Effects of the Interaction Between Time-on-Task and Task Load on Response Lapses
Abstract
:1. Introduction
2. Methods
2.1. Participants
2.2. Measures
2.2.1. Objective Measures
Behavioral Response Test
Functional Near-Infrared Spectroscopy
2.2.2. Subjective Measures
2.3. Design and Procedure
2.4. Data Analysis
2.4.1. Data Preprocessing
U–K Tests Data
fNIRS Data
Subjective Measures Data
2.4.2. Statistical Analysis
3. Results
3.1. Uchida–Kraepelin Performance Test
3.2. Functional Near-Infrared Spectroscopy
3.3. Subjective Performance
3.4. Correlation Between Subjective and Objective Measures
4. Discussion
4.1. Effect of TOT and Task Load on Behavioral Performance
4.2. Effect of TOT and Task Load on Functional Connectivity of Cortical Brain Networks
4.3. Correlation of Subjective Measures with Objective Results
4.4. Limitations and Future Research
5. Conclusions
6. Key Points
- Prolonged work hours combined with high task load levels significantly increase response lapses and fatigue levels in participants.
- High task load may reduce brain connectivity between the prefrontal and occipital cortices, potentially affecting task performance.
- Findings suggest that cognitive resource regulation becomes challenging after 90 min of continuous work, requiring targeted interventions.
- These insights can guide fatigue management strategies to improve safety in industries like aviation, transportation, and healthcare.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zaky, M.H.; Shoorangiz, R.; Poudel, G.R.; Yang, L.; Jones, R.D. Neural correlates of attention lapses during continuous tasks. In Proceedings of the 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Montreal, QC, Canada, 20–24 July 2020; pp. 3196–3199. [Google Scholar] [CrossRef]
- Stojanoski, B.; Benoit, A.; Van Den Berg, N.; Ray, L.B.; Owen, A.M.; Shahidi Zandi, A.; Quddus, A.; Comeau, F.J.E.; Fogel, S.M. Sustained vigilance is negatively affected by mild and acute sleep loss reflected by reduced capacity for decision making, motor preparation, and execution. Sleep 2019, 42, zsy200. [Google Scholar] [CrossRef] [PubMed]
- Wiggins, E.; Mottarella, M.; Good, K.; Eggleston, S.; Stevens, C. 24-h sleep deprivation impairs early attentional modulation of neural processing: An event-related brain potential study. Neurosci. Lett. 2018, 677, 32–36. [Google Scholar] [CrossRef] [PubMed]
- Bartolomeo, P. The attention systems of the human brain. In Attention Disorders After Right Brain Damage; Springer: London, UK, 2014; Available online: https://link.springer.com/chapter/10.1007/978-1-4471-5649-9_1 (accessed on 1 August 2024).
- Posner, M.I.; Petersen, S.E. The attention system of the human brain. Annu. Rev. Neurosci. 1990, 13, 25–42. [Google Scholar] [CrossRef]
- Helton, W.S.; Head, J.; Russell, P.N. Reliable- and unreliable-warning cues in the sustained attention to response task. Exp. Brain Res. 2011, 209, 401–407. [Google Scholar] [CrossRef] [PubMed]
- Helton, W.S.; Warm, J.S. Signal salience and the mindlessness theory of vigilance. Acta. Psychol. 2008, 129, 18–25. [Google Scholar] [CrossRef]
- Thomson, D.R.; Besner, D.; Smilek, D. A resource-control account of sustained attention: Evidence from mind-wandering and vigilance paradigms. Perspect. Psychol. Sci. 2015, 10, 82–96. [Google Scholar] [CrossRef] [PubMed]
- Buckley, R.J.; Helton, W.S.; Innes, C.R.H.; Dalrymple-Alford, J.C.; Jones, R.D. Attention lapses and behavioural microsleeps during tracking, psychomotor vigilance, and dual tasks. Conscious. Cogn. 2016, 45, 174–183. [Google Scholar] [CrossRef]
- Poudel, G.R. Functional Magnetic Resonance Imaging of Lapses of Responsiveness During Visuomotor Tracking. Ph.D. Thesis, University of Otago, Christchurch, New Zeland, 2010. [Google Scholar]
- Buckley, R.J. Sustained Attention Lapses and Behavioural Microsleeps During Tracking, Psychomotor Vigilance, and Dual Tasks. Master’s Thesis, University of Canterbury, Christchurch, New Zealand, 2013. [Google Scholar]
- Karweit, N.; Slavin, R.E. Time-on-task: Issues of timing, sampling, and definition. J. Educ. Psychol. 1982, 74, 844–851. [Google Scholar] [CrossRef]
- O’Donnell, R.D.; Eggemeier, F.T. Workload assessment methodology. In Handbook of Human Perception and Performance; Boff, K., Kaufman, L., Thomas, J.P., Eds.; Wiley: New York, NY, USA, 1986; Volume 2. [Google Scholar]
- May, J.F.; Baldwin, C.L. Driver fatigue: The importance of identifying causal factors of fatigue when considering detection and countermeasure technologies. Transp. Res. Traffic Psychol. 2009, 12, 218–224. [Google Scholar] [CrossRef]
- Li, J.; Zhou, Y.; Zhang, X.; Fan, T. Fatigue during long-haul flights of different crew compositions under exemption from layover and flight time during COVID-19. Int. J. Environ. Res. Public Health 2022, 19, 13567. [Google Scholar] [CrossRef]
- Causse, M.; Chua, Z.; Peysakhovich, V.; Del Campo, N.; Matton, N. Mental workload and neural efficiency quantified in the prefrontal cortex using fNIRS. Sci. Rep. 2017, 7, 5222. [Google Scholar] [CrossRef] [PubMed]
- Roscoe, A.H. Stress and workload in pilots. Aviat. Space Environ. Med. 1978, 49, 630–633. [Google Scholar] [PubMed]
- Boehm, U.; Matzke, D.; Gretton, M.; Castro, S.; Cooper, J.; Skinner, M.; Strayer, D.; Heathcote, A. Real-time prediction of short-timescale fluctuations in cognitive workload. Cogn. Res. Princ. Implic. 2021, 6, 30. [Google Scholar] [CrossRef]
- Hamann, A.; Carstengerdes, N. Investigating mental workload-induced changes in cortical oxygenation and frontal theta activity during simulated flights. Sci. Rep. 2022, 12, 6449. [Google Scholar] [CrossRef]
- Li, W.; Li, R.; Xie, X.; Chang, Y. Evaluating mental workload during multitasking in simulated flight. Brain Behav. 2022, 12, e2489. [Google Scholar] [CrossRef]
- Russeng, S.S.; Saleh, L.M.; Mallongi, A.; Hoy, C. The relationship among working period, work shift, and workload to work fatigue in air traffic controllers at Sultan Hasanuddin Airport. Gac. Sanit. 2021, 35 (Suppl. S2), S404–S407. [Google Scholar] [CrossRef]
- Park, N.; Lee, S.; Park, J. Full Bayes before and after analysis to evaluate the freight vehicle rest break policy changes. In Proceedings of the Transportation research board annual meeting, Washington, DC, USA, 7–11 January 2024. [Google Scholar]
- Rosa, D.; Terzoni, S.; Dellafiore, F.; Destrebecq, A. Systematic review of shift work and nurses’ health. Occup. Med. 2019, 69, 237–243. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Zhou, Y.; Zhang, X.; Wang, Q.; Zhang, L. Effects of total sleep deprivation on execution lapses during vigilance tasks. Chronobiol. Int. 2022, 39, 1624–1639. [Google Scholar] [CrossRef]
- Li, J.; Zhang, X.; Zhou, Y. The sustained attention characteristics of flight crews on exempt and non-exempt flights. Chronobiol. Int. 2023, 40, 926–937. [Google Scholar] [CrossRef]
- Guastello, S.J.; Malon, M.; Timm, P.; Weinberger, K.; Gorin, H.; Fabisch, M.; Poston, K. Catastrophe models for cognitive workload and fatigue in a vigilance dual task. Hum. Factors 2014, 56, 737–751. [Google Scholar] [CrossRef]
- Dinges, D.F.; Powell, J.W. Microcomputer analyses of performance on a portable, simple visual RT task during sustained operations. Behav. Res. Methods Instrum. Comput. 1985, 17, 652–655. [Google Scholar] [CrossRef]
- Mizuki, Y.; Tanaka, M.; Isozaki, H.; Nishijima, H.; Inanaga, K. Periodic appearance of theta rhythm in the frontal midline area during performance of a mental task. Electroencephalogr. Clin. Neurophysiol. 1980, 49, 345–351. [Google Scholar] [CrossRef] [PubMed]
- Mello, M.T.; Guerreiro, R.; Santarelli, R.; Brant, V.M.; Barreto, A.T.; Silva, F.R.; Silva, A. Comparative analysis of methods of evaluating human fatigue. Sleep Med. 2024, 115, 33. [Google Scholar] [CrossRef]
- Scholkmann, F.; Kleiser, S.; Metz, A.J.; Zimmermann, R.; Mata Pavia, J.; Wolf, U.; Wolf, M. A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology. Neuroimage 2014, 85, 6–27. [Google Scholar] [CrossRef]
- Gateau, T.; Durantin, G.; Lancelot, F.; Scannella, S.; Dehais, F. Real-time state estimation in a flight simulator using fNIRS. PLoS ONE 2015, 10, e0121279. [Google Scholar] [CrossRef] [PubMed]
- Mouratille, D.; Hidalgo-Muñoz, A.R.; Rouillard, Y.; Matton, N.; El-Yagoubi, R.; Causse, M. Flight simulator and fNIRS: Study of relation between acute stress and cognitive workload. In Proceedings of the 1st International Conference on Cognitive Aircraft Systems. ICCAS, Toulouse, France, 16–17 May 2020. [Google Scholar]
- Åkerstedt, T.; Gillberg, M. Subjective and objective sleepiness in the active individual. Int. J. Neurosci. 1990, 52, 29–37. [Google Scholar] [CrossRef]
- Martin, V.P.; Lopez, R.; Dauvilliers, Y.; Rouas, J.-L.; Philip, P.; Micoulaud-Franchi, J.-A. Sleepiness in adults: An umbrella review of a complex construct. Sleep Med. Rev. 2023, 67, 101718. [Google Scholar] [CrossRef]
- Thayer, R.E. Activation-deactivation Adjective Check List: Current overview and structural analysis. Psychol. Rep. 1986, 58, 607–614. [Google Scholar] [CrossRef]
- Galy, E.; Paxion, J.; Berthelon, C. Measuring mental workload with the NASA-TLX needs to examine each dimension rather than relying on the global score: An example with driving. Ergonomics 2018, 61, 517–527. [Google Scholar] [CrossRef]
- Gross, J.J.; Levenson, R.W. Emotional suppression: Physiology, self-report, and expressive behavior. J. Pers. Soc. Psychol. 1993, 64, 970–986. [Google Scholar] [CrossRef]
- Sugimoto, K.; Kanai, A.; Shoji, N. The effectiveness of the Uchida-Kraepelin test for psychological stress: An analysis of plasma and salivary stress substances. Biopsychosoc Med. 2009, 3, 5. [Google Scholar] [CrossRef] [PubMed]
- Kashiwagi, S.; Yamada, K. Evaluation of the Uchida-Kräpelin psychodiagnostic test based on the Five-Factor Model of personality traits. Shinrigaku Kenkyu 1995, 66, 24–32. [Google Scholar] [CrossRef] [PubMed]
- Andersson, P.; Ragni, F.; Lingnau, A. Visual imagery during real-time fMRI neurofeedback from occipital and superior parietal cortex. Neuroimage 2019, 200, 332–343. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Weidner, R.; Zeng, H.; Fink, G.R.; Müller, H.J.; Conci, M. Feedback from lateral occipital cortex to V1/V2 triggers object completion: Evidence from functional magnetic resonance imaging and dynamic causal modeling. Hum. Brain Mapp. 2021, 42, 5581–5594. [Google Scholar] [CrossRef]
- Miller, E.K. The prefrontal cortex and cognitive control. Nat. Rev. Neurosci. 2000, 1, 59–65. [Google Scholar] [CrossRef]
- Stuss, D.T. Functions of the frontal lobes: Relation to executive functions. J. Int. Neuropsychol. Soc. 2011, 17, 759–765. [Google Scholar] [CrossRef]
- Hoddes, E.; Zarcone, V.; Smythe, H.; Phillips, R.; Dement, W.C. Quantification of sleepiness: A new approach. Psychophysiology 1973, 10, 431–436. [Google Scholar] [CrossRef]
- Hart, S.G.; Staveland, L.E. Development of NASA-TLX (task load index): Results of empirical and theoretical research. Adv. Psychol. 1988, 52, 139–183. [Google Scholar] [CrossRef]
- Roenneberg, T.; Foster, R.G. Twilight times: Light and the circadian system. Photochem. Photobiol. 1997, 66, 549–561. [Google Scholar] [CrossRef]
- Tosini, G.; Pozdeyev, N.; Sakamoto, K.; Iuvone, P.M. The circadian clock system in the mammalian retina. BioEssays 2008, 30, 624–633. [Google Scholar] [CrossRef]
- Kumar, P.T.K. Deciphering robust reactor kinetic data using mutual information. Ann. Nucl. Energy 2007, 34, 201–206. [Google Scholar] [CrossRef]
- Basner, M.; Dinges, D.F. Maximizing sensitivity of the Psychomotor Vigilance Test (PVT) to sleep loss. Sleep 2011, 34, 581–591. [Google Scholar] [CrossRef] [PubMed]
- Bu, L.; Li, J.; Li, F.; Liu, H.; Li, Z. Wavelet coherence analysis of cerebral oxygenation signals measured by near-infrared spectroscopy in sailors: An exploratory, experimental study. BMJ Open 2016, 6, e013357. [Google Scholar] [CrossRef] [PubMed]
- Huppert, T.J.; Diamond, S.G.; Franceschini, M.A.; Boas, D.A. HomER: A review of time-series analysis methods for near-infrared spectroscopy of the brain. Behav. Sci. 2009, 48, D280–D298. [Google Scholar] [CrossRef] [PubMed]
- Obrig, H.; Villringer, A. Beyond the visible—Imaging the human brain with light. Behav. Sci. 2003, 23, 1–18. [Google Scholar]
- Bond, C.F.; Richardson, K. Seeing the FisherZ-transformation. Psychometrika 2004, 69, 291–303. [Google Scholar] [CrossRef]
- Endo, K.; Yamasaki, S.; Ando, S.; Kikusui, T.; Mogi, K.; Nagasawa, M.; Kamimura, I.; Ishihara, J.; Nakanishi, M.; Usami, S.; et al. Dog and cat ownership predicts adolescents’ mental well-being: A population-based longitudinal study. Int. J. Environ. Res. Public Health 2020, 17, 884. [Google Scholar] [CrossRef]
- Warm, J.S.; Dember, W.N. Tests of Vigilance Taxonomy. In Viewing Psychology as a Whole: The Integrative Science of William N. Dember; Hoffman, R.R., Sherrick, M.F., Warm, J.S., Eds.; American Psychological Association: Worcester, MA, USA, 1998; pp. 87–112. [Google Scholar]
- Gimeno, P.T.; Cerezuela, G.P.; Montanes, M.C. On the concept and measurement of driver drowsiness, fatigue and inattention: Implications for countermeasures. Int. J. Veh. Des. 2006, 42, 67–86. [Google Scholar] [CrossRef]
- Reteig, L.C.; van den Brink, R.L.; Prinssen, S.; Cohen, M.X.; Slagter, H.A. Sustaining attention for a prolonged period of time increases temporal variability in cortical responses. Cortex 2019, 117, 16–32. [Google Scholar] [CrossRef]
- Dismukes, R.K.; Goldsmith, T.E.; Kochan, J.A. Effects of Acute Stress on Aircrew Performance: Literature Review and Analysis of Operational Aspects (No. NASA/TM-2015-218930). 2015. Available online: https://humansystems.arc.nasa.gov/flightcognition/Publications/NASA_TM_2015_218930-2.pdf (accessed on 1 August 2024).
- Stanton, N.A.; Plant, K.L.; Revell, K.M.A.; Griffin, T.G.C.; Moffat, S.; Stanton, M. Distributed cognition in aviation operations: A gate-to-gate study with implications for distributed crewing. Ergonomics 2019, 62, 138–155. [Google Scholar] [CrossRef]
- Civil Aviation Regulations of China Part 93—Rules for Air Traffic Management; Civil Aviation Administration of China: Beijing, China, 2017.
- Tran, Y.; Craig, A.; Craig, R.; Chai, R.; Nguyen, H. The influence of mental fatigue on brain activity: Evidence from a systematic review with meta-analyses. Psychophysiology 2020, 57, e13554. [Google Scholar] [CrossRef] [PubMed]
- Kamzanova, A.; Matthews, G.; Kustubayeva, A. EEG coherence metrics for vigilance: Sensitivity to workload, time-on-task, and individual differences. Appl. Psychophysiol. Biofeedback 2020, 45, 183–194. [Google Scholar] [CrossRef] [PubMed]
- Gevins, A.; Smith, M.E. Neurophysiological measures of working memory and individual differences in cognitive ability and cognitive style. Cereb. Cortex 2000, 10, 829–839. [Google Scholar] [CrossRef] [PubMed]
- Klimesch, W. EEG alpha and theta oscillations reflect cognitive and memory performance: A review and analysis. Brain Res. Rev. 1999, 29, 169–195. [Google Scholar] [CrossRef]
- Brouwer, A.-M.; Hogervorst, M.A.; van Erp, J.B.F.; Heffelaar, T.; Zimmerman, P.H.; Oostenveld, R. Estimating workload using EEG spectral power and ERPs in the n-back task. J. Neural Eng. 2012, 9, 045008. [Google Scholar] [CrossRef] [PubMed]
- Rhéaume, A.; Mullen, J. The impact of long work hours and shift work on cognitive errors in nurses. J. Nurs. Manag. 2018, 26, 26–32. [Google Scholar] [CrossRef]
- Waongenngarm, P.; Areerak, K.; Janwantanakul, P. The effects of breaks on low back pain, discomfort, and work productivity in office workers: A systematic review of randomized and non-randomized controlled trials. Appl. Ergon. 2018, 68, 230–239. [Google Scholar] [CrossRef]
- Sallinen, M.; Pylkkönen, M.; Puttonen, S.; Sihvola, M.; Åkerstedt, T. Are long-haul truck drivers unusually alert? A comparison with long-haul airline pilots. Accid. Anal. Prev. 2020, 137, 105442. [Google Scholar] [CrossRef]
- Bisbey, T.M.; Kilcullen, M.P.; Thomas, E.J.; Ottosen, M.J.; Tsao, K.; Salas, E. Safety culture: An integration of existing models and a framework for understanding its development. Hum. Factors 2021, 63, 88–110. [Google Scholar] [CrossRef]
- Weenink, J.-W.; Wallenburg, I.; Hartman, L.; van Baarle, E.; Leistikow, I.; Widdershoven, G.; Bal, R. Role of the regulator in enabling a just culture: A qualitative study in mental health and hospital care. BMJ Open 2022, 12. [Google Scholar] [CrossRef]
- Lim, J.; Dinges, D.F. Sleep deprivation and vigilant attention. Ann. N. Y. Acad. Sci. 2008, 1129, 305–322. [Google Scholar] [CrossRef]
- Rubio, S.; Díaz, E.; Martín, J.; Puente, J.M. Evaluation of subjective mental workload: A comparison of SWAT, NASA-TLX, and workload profile methods. Appl. Psychol. 2004, 53, 61–86. [Google Scholar] [CrossRef]
- Uchitel, J.; Vidal-Rosas, E.E.; Cooper, R.J.; Zhao, H. Wearable, integrated EEG–fNIRS technologies: A review. Sensors 2021, 21, 6106. [Google Scholar] [CrossRef] [PubMed]
Lapses Type | F(df1, df2) | Greenhouse–Geisser | η2 | |
---|---|---|---|---|
Task load | Error rate | 3.767 (1.0, 19.0) | 0.067 | 0.165 |
Delayed response rate | 1.334 (1.0, 19.0) | 0.57 | 0.017 | |
TN/10 min | 0.348 (1.0, 19.0) | 0.562 | 0.016 | |
Time-on-task | Error rate | 3.084 (1.1, 21.1) | 0.09 | 0.14 |
Delayed response rate | 1.814 (2.9, 54.6) | 0.487 | 0.041 | |
TN/10 min | 1.532 (2.9, 45.6) | 0.239 | 0.561 | |
Task load × Time-on-task | Error rate | 2.825 (1.2, 22.2) | 0.102 | 0.129 |
Delayed response rate | 1.985 (2.6, 49.1) | 0.136 | 0.095 | |
TN/10 min | 5.498 * (2.1, 37.3) | 0.004 | 0.821 |
Brain Regions | F(df1, df2) | Greenhouse–Geisser | η2 | |
---|---|---|---|---|
Task load | Left prefrontal | 0.063 (1.0, 17.0) | 0.803 | 0.001 |
Right prefrontal | 8.895 ** (1.0, 14.5) | 0.004 | 0.114 | |
Occipital | 0.041 (1.3, 16.4) | 0.840 | 0.001 | |
Time-on-task | Left prefrontal | 0.746 (2.9, 24.3) | 0.553 | 0.011 |
Right prefrontal | 2.793 (1.5, 29.2) | 0.056 | 0.039 | |
Occipital | 15.792 *** (2.5, 32.1) | 0.000 | 0.186 | |
Task load × Time-on-task | Left prefrontal | 0.391 (3.2, 34.2) | 0.783 | 0.006 |
Right prefrontal | 1.353 (2.9, 38.5) | 0.260 | 0.019 | |
Occipital | 0.289 (2.9, 43.9) | 0.593 | 0.004 |
Brain Regions | F(df1, df2) | Greenhouse–Geisser | η2 | |
---|---|---|---|---|
Task load | Left-right prefrontal | 14.533 *** (1.0, 12.3) | 0.000 | 0.040 |
Right prefrontal-occipital | 12.937 *** (1.0, 11.8) | 0.000 | 0.036 | |
Left-right prefrontal-occipital | 0.337 (1.0, 16.5) | 0.562 | 0.001 | |
Time-on-task | Left-right prefrontal | 47.208 *** (2.8, 29.4) | 0.000 | 0.119 |
Right prefrontal-occipital | 103.475 *** (2.8, 24.6) | 0.000 | 0.229 | |
Left-right prefrontal-occipital | 56.694 *** (2.9, 26.2) | 0.000 | 0.396 | |
Task load × Time-on-task | Left-right prefrontal | 17.218 *** (3.1, 39.2) | 0.000 | 0.047 |
Right prefrontal-occipital | 4.254 ** (3.6, 32.8) | 0.003 | 0.012 | |
Left-right prefrontal-occipital | 2.665 * (3.4, 43.2) | 0.032 | 0.030 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Zhou, Y.; Hao, T. Effects of the Interaction Between Time-on-Task and Task Load on Response Lapses. Behav. Sci. 2024, 14, 1086. https://doi.org/10.3390/bs14111086
Li J, Zhou Y, Hao T. Effects of the Interaction Between Time-on-Task and Task Load on Response Lapses. Behavioral Sciences. 2024; 14(11):1086. https://doi.org/10.3390/bs14111086
Chicago/Turabian StyleLi, Jingqiang, Yanru Zhou, and Tianci Hao. 2024. "Effects of the Interaction Between Time-on-Task and Task Load on Response Lapses" Behavioral Sciences 14, no. 11: 1086. https://doi.org/10.3390/bs14111086
APA StyleLi, J., Zhou, Y., & Hao, T. (2024). Effects of the Interaction Between Time-on-Task and Task Load on Response Lapses. Behavioral Sciences, 14(11), 1086. https://doi.org/10.3390/bs14111086