] [CrossRef] [PubMed]
- Venkatesh, V.; Thong, J.Y.L.; Xu, X. Consumer Acceptance and Use of Information Technology: Extending the Unified Theory of Acceptance and Use of Technology. MIS Q 2012, 36, 157–178. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, T.; Thomas, M.; Baptista, G.; Campos, F. Mobile Payment: Understanding the Determinants of Customer Adoption and Intention to Recommend the Technology. Comput. Human Behav. 2016, 61, 404–414. [Google Scholar] [CrossRef]
- Yein, N.; Pal, S. Analysis of the User Acceptance of Exergaming (Fall- Preventive Measure)—Tailored for Indian Elderly Using Unified Theory of Acceptance and Use of Technology (UTAUT2) Model. Entertain. Comput. 2021, 38, 100419. [Google Scholar] [CrossRef]
- Palas, J.; Sorwar, G.; Hoque, M.; Sivabalan, A. Factors Influencing the Elderly’s Adoption of MHealth: An Empirical Study Using Extended UTAUT2 Model. BMC Med. Inform. Decis. Mak 2022, 22, 191. [Google Scholar] [CrossRef] [PubMed]
- Tamilmani, K.; Rana, N.P.; Dwivedi, Y.K. Consumer Acceptance and Use of Information Technology: A Meta-Analytic Evaluation of UTAUT2. Inf. Syst. Front. 2021, 23, 987–1005. [Google Scholar] [CrossRef]
- Özsungur, F. A Research on the Effects of Successful Aging on the Acceptance and Use of Technology of the Elderly. Assist. Technol. 2022, 34, 77–90. [Google Scholar] [CrossRef]
- Mannheim, K. The Problem of Generations. In Essays on the Sociology of Knowledge; Mannheim, K., Ed.; RKP: London, UK, 1952. [Google Scholar]
- Strauss, W.; Howe, N. The Fourth Turning: An American Prophecy; Broadway Books: New York, NY, USA, 1997; Volume 7. [Google Scholar]
- Abrams, P. Historical Sociology; Cornell University Press: New York, NY, USA, 1982; ISBN 0801492432. [Google Scholar]
- Calvo-Porral, C.; Pesqueira-Sanchez, R. Generational Differences in Technology Behaviour: Comparing Millennials and Generation X. Kybernetes 2020, 49, 2755–2772. [Google Scholar] [CrossRef]
- Noah, B.; Sethumadhavan, A. Generational Differences in Trust in Digital Assistants. In Proceedings of the Human Factors and Ergonomics Society Annual Meeting, Washington, DC, USA, 28 October–1 November 2019; Volume 63, pp. 206–210. [Google Scholar] [CrossRef]
- Bordonaba-Juste, M.V.; Lucia-Palacios, L.; Pérez-López, R. Generational Differences in Valuing Usefulness, Privacy and Security Negative Experiences for Paying for Cloud Services. Inf. Syst. e-Bus. Manag. 2020, 18, 35–60. [Google Scholar] [CrossRef]
- Debb, S.M.; Schaffer, D.R.; Colson, D.G. A Reverse Digital Divide: Comparing Information Security Behaviors of Generation Y and Generation Z Adults. Int. J. Cybersecur. Intell. Cybercrime 2020, 3, 42–55. [Google Scholar] [CrossRef]
- Alkire, L.; O’Connor, G.E.; Myrden, S.; Köcher, S. Patient Experience in the Digital Age: An Investigation into the Effect of Generational Cohorts. J. Retail. Consum. Serv. 2020, 57, 102221. [Google Scholar] [CrossRef]
- Sharma, S.; Singh, G.; Pratt, S. Does Consumers’ Intention to Purchase Travel Online Differ Across Generations? Australas. J. Inf. Syst. 2020, 24, 1–31. [Google Scholar] [CrossRef]
- Lissitsa, S.; Kol, O. Four Generational Cohorts and Hedonic M-Shopping: Association between Personality Traits and Purchase Intention. Electron. Commer. Res. 2021, 21, 545–570. [Google Scholar] [CrossRef]
- Çera, G.; Khan, K.A.; Lashi, F.; Maloku, S. The Role of Generational Cohorts in Mobile Banking Adoption: Evidence from South-Eastern Europe. Int. J. Serv. Technol. Manag. 2022, 28, 24–45. [Google Scholar] [CrossRef]
- Agárdi, I.; Alt, M.A. Do Digital Natives Use Mobile Payment Differently than Digital Immigrants? A Comparative Study between Generation X and Z. Electron. Commer. Res. 2022, 1–28. [Google Scholar] [CrossRef]
- Botha, F.; Vera-Toscano, E. Generational Differences in Subjective Well-Being in Australia. Appl. Res. Qual. Life 2022, 17, 1–30. [Google Scholar] [CrossRef]
- Singh, A.K.; Patel, B.S.; Samuel, C. Understanding Customer-Perceived Values for Apparel Retailing in India. Int. J. Retail. Distrib. Manag. 2022, 50, 1337–1357. [Google Scholar] [CrossRef]
- Zheng, H.; Choi, Y.; Dirlam, J.; George, L. Rising Childhood Income Inequality and Declining Americans’ Health. Soc. Sci. Med. 2022, 303, 115016. [Google Scholar] [CrossRef]
- Zang, E.; Zheng, H.; Yang, Y.C.; Land, K.C. Recent Trends in US Mortality in Early and Middle Adulthood: Racial/Ethnic Disparities in Inter-Cohort Patterns. Int. J. Epidemiol. 2019, 48, 934–944. [Google Scholar] [CrossRef]
- Canales Cerón, M.; Ghiardo Soto, F. Épocas, Cohortes y Generaciones de Chilenos/as: Exploración En Torno a Los Grupos Socioepocales. Ultim. Década 2012, 20, 11–41. [Google Scholar] [CrossRef]
- Parasuraman, A. Technology Readiness Index (TRI): A Multiple-Item Scale to Measure Readiness to Embrace New Technologies. J. Serv. Res. 2000, 2, 307–320. [Google Scholar] [CrossRef]
- Lin, C.H.; Shih, H.Y.; Sher, P.J. Integrating Technology Readiness into Technology Acceptance: The TRAM Model. Psychol. Mark. 2007, 24, 641–657. [Google Scholar] [CrossRef]
- Larasati, N. Technology Readiness and Technology Acceptance Model in New Technology Implementation Process in Low Technology SMEs. Int. J. Innov. Manag. Technol. 2017, 8, 113–117. [Google Scholar] [CrossRef]
- Kim, T.; Chiu, W. Consumer Acceptance of Sports Wearable Technology: The Role of Technology Readiness. Int. J. Sport. Mark. Spons. 2019, 20, 109–126. [Google Scholar] [CrossRef]
- Seol, S.H.; Ko, D.S.; Yeo, I.S. Ux Analysis Based on TR and UTAUT of Sports Smart Wearable Devices. KSII Trans. Internet Inf. Syst. 2017, 11, 4162–4179. [Google Scholar] [CrossRef]
- López-Pérez, V.A.; Ramírez-Correa, P.E.; Grandón, E.E. Innovativeness and Factors That Affect the Information Technology Adoption in the Classroom by Primary Teachers in Chile. Inform. Educ. 2019, 18, 165–181. [Google Scholar] [CrossRef]
- Devolder, P.; Pynoo, B.; Sijnave, B.; Voet, T.; Duyck, P. Framework for User Acceptance: Clustering for Fine-Grained Results. Inf. Manag. 2012, 49, 233–239. [Google Scholar] [CrossRef]
- Hao, F.; Chon, K. Are You Ready for a Contactless Future? A Multigroup Analysis of Experience, Delight, Customer Equity, and Trust Based on the Technology Readiness Index 2.0. J. Travel Tour. Mark. 2021, 38, 900–916. [Google Scholar] [CrossRef]
- Parasuraman, A.; Colby, C.L. An Updated and Streamlined Technology Readiness Index: TRI 2.0. J. Serv. Res. 2015, 18, 59–74. [Google Scholar] [CrossRef]
- Ramírez-Correa, P.; Grandón, E.E.; Ramírez-Santana, M.; Órdenes, L.B. Explaining the Use of Social Network Sites as Seen by Older Adults: The Enjoyment Component of a Hedonic Information System. Int. J. Environ. Res. Public Health 2019, 16, 1673. [Google Scholar] [CrossRef]
- Ramírez-Correa, P.E.; Rondán-Cataluña, F.J.; Arenas-Gaitán, J. An Empirical Analysis of Mobile Internet Acceptance in Chile. Inf. Res. 2014, 19, 635. [Google Scholar]
- Kwon, O.; Wen, Y. An Empirical Study of the Factors Affecting Social Network Service Use. Comput. Human Behav. 2010, 26, 254–263. [Google Scholar] [CrossRef]
- Rigdon, E.E. Choosing PLS Path Modeling as Analytical Method in European Management Research: A Realist Perspective. Eur. Manag. J. 2016, 34, 598–605. [Google Scholar] [CrossRef]
- Maier, C.; Laumer, S.; Eckhardt, A. Technology Adoption by Elderly People—An Empirical Analysis of Adopters and Non-Adopters of Social Networking Sites. In Theory-Guided Modeling and Empiricism in Information Systems Research; Heinzl, A., Buxmann, P., Wendt, O., Weitzel, T., Eds.; Physica-Verlag: Heidelberg, Germany, 2011; pp. 901–991. [Google Scholar]
- Kaba, B.; Touré, B. Understanding Information and Communication Technology Behavioral Intention to Use: Applying the UTAUT Model to Social Networking Site Adoption by Young People in a Least Developed Country. J. Assoc. Inf. Sci. Technol. 2014, 65, 1662–1674. [Google Scholar] [CrossRef]
- Kol, O.; Nebenzahl, I.D.; Lev-On, A.; Levy, S. SNS Adoption for Consumer Active Information Search (AIS)—The Dyadic Role of Information Credibility. Int. J. Hum. Comput Interact. 2021, 37, 1504–1515. [Google Scholar] [CrossRef]
- Buettner, R. Getting a Job via Career-Oriented Social Networking Markets. Electron. Mark. 2017, 27, 371–385. [Google Scholar] [CrossRef] [Green Version]
- Herrero, Á.; San Martín, H.; Garcia-De los Salmones, M.d.M. Explaining the Adoption of Social Networks Sites for Sharing User-Generated Content: A Revision of the UTAUT2. Comput. Human Behav. 2017, 71, 209–217. [Google Scholar] [CrossRef] [Green Version]
- Ramírez-Correa, P.; Rondán-Cataluña, F.J.; Arenas-Gaitán, J.; Martín-Velicia, F. Analysing the Acceptation of Online Games in Mobile Devices: An Application of UTAUT2. J. Retail. Consum. Serv. 2019, 50, 85–93. [Google Scholar] [CrossRef]
Generation | Coquimbo | Biobío | Total by Gender | Total by Generation | |||
---|---|---|---|---|---|---|---|
Women | Men | Women | Men | Women | Men | ||
Late Baby boomer | 101 | 101 | 235 | 209 | 336 | 310 | 646 |
Early Baby boomer | 104 | 67 | 182 | 122 | 286 | 189 | 475 |
Silent | 79 | 64 | 173 | 118 | 252 | 182 | 434 |
Total | 284 | 232 | 590 | 449 | 874 | 681 | 1555 |
Total area | 516 | 1039 |
Latent Variable | Global Sample (N = 1555) | Independent (N = 646) | Technologically Apathetic (N = 460) | Technologically Hungry (N = 449) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
CA | CR | AVE | CA | CR | AVE | CA | CR | AVE | CA | CR | AVE | |
Facilitating conditions | 0.73 | 0.83 | 0.56 | 0.73 | 0.83 | 0.56 | 0.71 | 0.82 | 0.53 | 0.65 | 0.79 | 0.50 |
Effort expectancy | 0.90 | 0.94 | 0.84 | 0.90 | 0.94 | 0.83 | 0.87 | 0.92 | 0.79 | 0.86 | 0.92 | 0.79 |
Performance expectancy | 0.84 | 0.89 | 0.67 | 0.83 | 0.88 | 0.66 | 0.84 | 0.90 | 0.68 | 0.79 | 0.87 | 0.62 |
Habit | 0.90 | 0.92 | 0.71 | 0.89 | 0.92 | 0.69 | 0.88 | 0.91 | 0.68 | 0.87 | 0.91 | 0.67 |
Intention to use | 0.76 | 0.89 | 0.81 | 0.75 | 0.89 | 0.80 | 0.74 | 0.89 | 0.80 | 0.75 | 0.89 | 0.80 |
Hedonic motivation | 0.93 | 0.95 | 0.88 | 0.91 | 0.95 | 0.85 | 0.94 | 0.96 | 0.89 | 0.92 | 0.95 | 0.87 |
Social influence | 0.93 | 0.95 | 0.83 | 0.93 | 0.95 | 0.83 | 0.94 | 0.96 | 0.85 | 0.92 | 0.95 | 0.82 |
Latent Variable | FC | EE | PE | HA | IU | HM | |
---|---|---|---|---|---|---|---|
Global sample | Effort expectancy | 0.72 | |||||
Performance expectancy | 0.68 | 0.56 | |||||
Habit | 0.57 | 0.59 | 0.59 | ||||
Intention to use | 0.75 | 0.53 | 0.71 | 0.63 | |||
Hedonic motivation | 0.67 | 0.51 | 0.63 | 0.62 | 0.69 | ||
Social influence | 0.50 | 0.29 | 0.50 | 0.33 | 0.54 | 0.38 | |
Independent | Effort expectancy | 0.67 | |||||
Performance expectancy | 0.67 | 0.49 | |||||
Habit | 0.48 | 0.51 | 0.53 | ||||
Intention to use | 0.68 | 0.42 | 0.68 | 0.55 | |||
Hedonic motivation | 0.60 | 0.43 | 0.65 | 0.51 | 0.61 | ||
Social influence | 0.51 | 0.29 | 0.55 | 0.37 | 0.64 | 0.44 | |
Technologically apathetic | Effort expectancy | 0.65 | |||||
Performance expectancy | 0.67 | 0.55 | |||||
Habit | 0.54 | 0.52 | 0.58 | ||||
Intention to use | 0.72 | 0.50 | 0.71 | 0.66 | |||
Hedonic motivation | 0.68 | 0.46 | 0.57 | 0.65 | 0.72 | ||
Social influence | 0.52 | 0.35 | 0.46 | 0.26 | 0.47 | 0.31 | |
Technologically hungry | Effort expectancy | 0.66 | |||||
Performance expectancy | 0.55 | 0.45 | |||||
Habit | 0.47 | 0.50 | 0.55 | ||||
Intention to use | 0.76 | 0.49 | 0.63 | 0.59 | |||
Hedonic motivation | 0.60 | 0.49 | 0.56 | 0.59 | 0.64 | ||
Social influence | 0.53 | 0.27 | 0.52 | 0.40 | 0.53 | 0.39 |
Global Sample (N = 1555) | Independent (N = 646) | Technologically Apathetic (N = 460) | Technologically Hungry (N = 449) | |||||
---|---|---|---|---|---|---|---|---|
Relationship | Effect | p | Effect | p | Effect | p | Effect | p |
Facilitating conditions -> intention to use | 0.21 | 0.00 | 0.22 | 0.00 | 0.14 | 0.02 | 0.28 | 0.00 |
Facilitating conditions -> use of SNS | 0.24 | 0.00 | 0.27 | 0.00 | 0.12 | 0.03 | 0.19 | 0.00 |
Effort expectancy -> intention to use | −0.01 | 0.58 | −0.04 | 0.31 | −0.01 | 0.86 | 0.02 | 0.72 |
Performance expectancy -> intention to use | 0.18 | 0.00 | 0.17 | 0.00 | 0.21 | 0.00 | 0.14 | 0.01 |
Habit -> intention to use | 0.17 | 0.00 | 0.16 | 0.00 | 0.17 | 0.00 | 0.15 | 0.00 |
Habit -> use of SNS | 0.42 | 0.00 | 0.42 | 0.00 | 0.39 | 0.00 | 0.34 | 0.00 |
Intention to use -> use of SNS | 0.13 | 0.00 | 0.04 | 0.38 | 0.20 | 0.00 | 0.22 | 0.00 |
Hedonic motivation -> intention to use | 0.21 | 0.00 | 0.14 | 0.00 | 0.28 | 0.00 | 0.19 | 0.00 |
Social influence -> intention to use | 0.17 | 0.00 | 0.26 | 0.00 | 0.13 | 0.00 | 0.14 | 0.00 |
Relationship | Apathetic–Hungry Effects | p | Apathetic–Independent Effects | p | Hungry–Independent Effects | p |
Facilitating conditions -> intention to use | −0.15 | 0.05 | −0.08 | 0.29 | 0.07 | 0.40 |
Facilitating conditions -> use of SNS | −0.07 | 0.37 | −0.15 | 0.02 | −0.08 | 0.17 |
Effort expectancy -> intention to use | −0.02 | 0.71 | 0.03 | 0.64 | 0.05 | 0.35 |
Performance expectancy -> intention to use | 0.07 | 0.37 | 0.04 | 0.50 | −0.02 | 0.72 |
Habit -> intention to use | 0.02 | 0.73 | 0.02 | 0.76 | −0.01 | 0.93 |
Habit -> use of SNS | 0.05 | 0.50 | −0.03 | 0.60 | −0.08 | 0.18 |
Intention to use -> use of SNS | −0.02 | 0.83 | 0.16 | 0.04 | 0.18 | 0.01 |
Hedonic motivation -> intention to use | 0.08 | 0.32 | 0.14 | 0.07 | 0.06 | 0.43 |
Social influence -> intention to use | −0.01 | 0.97 | −0.13 | 0.03 | −0.12 | 0.04 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramírez-Correa, P.; Grandón, E.E.; Ramírez-Santana, M.; Arenas-Gaitán, J.; Rondán-Cataluña, F.J. Explaining the Consumption Technology Acceptance in the Elderly Post-Pandemic: Effort Expectancy Does Not Matter. Behav. Sci. 2023, 13, 87. https://doi.org/10.3390/bs13020087
Ramírez-Correa P, Grandón EE, Ramírez-Santana M, Arenas-Gaitán J, Rondán-Cataluña FJ. Explaining the Consumption Technology Acceptance in the Elderly Post-Pandemic: Effort Expectancy Does Not Matter. Behavioral Sciences. 2023; 13(2):87. https://doi.org/10.3390/bs13020087
Chicago/Turabian StyleRamírez-Correa, Patricio, Elizabeth Eliana Grandón, Muriel Ramírez-Santana, Jorge Arenas-Gaitán, and F. Javier Rondán-Cataluña. 2023. "Explaining the Consumption Technology Acceptance in the Elderly Post-Pandemic: Effort Expectancy Does Not Matter" Behavioral Sciences 13, no. 2: 87. https://doi.org/10.3390/bs13020087
APA StyleRamírez-Correa, P., Grandón, E. E., Ramírez-Santana, M., Arenas-Gaitán, J., & Rondán-Cataluña, F. J. (2023). Explaining the Consumption Technology Acceptance in the Elderly Post-Pandemic: Effort Expectancy Does Not Matter. Behavioral Sciences, 13(2), 87. https://doi.org/10.3390/bs13020087