Exercise Predicts a Good Night’s Sleep: Preliminary Findings from a UCLA Study of First-Episode Schizophrenia
Abstract
:1. Background
2. Methods
2.1. Participants
2.2. Interventions
2.3. Exercise Program
2.4. Measures
2.4.1. Pittsburgh Sleep Quality Index (PSQI)
2.4.2. Number of Exercise Sessions Completed
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Freeman, D.; Sheaves, B.; Waite, F.; Harvey, A.G.; Harrison, P.J. Sleep disturbance and psychiatric disorders. Lancet Psychiatry 2020, 7, 628–637. [Google Scholar] [CrossRef] [PubMed]
- Leucht, S.; Burkard, T.; Henderson, J.; Maj, M.; Sartorius, N. Physical illness and schizophrenia: A review of the literature. Acta Psychiatr. Scand. 2007, 116, 317–333. [Google Scholar] [CrossRef] [PubMed]
- Kimhy, D.; Ospina, L.; Beck-Felts, K.; Fakhoury, A.; Mullins, A.E.; Varga, A.W. The Impact of Sleep on Neurocognition and Functioning in Schizophrenia-Is It Time to Wake-Up? J. Psychiatr. Brain Sci. 2022, 7, e220001. [Google Scholar] [CrossRef] [PubMed]
- Ferrarelli, F. Sleep Abnormalities in Schizophrenia: State of the Art and Next Steps. Am. J. Psychiatry 2021, 178, 903–913. [Google Scholar] [CrossRef] [PubMed]
- Vancampfort, D.; Firth, J.; Schuch, F.B.; Rosenbaum, S.; Mugisha, J.; Hallgren, M.; Probst, M.; Ward, P.B.; Gaughran, F.; De Hert, M.; et al. Sedentary behavior and physical activity levels in people with schizophrenia, bipolar disorder and major depressive disorder: A global systematic review and meta-analysis. World Psychiatry 2017, 16, 308–315. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- National Institutes of Health Sleep Research Plan. Available online: https://www.nhlbi.nih.gov/sleep-research-plan (accessed on 22 August 2022).
- Bredin, S.S.D.; Kaufman, K.L.; Chow, M.I.; Lang, D.J.; Wu, N.; Kim, D.D.; Warburton, D.E.R. Effects of Aerobic, Resistance, and Combined Exercise Training on Psychiatric Symptom Severity and Related Health Measures in Adults Living with Schizophrenia: A Systematic Review and Meta-Analysis. Front Cardiovasc. Med. 2021, 8, 753117. [Google Scholar] [CrossRef] [PubMed]
- Nuechterlein, K.H.; Ventura, J.; McEwen, S.C.; Gretchen-Doorly, D.; Vinogradov, S.; Subotnik, K.L. Enhancing Cognitive Training Through Aerobic Exercise after a First Schizophrenia Episode: Theoretical Conception and Pilot Study. Schizophr. Bull. 2016, 42, S44–S52. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nuechterlein, K.H.; McEwen, S.C.; Ventura, J.; Subotnik, K.L.; Turner, L.R.; Boucher, M.; Casaus, L.R.; Distler, M.G.; Hayata, J.N. Aerobic exercise enhances cognitive training effects in first-episode schizophrenia: Randomized clinical trial demonstrates cognitive and functional gains. Psychol. Med. 2022, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Lim, J.; Dinges, D.F. A meta-analysis of the impact of short-term sleep deprivation on cognitive variables. Psychol. Bull. 2010, 136, 375–389. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buysse, D.J.; Reynolds, C.F.; Monk, T.H.; Berman, S.R.; Kupfer, D.J. The Pittsburgh sleep quality index: A new instrument for psychiatric practice and research. Psychiatry Res. 1989, 28, 193–213. [Google Scholar] [CrossRef] [PubMed]
- Bonnet, M.H.; Arand, D.L. We are chronically sleep deprived. Sleep 1995, 18, 908–911. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Owens, J. Insufficient sleep in adolescents and young adults: An update on causes and consequences. Pediatrics 2014, 134, e921–e932. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kelley, G.A.; Kelley, K.S. Exercise and sleep: A systematic review of previous meta-analyses. J. Evid. Based. Med. 2017, 10, 26–36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lederman, O.; Ward, P.B.; Firth, J.; Maloney, C.; Carney, R.; Vancampfort, D.; Stubbs, B.; Kalucy, M.; Rosenbaum, S. Does exercise improve sleep quality in individuals with mental illness? A systematic review and meta-analysis. J. Psychiatr. Res. 2019, 109, 96–106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gorczynski, P.; Faulkner, G. Exercise Therapy for Schizophrenia. Schizophr. Bull. 2010, 36, 665–666. [Google Scholar] [CrossRef] [PubMed]
- Firth, J.; Stubbs, B.; Rosenbaum, S.; Vancampfort, D.; Malchow, B.; Schuch, F.; Elliott, R.; Nuechterlein, K.H.; Yung, A.R. Aerobic Exercise Improves Cognitive Functioning in People with Schizophrenia: A Systematic Review and Meta-Analysis. Schizophr. Bull. 2017, 43, 546–556. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Holley, J.; Crone, D.; Tyson, P.; Lovell, G. The effects of physical activity on psychological well-being for those with schizophrenia: A systematic review. Br. J. Clin. Psychol. 2011, 50, 84–105. [Google Scholar] [CrossRef] [PubMed]
- Depner, C.M.; Stothard, E.R.; Wright, K.P., Jr. Metabolic consequences of sleep and circadian disorders. Curr. Diab. Rep. 2014, 14, 507. [Google Scholar] [CrossRef] [PubMed]
- Kritharides, L.; Chow, V.; Lambert, T.J. Cardiovascular disease in patients with schizophrenia. Med. J. Aust. 2017, 206, 91–95. [Google Scholar] [CrossRef] [PubMed]
- Penninx, B.; Lange, S.M.M. Metabolic syndrome in psychiatric patients: Overview, mechanisms, and implications. Dialogues Clin. Neurosci. 2018, 20, 63–73. [Google Scholar] [CrossRef] [PubMed]
Number of Group Exercise Sessions Completed: 4–6 Months (N = 39): Pearson Correlations | Number of At-Home Exercise Sessions Completed: 4–6 Months (N = 39): Pearson Correlations | |
---|---|---|
Sleep Quality | −0.26 | 0.01 |
Sleep Latency | 0.06 | 0.16 |
Sleep Duration | −0.37 * | −0.19 |
Sleep Efficiency 1 | ---- | ---- |
Sleep Disturbance | −0.11 | 0.07 |
Need for Sleep Meds | −0.29 † | −0.15 |
Daytime Dysfunction | −0.52 *** | −0.12 |
Overall Sleep Quality | −0.44 ** | −0.03 |
PSQI Scales | F(df)/t(df) | Standardized Coefficients Beta for Individual Variable Contributions | p |
---|---|---|---|
Sleep Quality | |||
Overall Model | F(4,29) = 1.5 | 0.22 | |
Baseline Group Exercise | t(32) = 0.85 | 0.21 | 0.40 |
Baseline Ind. Exercise | t(32) = −0.84 | −0.29 | 0.41 |
Group Exercise | t(32) = −2.44 | −0.55 | 0.02 |
Ind. Exercise | t(32) = 1.42 | 0.48 | 0.17 |
Sleep Latency | |||
Overall Model | F(4,29) = 1.24 | 0.31 | |
Baseline Group Exercise | t(32) = 0.17 | 0.30 | 0.25 |
Baseline Ind. Exercise | t(32) = 0.05 | 0.02 | 0.96 |
Group Exercise | t(32) = 0.11 | 0.03 | 0.91 |
Ind. Exercise | t(32) = 0.57 | 0.20 | 0.58 |
Sleep Duration | |||
Overall Model | F(4,29) = 4.95 | 0.004 | |
Baseline Group Exercise | t(32) = 3.33 | 0.72 | 0.002 |
Baseline Ind. Exercise | t(32) = −1.31 | −0.37 | 0.20 |
Group Exercise | t(32) = −0.49 | −0.09 | 0.63 |
Ind. Exercise | t(32) = −0.20 | −0.05 | 0.85 |
Sleep Efficiency | Too few changes in ratings to analyze | ||
Sleep Disturbance | |||
Overall Model | F(4,19) = 1.15 | 0.37 | |
Baseline Group Exercise | t(22) = 0.11 | 0.03 | 0.91 |
Baseline Ind. Exercise | t(22) = 0.60 | 0.22 | 0.56 |
Group Exercise | t(22) = 1.68 | 0.47 | 0.11 |
Individual Exercise | t(22) = −1.74 | −0.72 | 0.10 |
Need for Sleep Meds | |||
Overall Model | F(4,29) = 2.56 | 0.06 | |
Baseline Group Exercise | t(32) = −2.19 | −0.52 | 0.04 |
Baseline Ind. Exercise | t(32) = 0.95 | 0.31 | 0.35 |
Group Exercise | t(32) = −1.32 | −0.28 | 0.20 |
Individual Exercise | t(32) = 0.48 | 0.15 | 0.63 |
Daytime Dysfunction | |||
Overall Model | F(4,29) = 1.41 | 0.26 | |
Baseline Group Exercise | T(32) = −1.57 | −0.40 | 0.13 |
Baseline Ind. Exercise | T(32) = 1.23 | 0.43 | 0.23 |
Group Exercise | T(32) = −1.08 | −0.24 | 0.29 |
Individual Exercise | T(32) = −0.70 | −0.24 | 0.49 |
Overall Sleep Quality | |||
Overall Model | F(4,30) = 2.32 | 0.08 | |
Baseline Group Exercise | t(33) = −0.01 | 0.00 | 0.99 |
Baseline Ind. Exercise | t(33) = 0.06 | 0.02 | 0.95 |
Group Exercise | t(33) = −2.84 | −0.57 | 0.008 |
Individual Exercise | t(33) = −1.33 | 0.39 | 0.19 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Subotnik, K.L.; McEwen, S.C.; Ventura, J.; Turner, L.R.; Sturdevant, Y.; Niess, T.L.; Casaus, L.R.; Distler, M.G.; Zito, M.F.; Hellemann, G.S.; et al. Exercise Predicts a Good Night’s Sleep: Preliminary Findings from a UCLA Study of First-Episode Schizophrenia. Behav. Sci. 2023, 13, 88. https://doi.org/10.3390/bs13020088
Subotnik KL, McEwen SC, Ventura J, Turner LR, Sturdevant Y, Niess TL, Casaus LR, Distler MG, Zito MF, Hellemann GS, et al. Exercise Predicts a Good Night’s Sleep: Preliminary Findings from a UCLA Study of First-Episode Schizophrenia. Behavioral Sciences. 2023; 13(2):88. https://doi.org/10.3390/bs13020088
Chicago/Turabian StyleSubotnik, Kenneth L., Sarah C. McEwen, Joseph Ventura, Luana Rene Turner, Yurika Sturdevant, Trudy L. Niess, Laurie R. Casaus, Margaret G. Distler, Michael F. Zito, Gerhard S. Hellemann, and et al. 2023. "Exercise Predicts a Good Night’s Sleep: Preliminary Findings from a UCLA Study of First-Episode Schizophrenia" Behavioral Sciences 13, no. 2: 88. https://doi.org/10.3390/bs13020088
APA StyleSubotnik, K. L., McEwen, S. C., Ventura, J., Turner, L. R., Sturdevant, Y., Niess, T. L., Casaus, L. R., Distler, M. G., Zito, M. F., Hellemann, G. S., Nguyen, C. D., & Nuechterlein, K. H. (2023). Exercise Predicts a Good Night’s Sleep: Preliminary Findings from a UCLA Study of First-Episode Schizophrenia. Behavioral Sciences, 13(2), 88. https://doi.org/10.3390/bs13020088