Factors Influencing Receipt and Type of Therapy Services in the NICU
Abstract
:1. Introduction
2. Methods
2.1. Recruitment and Consenting
2.2. Sample
2.3. Primary Outcome Measures
2.4. Statistics
3. Results
3.1. Service Type
3.2. Predictors of All Services—Medical, Race, and Severity Strata/GMA
3.3. Predictors of Individual Services—Severity Strata/GMA
3.4. Predictors of Individual Services—Baseline NMI
3.5. Predictors of Individual Services—Baseline TIMP
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Osterman, M.; Hamilton, B.; Martin, J.A.; Driscoll, A.K.; Valenzuela, C.P. Births: Final data for 2020. Natl. Vital Stat. Rep. 2021, 70, 1–50. [Google Scholar]
- Bérard, A.; Le Tiec, M.; De Vera, M. Study of the costs and morbidities of late-preterm birth. Arch. Dis. Child. Fetal Neonatal Ed. 2012, 97, F329–F334. [Google Scholar] [CrossRef] [PubMed]
- Jacob, J.; Lehne, M.; Mischker, A.; Klinger, N.; Zickermann, C.; Walker, J. Cost effects of preterm birth: A comparison of health care costs associated with early preterm, late preterm, and full-term birth in the first 3 years after birth. Eur. J. Health Econ. 2016, 18, 1041–1046. [Google Scholar] [CrossRef]
- Aylward, G.P. Neurodevelopmental Outcomes of Infants Born Prematurely. J. Dev. Behav. Pediatr. 2014, 35, 394–407. [Google Scholar] [CrossRef]
- Johnson, S.; Fawke, J.; Hennessy, E.; Rowell, V.; Thomas, S.; Wolke, D.; Marlow, N. Neurodevelopmental Disability Through 11 Years of Age in Children Born Before 26 Weeks of Gestation. Pediatrics 2009, 124, e249–e257. [Google Scholar] [CrossRef]
- Marlow, N.; Wolke, D.; Bracewell, M.A.; Samara, M. Neurologic and Developmental Disability at Six Years of Age after Extremely Preterm Birth. N. Engl. J. Med. 2005, 352, 9–19. [Google Scholar] [CrossRef]
- Schieve, L.A.; Tian, L.H.; Rankin, K.; Kogan, M.D.; Yeargin-Allsopp, M.; Visser, S.; Rosenberg, D.; Schieve, L.A.; Tian, L.H.; Rankin, K.; et al. Population impact of preterm birth and low birth weight on developmental disabilities in US children. Ann. Epidemiol. 2016, 26, 267–274. [Google Scholar] [CrossRef] [Green Version]
- Delobel-Ayoub, M.; Arnaud, C.; White-Koning, M.; Casper, C.; Pierrat, V.; Garel, M.; Burguet, A.; Roze, J.-C.; Matis, J.; Picaud, J.-C.; et al. Behavioral Problems and Cognitive Performance at 5 Years of Age After Very Preterm Birth: The EPIPAGE Study. Pediatrics 2009, 123, 1485–1492. [Google Scholar] [CrossRef]
- DiSalvo, D. The correlation between placental pathology and intraventricular hemorrhage in the preterm infant. The Developmental Epidemiology Network Investigators. Pediatr. Res. 1998, 43, 15–19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Linnet, K.M.; Wisborg, K.; Agerbo, E.; Secher, N.J.; Thomsen, P.H.; Henriksen, T.B. Gestational age, birth weight, and the risk of hyperkinetic disorder. Arch. Dis. Child. 2006, 91, 655–660. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McCormick, M.C.; Litt, J.S.; Smith, V.C.; Zupancic, J.A. Prematurity: An Overview and Public Health Implications. Annu. Rev. Public Health 2011, 32, 367–379. [Google Scholar] [CrossRef] [PubMed]
- Moster, D.; Lie, R.T.; Markestad, T. Long-term medical and social consequences of preterm birth. N. Engl. J. Med. 2008, 359, 262–273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rezaie, P.; Dean, A. Periventricular leukomalacia, inflammation and white matter lesions within the developing nervous system. Neuropathology 2002, 22, 106–132. [Google Scholar] [CrossRef] [PubMed]
- Saigal, S.; Doyle, L.W. An overview of mortality and sequelae of preterm birth from infancy to adulthood. Lancet 2008, 371, 261–269. [Google Scholar] [CrossRef] [PubMed]
- Nwabara, O.; Rogers, C.; Inder, T.; Pineda, R. Early Therapy Services Following Neonatal Intensive Care Unit Discharge. Phys. Occup. Ther. Pediatr. 2016, 37, 414–424. [Google Scholar] [CrossRef]
- Brown, N.C.; Doyle, L.W.; Bear, M.J.; Inder, T.E. Alterations in Neurobehavior at Term Reflect Differing Perinatal Exposures in Very Preterm Infants. Pediatrics 2006, 118, 2461–2471. [Google Scholar] [CrossRef]
- Pineda, R.G.; Tjoeng, T.H.; Vavasseur, C.; Kidokoro, H.; Neil, J.J.; Inder, T. Patterns of Altered Neurobehavior in Preterm Infants within the Neonatal Intensive Care Unit. J. Pediatr. 2013, 162, 470–476.e1. [Google Scholar] [CrossRef] [Green Version]
- Pitcher, J.B.; Schneider, L.A.; Drysdale, J.L.; Ridding, M.C.; Owens, J.A. Motor System Development of the Preterm and Low Birthweight Infant. Clin. Perinatol. 2011, 38, 605–625. [Google Scholar] [CrossRef]
- Smith, G.C.; Gutovich, J.; Smyser, C.; Pineda, R.; Newnham, C.; Tjoeng, T.H.; Vavasseur, C.; Wallendorf, M.; Neil, J.; Inder, T. Neonatal intensive care unit stress is associated with brain development in preterm infants. Ann. Neurol. 2011, 70, 541–549. [Google Scholar] [CrossRef]
- Barbosa, V.M. Teamwork in the Neonatal Intensive Care Unit. Phys. Occup. Ther. Pediatr. 2013, 33, 5–26. [Google Scholar] [CrossRef]
- Kilpatrick, S.J.; Papile, L.A.; Macones, G.A.; Watterberg, K.L. AAP Committee on Fetus and Newborn, ACOG Committee on Obstetric Practice. Guidel. Perinat. Care. 2017. Available online: https://www.acog.org/clinical-information/physician-faqs/-/media/3a22e153b67446a6b31fb051e469187c.ashx (accessed on 30 May 2023).
- Craig, J.W.; Carroll, S.; Ludwig, S.; Sturdivant, C. Occupational Therapy’s Role in the Neonatal Intensive Care Unit. Am. J. Occup. Ther. 2018, 72, 1–9. [Google Scholar]
- Sweeney, J.K.; Heriza, C.B.; Blanchard, Y. Neonatal Physical Therapy. Part I: Clinical Competencies and Neonatal Intensive Care Unit Clinical Training Models. Pediatr. Phys. Ther. 2009, 21, 296–307. [Google Scholar] [CrossRef] [PubMed]
- Ad Hoc Committee on Speech-Language Pathology Practice in the Neonatal Intensive Care Unit (NICU). Knowledge and Skills Needed by Speech-Language Pathologists Providing Services to Infants and Families in the NICU Environment. Ameri-can Speech-Language-Hearing Association. 2004. Available online: https://www.asha.org/policy/KS2004-00080/ (accessed on 10 April 2023).
- Case-Smith, J. An Efficacy Study of Occupational Therapy with High-Risk Neonates. Am. J. Occup. Ther. 1988, 42, 499–506. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dusing, S.C.; Thacker, L.R. Supporting mother-infant interaction in the NICU may enhance oral motor skills, weight gain, and feeding volume: A pilot study. Dev. Med. Child Neurol. 2016, 58, 13–14. [Google Scholar] [CrossRef] [Green Version]
- Dusing, S.C.; Tripathi, T.; Marcinowski, E.C.; Thacker, L.R.; Brown, L.F.; Hendricks-Muñoz, K.D. Supporting play exploration and early developmental intervention versus usual care to enhance development outcomes during the transition from the neonatal intensive care unit to home: A pilot randomized controlled trial. BMC Pediatr. 2018, 18, 46. [Google Scholar] [CrossRef] [Green Version]
- Madlinger-Lewis, L.; Reynolds, L.; Zarem, C.; Crapnell, T.; Inder, T.; Pineda, R. The effects of alternative positioning on preterm infants in the neonatal intensive care unit: A randomized clinical trial. Res. Dev. Disabil. 2013, 35, 490–497. [Google Scholar] [CrossRef] [Green Version]
- Monfort, K.; Case-Smith, J. The Effects of a Neonatal Positioner on Scapular Rotation. Am. J. Occup. Ther. 1997, 51, 378–384. [Google Scholar] [CrossRef] [Green Version]
- Khurana, S.; Kane, A.E.; Brown, S.E.; Tarver, T.; Dusing, S.C. Effect of neonatal therapy on the motor, cognitive, and behavioral development of infants born preterm: A systematic review. Dev. Med. Child Neurol. 2020, 62, 684–692. [Google Scholar] [CrossRef]
- Dusing, S.C.; Van Drew, C.M.; Brown, S.E. Instituting Parent Education Practices in the Neonatal Intensive Care Unit: An Administrative Case Report of Practice Evaluation and Statewide Action. Phys. Ther. 2012, 92, 967–975. [Google Scholar] [CrossRef]
- Ross, K.; Heiny, E.; Conner, S.; Spener, P.; Pineda, R. Occupational therapy, physical therapy and speech-language pathology in the neonatal intensive care unit: Patterns of therapy usage in a level IV NICU. Res. Dev. Disabil. 2017, 64, 108–117. [Google Scholar] [CrossRef] [Green Version]
- Dusing, S.C.; Burnsed, J.C.; Brown, S.E.; Harper, A.D.; Hendricks-Munoz, K.D.; Stevenson, R.D.; Thacker, L.R.; Molinini, R.M. Efficacy of Supporting Play Exploration and Early Development Intervention in the First Months of Life for Infants Born Very Preterm: 3-Arm Randomized Clinical Trial Protocol. Phys. Ther. 2020, 100, 1343–1352. [Google Scholar] [CrossRef] [PubMed]
- Campbell, S.K.; Kolobe, T.H.; Osten, E.T.; Lenke, M.; Girolami, G.L. Construct Validity of the Test of Infant Motor Performance. Phys. Ther. 1995, 75, 585–596. [Google Scholar] [CrossRef] [PubMed]
- Campbell, S.K. Test-Retest Reliability of the Test of Infant Motor Performance. Pediatr. Phys. Ther. 1999, 11, 60–66. [Google Scholar] [CrossRef]
- Campbell, S.K.; Kolobe, T.H.A. Concurrent Validity of the Test of Infant Motor Performance with the Alberta Infant Motor Scale. Pediatr. Phys. Ther. 2000, 12, 2. [Google Scholar] [CrossRef]
- Prechtl, H. Qualitative changes of spontaneous movements in fetus and preterm infant are a marker of neurological dysfunction. Early Hum. Dev. 1990, 23, 151–158. [Google Scholar] [CrossRef]
- Einspieler, C.; Marschik, P.B.; Bos, A.F.; Ferrari, F.; Cioni, G.; Prechtl, H.F. Early markers for cerebral palsy: Insights from the assessment of general movements. Futur. Neurol. 2012, 7, 709–717. [Google Scholar] [CrossRef] [Green Version]
- Noble, Y.; Boyd, R. Neonatal assessments for the preterm infant up to 4 months corrected age: A systematic review. Dev. Med. Child Neurol. 2011, 54, 129–139. [Google Scholar] [CrossRef]
- Brown, S.E.; Darring, J.D.; Miller, M.; Inamdar, K.; Salgaonkar, A.; Burnsed, J.C.; Stevenson, R.D.; Shall, M.S.; Harper, A.D.; Hendricks-Munoz, K.D.; et al. Impact of the COVID-19 Pandemic on a Clinical Trial: A Qualitative Report on Study Engagement. Pediatr. Phys. Ther. 2023, in press.
- Peyton, C.; Schreiber, M.D.; Msall, M.S. The Test of Infant Motor Performance at 3 months predicts language, cognitive, and motor outcomes in infants born preterm at 2 years of age. Dev. Med. Child Neurol. 2018, 60, 1239–1243. [Google Scholar] [CrossRef] [Green Version]
- Pineda, R.G.; Lisle, J.; Ferrara, L.; Knudsen, K.; Kumar, R.; Fernandez-Fernandez, A. Neonatal Therapy Staffing in the United States and Relationships to Neonatal Intensive Care Unit Type and Location, Level of Acuity, and Population Factors. Am. J. Perinatol. 2021, eFirst. [Google Scholar] [CrossRef]
- Craig, J.W.; Smith, C.R. Risk-adjusted/neuroprotective care services in the NICU: The elemental role of the neonatal therapist (OT, PT, SLP). J. Perinatol. 2020, 40, 549–559. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Total (n = 83) | Usual Care (n = 27) | SPEEDI—Early (n = 27) | SPEEDI—Late (n = 29) | |
---|---|---|---|---|
High-Risk Strata | 65% (54) | 63% (17) | 67% (18) | 66% (19) |
Low-Risk Strata | 35% (29) | 37% (10) | 33% (9) | 34% (10) |
Gender (Male) | 46% (38) | 52% (14) | 44% (12) | 41% (12) |
Race Asian Black/AA White Multiple Unknown/Not Reported | 1% (1) 31% (26) 52% (43) 14% (12) 1% (1) | 4% (1) 33% (9) 44% (12) 19% (5) 0% (0) | 0% (0) 26% (7) 63% (17) 11% (3) 0% (0) | 0% (0) 34% (10) 48% (14) 14% (4) 3% (1) |
Ethnicity Hispanic/Latino Not Hispanic/Latino Not Reported | 4% (3) 93% (77) 4% (3) | 4% (1) 93% (25) 4% (1) | 4% (1) 93% (25) 4% (1) | 3% (1) 93% (27) 3% (1) |
Gestational Age—Birth (Mean (Std)) | 26.49 (1.99) | 25.56 (1.42) | 26.89 (2.03) | 26.07 (2.36) |
NMI 3 4 5 | 18% (15) 10% (8) 72% (60) | 22% (6) 15% (4) 63% (17) | 19% (5) 4% (1) 77% (21) | 14% (4) 10% (3) 76% (22) |
PSI (Mean (Std)) 1 | 64.05 (15.96) | 63.17 (14.61) | 62.39 (16.56) | 66.24 (17.04) |
OT Visits | PT Visits | ST Visits | All Services | |||||
---|---|---|---|---|---|---|---|---|
N | Mean (Std) | n | Mean (Std) | n | Mean (Std) | n | Mean (Std) | |
Week 1 Post Enrollment | 73 * | 1.16 (0.99) | 73 | 1.27 (0.96) | 71 | 1.93 (1.28) | 73 | 4.37 (2.19) |
Week 2 Post Enrollment | 51 | 1.37 (0.94) | 51 | 1.45 (0.97) | 51 | 2.75 (1.13) | 51 | 5.57 (1.66) |
Week 3 Post Enrollment | 38 | 1.76 (1) | 38 | 1.68 (0.9) | 38 | 2.58 (1.24) | 38 | 6.03 (1.99) |
Week 4 Post Enrollment | 28 | 1.96 (1.07) | 28 | 1.71 (1.12) | 28 | 2.29 (1.3) | 28 | 5.96 (1.75) |
Week 5 Post Enrollment | 18 | 2.00 (0.77) | 18 | 1.67 (0.84) | 18 | 2.17 (0.92) | 18 | 5.83 (1.54) |
Week 6 Post Enrollment | 13 | 2.00 (1.08) | 13 | 1.62 (1.04) | 13 | 1.77 (1.17) | 13 | 5.38 (1.8) |
Week 7 Post Enrollment | 11 | 1.91 (0.94) | 11 | 1.45 (0.69) | 11 | 1.91 (1.38) | 11 | 5.27 (2.69) |
Week 8 Post Enrollment | 9 | 1.89 (1.45) | 9 | 0.89 (1.05) | 9 | 1.00 (0.5) | 9 | 3.78 (2.33) |
Week 9 Post Enrollment | 4 | 0.50 (0.58) | 4 | 1.50 (0.58) | 4 | 1.75 (1.26) | 4 | 3.75 (2.06) |
OT Visits | PT Visits | ST Visits | ||||
---|---|---|---|---|---|---|
n | Mean (Std) | n | Mean (Std) | n | Mean (Std) | |
3 Weeks Prior to Discharge | 38 | 1.55 (1.01) | 38 | 1.47 (0.95) | 38 | 2.37 (1.17) |
2 Weeks Prior to Discharge | 51 | 1.63 (1.17) | 51 | 1.55 (1.08) | 51 | 2.33 (1.34) |
1 Week Prior to Discharge | 73 | 1.53 (1.11) | 73 | 1.47 (0.9) | 73 | 2.22 (1.2) |
Effect | Numerator d.f. | Denominator d.f. | F-Statistic | p-Value | Adjusted Effect Size Cohen’s f (95% CI) |
---|---|---|---|---|---|
Service Type | 2 | 726 | 29.41 | <0.0001 ** | 0.279 (0.219, 0.344) |
Week | 1 | 726 | 0.33 | 0.5673 | 0 (0, 0.081) |
Service Type*Week | 2 | 726 | 7.79 | 0.0005 ** | 0.136 (0.078, 0.203) |
GMA | 1 | 726 | 4.88 | 0.0276 | 0.073 (0.02, 0.143) |
Baseline NMI Score | 1 | 726 | 2.09 | 0.1491 | 0.039 (0, 0.115) |
Caucasian | 1 | 726 | 5.21 | 0.0228 * | 0.076 (0.023, 0.146) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Butera, C.D.; Brown, S.E.; Burnsed, J.; Darring, J.; Harper, A.D.; Hendricks-Muñoz, K.D.; Hyde, M.; Kane, A.E.; Miller, M.R.; Stevenson, R.D.; et al. Factors Influencing Receipt and Type of Therapy Services in the NICU. Behav. Sci. 2023, 13, 481. https://doi.org/10.3390/bs13060481
Butera CD, Brown SE, Burnsed J, Darring J, Harper AD, Hendricks-Muñoz KD, Hyde M, Kane AE, Miller MR, Stevenson RD, et al. Factors Influencing Receipt and Type of Therapy Services in the NICU. Behavioral Sciences. 2023; 13(6):481. https://doi.org/10.3390/bs13060481
Chicago/Turabian StyleButera, Christiana D., Shaaron E. Brown, Jennifer Burnsed, Jodi Darring, Amy D. Harper, Karen D. Hendricks-Muñoz, Megan Hyde, Audrey E. Kane, Meagan R. Miller, Richard D. Stevenson, and et al. 2023. "Factors Influencing Receipt and Type of Therapy Services in the NICU" Behavioral Sciences 13, no. 6: 481. https://doi.org/10.3390/bs13060481
APA StyleButera, C. D., Brown, S. E., Burnsed, J., Darring, J., Harper, A. D., Hendricks-Muñoz, K. D., Hyde, M., Kane, A. E., Miller, M. R., Stevenson, R. D., Spence, C. M., Thacker, L. R., & Dusing, S. C. (2023). Factors Influencing Receipt and Type of Therapy Services in the NICU. Behavioral Sciences, 13(6), 481. https://doi.org/10.3390/bs13060481