A Review of Control Charts and Exploring Their Utility for Regional Environmental Monitoring Programs
Abstract
:1. Introduction
2. Control Charts and Environmental Chemistry Datasets
2.1. Univariate Control Charts
2.1.1. Control Charts with Raw Concentration Data
2.1.2. Residual Control Charts
2.2. Multivariate Control Charts
Examining PM2.5 at Three Stations Using Multivariate Control Charts
3. Multivariate Control Charts, High Dimensionality, and Diagnostics: Industrial Production and Performance Data for the Horizon Mine
4. Control Charts and Biological Monitoring Data
Bird Communities in the Ells River Basin
5. Discussion
Supplementary Materials
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shewart, W.A. Economic Control of Quality of Manufactured Product; Van Nostrand Company, Inc.: New York, NY, USA, 1931. [Google Scholar]
- Montgomery, D.C. Introduction to Statistical Quality Control; John Wiley & Sons: Hoboken, NJ, USA, 2020; ISBN 1-119-72309-4. [Google Scholar]
- Page, E.S. Continuous Inspection Schemes. Biometrika 1954, 41, 100. [Google Scholar] [CrossRef]
- Hunter, J.S. The Exponentially Weighted Moving Average. J. Qual. Technol. 1986, 18, 203–210. [Google Scholar] [CrossRef]
- Crowder, S.V. Design of Exponentially Weighted Moving Average Schemes. J. Qual. Technol. 1989, 21, 155–162. [Google Scholar] [CrossRef]
- Lucas, J.M.; Saccucci, M.S. Exponentially Weighted Moving Average Control Schemes: Properties and Enhancements. Technometrics 1990, 32, 1–12. [Google Scholar] [CrossRef]
- Roberts, S.W. Control Chart Tests Based on Geometric Moving Averages. Technometrics 2000, 42, 97–101. [Google Scholar] [CrossRef]
- Caulcutt, R. Control Charts in Practice. Significance 2004, 1, 81–84. [Google Scholar] [CrossRef]
- Woodall, W.H.; Faltin, F.W. Rethinking Control Chart Design and Evaluation. Qual. Eng. 2019, 31, 596–605. [Google Scholar] [CrossRef]
- Greig, L.A.; Duinker, P.N. A Proposal for Further Strengthening Science in Environmental Impact Assessment in Canada. Impact Assess. Proj. Apprais. 2011, 29, 159–165. [Google Scholar] [CrossRef]
- Russell, E.W.B. Discovery of the Subtle. In Humans as Components of Ecosystems; McDonnell, M.J., Pickett, S.T.A., Eds.; Springer: New York, NY, USA, 1993; pp. 81–90. ISBN 978-0-387-98243-4. [Google Scholar]
- Yoccoz, N.G.; Nichols, J.D.; Boulinier, T. Monitoring of Biological Diversity in Space and Time. Trends Ecol. Evol. 2001, 16, 446–453. [Google Scholar] [CrossRef]
- Burgman, M.; Lowell, K.; Woodgate, P.; Jones, S.; Richards, G.; Addison, P. An Endpoint Hierarchy and Process Control Charts for Ecological Monitoring. In Biodiversity Monitoring in Australia; CSIRO: Clayton, Australia, 2012; pp. 71–78. [Google Scholar]
- Roberts, D.R.; Hazewinkel, R.O.; Arciszewski, T.J.; Beausoleil, D.; Davidson, C.J.; Horb, E.C.; Sayanda, D.; Wentworth, G.R.; Wyatt, F.; Dubé, M.G. An Integrated Knowledge Synthesis of Regional Ambient Monitoring in Canada’s Oil Sands. Integr. Environ. Assess. Manag. 2022, 18, 428–441. [Google Scholar] [CrossRef]
- Roberts, D.R.; Bayne, E.M.; Beausoleil, D.; Dennett, J.; Fisher, J.T.; Hazewinkel, R.O.; Sayanda, D.; Wyatt, F.; Dubé, M.G. A Synthetic Review of Terrestrial Biological Research from the Alberta Oil Sands Region: 10 Years of Published Literature. Integr. Environ. Assess. Manag. 2022, 18, 388–406. [Google Scholar] [CrossRef]
- Horb, E.C.; Wentworth, G.R.; Makar, P.A.; Liggio, J.; Hayden, K.; Boutzis, E.I.; Beausoleil, D.L.; Hazewinkel, R.O.; Mahaffey, A.C.; Sayanda, D.; et al. A Decadal Synthesis of Atmospheric Emissions, Ambient Air Quality, and Deposition in the Oil Sands Region. Integr. Environ. Assess. Manag. 2022, 18, 333–360. [Google Scholar] [CrossRef] [PubMed]
- Arciszewski, T.J.; Hazewinkel, R.R.O.; Dubé, M.G. A Critical Review of the Ecological Status of Lakes and Rivers from Canada’s Oil Sands Region. Integr. Environ. Assess. Manag. 2022, 18, 361–387. [Google Scholar] [CrossRef] [PubMed]
- Quinn, G.P.; Keough, M.J. Experimental Design and Data Analysis for Biologists; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2002; ISBN 978-0-521-81128-6. [Google Scholar]
- Manly, B.F.J. CUSUM Environmental Monitoring in Time and Space. Environ. Ecol. Stat. 2003, 10, 231–247. [Google Scholar] [CrossRef]
- Elevli, S.; Uzgören, N.; Bingöl, D.; Elevli, B. Drinking Water Quality Control: Control Charts for Turbidity and PH. J. Water Sanit. Hyg. Dev. 2016, 6, 511–518. [Google Scholar] [CrossRef]
- Schneider, H.; Hui, Y.; Pruett, J.M. Control Charts for Environmental Data. In Frontiers in Statistical Quality Control 4; Lenz, H.-J., Wetherill, G.B., Wilrich, P.-T., Eds.; Physica-Verlag HD: Heidelberg, Germany, 1992; pp. 216–226. ISBN 978-3-7908-0642-7. [Google Scholar]
- Aykroyd, R.G.; Leiva, V.; Ruggeri, F. Recent Developments of Control Charts, Identification of Big Data Sources and Future Trends of Current Research. Technol. Forecast. Soc. Chang. 2019, 144, 221–232. [Google Scholar] [CrossRef]
- Aslam, M.; Bantan, R.A.R.; Khan, N. Design of a Control Chart for Gamma Distributed Variables Under the Indeterminate Environment. IEEE Access 2019, 7, 8858–8864. [Google Scholar] [CrossRef]
- de Araujo Lima-Filho, L.M.; Mariano Bayer, F. Kumaraswamy Control Chart for Monitoring Double Bounded Environmental Data. Commun. Stat.—Simul. Comput. 2021, 50, 2513–2528. [Google Scholar] [CrossRef]
- Bayer, F.M.; Tondolo, C.M.; Müller, F.M. Beta Regression Control Chart for Monitoring Fractions and Proportions. Comput. Ind. Eng. 2018, 119, 416–426. [Google Scholar] [CrossRef]
- Bersimis, S.; Psarakis, S.; Panaretos, J. Multivariate Statistical Process Control Charts: An Overview. Qual. Reliab. Engng. Int. 2007, 23, 517–543. [Google Scholar] [CrossRef]
- Qiu, P.; Li, W.; Li, J. A New Process Control Chart for Monitoring Short-Range Serially Correlated Data. Technometrics 2020, 62, 71–83. [Google Scholar] [CrossRef]
- Morrison, L.W. The Use of Control Charts to Interpret Environmental Monitoring Data. Nat. Areas J. 2008, 28, 66–73. [Google Scholar] [CrossRef]
- Cook, C.N.; de Bie, K.; Keith, D.A.; Addison, P.F.E. Decision Triggers Are a Critical Part of Evidence-Based Conservation. Biol. Conserv. 2016, 195, 46–51. [Google Scholar] [CrossRef]
- Anderson, M.J.; Thompson, A.A. Multivariate Control Charts for Ecological and Environmental Monitoring. Ecol. Appl. 2004, 14, 1921–1935. [Google Scholar] [CrossRef]
- Burgman, M. Risks and Decisions for Conservation and Environmental Management; Cambridge University Press: Cambridge, UK, 2005; ISBN 0-521-54301-0. [Google Scholar]
- Bowles, D.E.; Bolli, J.M.; Clark, M.K. Aquatic Invertebrate Community Trends and Water Quality at Homestead National Monument of America, Nebraska, 1996–2012. Trans. Kans. Acad. Sci. 2013, 116, 97–112. [Google Scholar] [CrossRef]
- Lindenmayer, D.B.; Burns, E.L.; Tennant, P.; Dickman, C.R.; Green, P.T.; Keith, D.A.; Metcalfe, D.J.; Russell-Smith, J.; Wardle, G.M.; Williams, D. Contemplating the Future: Acting Now on Long-term Monitoring to Answer 2050′s Questions. Austral Ecol. 2015, 40, 213–224. [Google Scholar] [CrossRef]
- Culp, J.M.; Cash, K.J.; Wrona, F.J. Cumulative Effects Assessment for the Northern River Basins Study. J. Aquat. Ecosyst. Stress Recovery 2000, 8, 87–94. [Google Scholar] [CrossRef]
- MacCarthy, B.L.; Wasusri, T. A Review of Non-standard Applications of Statistical Process Control (SPC) Charts. Int. J. Qual. Reliab. Manag. 2002, 19, 295–320. [Google Scholar] [CrossRef]
- Oiffer, A.A.L.; Barker, J.F.; Gervais, F.M.; Mayer, K.U.; Ptacek, C.J.; Rudolph, D.L. A Detailed Field-Based Evaluation of Naphthenic Acid Mobility in Groundwater. J. Contam. Hydrol. 2009, 108, 89–106. [Google Scholar] [CrossRef]
- Chapman, P.M.; DeBruyn, A.M.H. A Control Chart Approach to Monitoring and Communicating Trends in Tissue Selenium Concentrations. Environ. Toxicol. Chem. 2007, 26, 2237–2240. [Google Scholar] [CrossRef]
- Nelson, L.S. Technical Aids: Notes on the Shewhart Control Chart. J. Qual. Technol. 1984, 16, 238–239. [Google Scholar] [CrossRef]
- Page, E.S. On Problems in Which a Change in a Parameter Occurs at an Unknown Point. Biometrika 1957, 44, 248. [Google Scholar] [CrossRef]
- Johnson, N.L. A Simple Theoretical Approach to Cumulative Sum Control Charts. J. Am. Stat. Assoc. 1961, 56, 835–840. [Google Scholar] [CrossRef]
- Gove, A.D.; Sadler, R.; Matsuki, M.; Archibald, R.; Pearse, S.; Garkaklis, M. Control Charts for Improved Decisions in Environmental Management: A Case Study of Catchment Water Supply in South-West Western Australia. Ecol. Manag. Restor. 2013, 14, 127–134. [Google Scholar] [CrossRef]
- Hawkins, D.M.; Olwell, D.H. Cumulative Sum Charts and Charting for Quality Improvement; Springer Science & Business Media: New York, NY, USA, 1998; ISBN 0-387-98365-1. [Google Scholar]
- Regier, P.; Briceño, H.; Boyer, J.N. Analyzing and Comparing Complex Environmental Time Series Using a Cumulative Sums Approach. MethodsX 2019, 6, 779–787. [Google Scholar] [CrossRef] [PubMed]
- Mac Nally, R.; Hart, B.T. Use of CUSUM Methods for Water-Quality Monitoring in Storages. Environ. Sci. Technol. 1997, 31, 2114–2119. [Google Scholar] [CrossRef]
- Manly, B.F.J.; Mackenzie, D. A Cumulative Sum Type of Method for Environmental Monitoring. Environmetrics 2000, 11, 151–166. [Google Scholar] [CrossRef]
- Zimmerman, S.M.; Dardeau, M.R.; Crozier, G.F.; Wagstaff, B. The Second Battle of Mobile Bay—Using SPC to Control the Quality of Water Monitoring. Comput. Ind. Eng. 1996, 31, 257–260. [Google Scholar] [CrossRef]
- Follador, F.A.C.; Boas, M.A.V.; Schoenhals, M.; Hermes, E.; Rech, C. Tabular Cusum Control Charts of Chemical Variables Applied to the Control of Surface Water Quality. Eng. Agríc. 2012, 32, 951–960. [Google Scholar] [CrossRef]
- Arciszewski, T.J.; Hazewinkel, R.R.; Munkittrick, K.R.; Kilgour, B.W. Developing and Applying Control Charts to Detect Changes in Water Chemistry Parameters Measured in the Athabasca River near the Oil Sands: A Tool for Surveillance Monitoring. Environ. Toxicol. Chem. 2018, 37, 2296–2311. [Google Scholar] [CrossRef]
- Bicalho, B.; Grant-Weaver, I.; Sinn, C.; Donner, M.W.; Woodland, S.; Pearson, G.; Larter, S.; Duke, J.; Shotyk, W. Determination of Ultratrace (\textless0.1 Mg/Kg) Elements in Athabasca Bituminous Sands Mineral and Bitumen Fractions Using Inductively Coupled Plasma Sector Field Mass Spectrometry (ICP-SFMS). Fuel 2017, 206, 248–257. [Google Scholar] [CrossRef]
- Alberta Environment and Protected Areas. Available online: http://osmdatacatalog.alberta.ca/dataset/surface-water-quality-discrete (accessed on 21 August 2022).
- Scrucca, L. Qcc: An R Package for Quality Control Charting and Statistical Process Control. R News 2004, 4, 11–17. [Google Scholar]
- Noorossana, R.; Vaghefi, S.J.M. Effect of Autocorrelation on Performance of the MCUSUM Control Chart. Qual. Reliab. Eng. Int. 2006, 22, 191–197. [Google Scholar] [CrossRef]
- Smeti, E.M.; Koronakis, D.E.; Golfinopoulos, S.K. Control Charts for the Toxicity of Finished Water—Modeling the Structure of Toxicity. Water Res. 2007, 41, 2679–2689. [Google Scholar] [CrossRef]
- Arciszewski, T.J.; Munkittrick, K.R.; Scrimgeour, G.J.; Dubé, M.G.; Wrona, F.J.; Hazewinkel, R.R. Using Adaptive Processes and Adverse Outcome Pathways to Develop Meaningful, Robust, and Actionable Environmental Monitoring Programs. Integr. Environ. Assess. Manag. 2017, 13, 877–891. [Google Scholar] [CrossRef]
- Nita, A.; Fineran, S.; Rozylowicz, L. Researchers’ Perspective on the Main Strengths and Weaknesses of Environmental Impact Assessment (EIA) Procedures. Environ. Impact Assess. Rev. 2022, 92, 106690. [Google Scholar] [CrossRef]
- Guarnieri, J.P.; Souza, A.M.; Jacobi, L.F.; Reichert, B.; da Veiga, C.P. Control Chart Based on Residues: Is a Good Methodology to Detect Outliers? J. Ind. Eng. Int. 2019, 15, 119–130. [Google Scholar] [CrossRef]
- Mandel, B.J. The Regression Control Chart. J. Qual. Technol. 1969, 1, 1–9. [Google Scholar] [CrossRef]
- Trexler, J.C.; Goss, C.W. Aquatic Fauna as Indicators for Everglades Restoration: Applying Dynamic Targets in Assessments. Ecol. Indic. 2009, 9, S108–S119. [Google Scholar] [CrossRef]
- Hawkins, D.M. Multivariate Quality Control Based on Regression-Adiusted Variables. Technometrics 1991, 33, 61–75. [Google Scholar] [CrossRef]
- Hardin, J.W.; Hilbe, J.M. Generalized Estimating Equations; CRC Press (Taylor & Francis Group): London, UK, 2013. [Google Scholar]
- Halekoh, U.; Højsgaard, S.; Yan, J. The R Package Geepack for Generalized Estimating Equations. J. Stat. Softw. 2006, 15, 1–11. [Google Scholar] [CrossRef]
- Environment and Climate Change Canada. Available online: https://wateroffice.ec.gc.ca/report/historical_e.html?stn=07DA008 (accessed on 10 November 2022).
- Yashchin, E. Some Aspects of the Theory of Statistical Control Schemes. IBM J. Res. Dev. 1987, 31, 199–205. [Google Scholar] [CrossRef]
- Towler, E.; Rajagopalan, B.; Gilleland, E.; Summers, R.S.; Yates, D.; Katz, R.W. Modeling Hydrologic and Water Quality Extremes in a Changing Climate: A Statistical Approach Based on Extreme Value Theory: Hydrological Extremes under Climate Change. Water Resour. Res. 2010, 46, W11504. [Google Scholar] [CrossRef]
- Alexander, A.C.C.; Chambers, P.A.A. Assessment of Seven Canadian Rivers in Relation to Stages in Oil Sands Industrial Development, 1972–2010. Environ. Rev. 2016, 24, 484–494. [Google Scholar] [CrossRef]
- Azhar, S.C.; Aris, A.Z.; Yusoff, M.K.; Ramli, M.F.; Juahir, H. Classification of River Water Quality Using Multivariate Analysis. Procedia Environ. Sci. 2015, 30, 79–84. [Google Scholar] [CrossRef]
- Crosier, R.B. Multivariate Generalizations of Cumulative Sum Quality-Control Schemes. Technometrics 1988, 30, 291–303. [Google Scholar] [CrossRef]
- Pignatiello, J.J.; Runger, G.C. Comparisons of Multivariate CUSUM Charts. J. Qual. Technol. 1990, 22, 173–186. [Google Scholar] [CrossRef]
- Lowry, C.A.; Woodall, W.H.; Champ, C.W.; Rigdon, S.E. A Multivariate Exponentially Weighted Moving Average Control Chart. Technometrics 1992, 34, 46–53. [Google Scholar] [CrossRef]
- Brody, S.D.; Peck, B.M.; Highfield, W.E. Examining Localized Patterns of Air Quality Perception in Texas: A Spatial and Statistical Analysis. Risk Anal. 2004, 24, 1561–1574. [Google Scholar] [CrossRef]
- Plaia, A.; Ruggieri, M. Air Quality Indices: A Review. Rev. Environ. Sci. Biotechnol. 2011, 10, 165–179. [Google Scholar] [CrossRef]
- Marchant, C.; Leiva, V.; Cysneiros, F.J.A.; Liu, S. Robust Multivariate Control Charts Based on Birnbaum–Saunders Distributions. J. Stat. Comput. Simul. 2018, 88, 182–202. [Google Scholar] [CrossRef]
- Marchant, C.; Leiva, V.; Christakos, G.; Cavieres, M.F. Monitoring Urban Environmental Pollution by Bivariate Control Charts: New Methodology and Case Study in Santiago, Chile. Environmetrics 2019, 30, e2551. [Google Scholar] [CrossRef]
- Lu, H.; Zhen, J. EWMA Control Chart of NOx Atmospheric Environmental Monitoring System. In Proceedings of the 21st International Conference on Industrial Engineering and Engineering Management 2014; Qi, E., Shen, J., Dou, R., Eds.; Atlantis Press: Paris, France, 2015; pp. 403–406. ISBN 978-94-6239-101-7. [Google Scholar]
- Wood Buffalo Environmental Association. Available online: https://wbea.org/historical-monitoring-data/ (accessed on 15 November 2022).
- Wentworth, G.R.; Aklilu, Y.; Landis, M.S.; Hsu, Y.-M. Impacts of a Large Boreal Wildfire on Ground Level Atmospheric Concentrations of PAHs, VOCs and Ozone. Atmos. Environ. 2018, 178, 19–30. [Google Scholar] [CrossRef]
- Matz, C.J.; Egyed, M.; Xi, G.; Racine, J.; Pavlovic, R.; Rittmaster, R.; Henderson, S.B.; Stieb, D.M. Health Impact Analysis of PM2.5 from Wildfire Smoke in Canada (2013–2015, 2017–2018). Sci. Total Environ. 2020, 725, 138506. [Google Scholar] [CrossRef] [PubMed]
- Bari, M.A.; Kindzierski, W.B. Ambient Fine Particulate Matter (PM 2.5) in Canadian Oil Sands Communities: Levels, Sources and Potential Human Health Risk. Sci. Total Environ. 2017, 595, 828–838. [Google Scholar] [CrossRef]
- Allen, D.; Edwards, D.; Feller, R.; Hutchinson, S.; Ogburnmatthews, V. Detection and Analysis of Unusual Events in Long-Term Zooplankton and Nekton Data Sets from North Inlet Estuary, South Carolina, USA. Ocean. Acta 1997, 20, 165–175. [Google Scholar]
- Bodnar, R.; Bodnar, T.; Schmid, W. Sequential Monitoring of High-dimensional Time Series. Scand. J Stat. 2022; early view. [Google Scholar] [CrossRef]
- Alberta Energy Regulator. Available online: https://www.aer.ca/providing-information/data-and-reports/statistical-reports/st39 (accessed on 3 May 2022).
- Gray, M.R. Upgrading Oilsands Bitumen and Heavy Oil; University of Alberta: Edmonton, AB, Canada, 2015. [Google Scholar]
- Arciszewski, T.J. A Re-Analysis and Review of Elemental and Polycyclic Aromatic Compound Deposition in Snow and Lake Sediments from Canada’s Oil Sands Region Integrating Industrial Performance and Climatic Variables. Sci. Total Environ. 2022, 820, 153254. [Google Scholar] [CrossRef]
- Gopalapillai, Y.; Kirk, J.L.; Landis, M.S.; Muir, D.C.G.; Cooke, C.A.; Gleason, A.; Ho, A.; Kelly, E.; Schindler, D.; Wang, X.; et al. Source Analysis of Pollutant Elements in Winter Air Deposition in the Athabasca Oil Sands Region: A Temporal and Spatial Study. ACS Earth Space Chem. 2019, 3, 1656–1668. [Google Scholar] [CrossRef]
- Chibwe, L.; Muir, D.C.G.; Gopalapillai, Y.; Shang, D.; Kirk, J.L.; Manzano, C.A.; Atkinson, B.; Wang, X.; Teixeira, C. Long-Term Spatial and Temporal Trends, and Source Apportionment of Polycyclic Aromatic Compounds in the Athabasca Oil Sands Region. Environ. Pollut. 2021, 268, 115351. [Google Scholar] [CrossRef]
- Arciszewski, T.J.; Roberts, D.R. Analyzing Relationships of Conductivity and Alkalinity Using Historical Datasets from Streams in Northern Alberta, Canada. Water 2022, 14, 2503. [Google Scholar] [CrossRef]
- Arciszewski, T.J. Exploring the Influence of Industrial and Climatic Variables on Communities of Benthic Macroinvertebrates Collected in Streams and Lakes in Canada’s Oil Sands Region. Environments 2021, 8, 123. [Google Scholar] [CrossRef]
- Gordon, M.; Li, S.-M.; Staebler, R.; Darlington, A.; Hayden, K.; O’Brien, J.; Wolde, M. Determining Air Pollutant Emission Rates Based on Mass Balance Using Airborne Measurement Data over the Alberta Oil Sands Operations. Atmos. Meas. Tech. 2015, 8, 3745–3765. [Google Scholar] [CrossRef]
- Munkittrick, K.R.; Arens, C.J.; Lowell, R.B.; Kaminski, G.P. A Review of Potential Methods of Determining Critical Effect Size for Designing Environmental Monitoring Programs. Environ. Toxicol. Chem. 2009, 28, 1361–1371. [Google Scholar] [CrossRef] [PubMed]
- Stringell, T.B.; Bamber, R.N.; Burton, M.; Lindenbaum, C.; Skates, L.R.; Sanderson, W.G. A Tool for Protected Area Management: Multivariate Control Charts ‘Cope’ with Rare Variable Communities. Ecol. Evol. 2013, 3, 1667–1676. [Google Scholar] [CrossRef]
- Parker, S.R.; Harpur, C.; Murphy, S.D. Monitoring for Resilience within the Coastal Wetland Fish Assemblages of Fathom Five National Marine Park, Lake Huron, Canada. Nat. Areas J. 2015, 35, 378–391. [Google Scholar] [CrossRef]
- Petitgas, P.; Poulard, J.-C. A Multivariate Indicator to Monitor Changes in Spatial Patterns of Age-Structured Fish Populations. Aquat. Living Resour. 2009, 22, 165–171. [Google Scholar] [CrossRef]
- Leiva, V.; dos Santos, R.A.; Saulo, H.; Marchant, C.; Lio, Y. Bootstrap Control Charts for Quantiles Based on Log-symmetric Distributions with Applications to the Monitoring of Reliability Data. Qual. Reliab. Eng 2023, 39, 1–24. [Google Scholar] [CrossRef]
- Silverman, B.W.; Young, G.A. The Bootstrap: To Smooth or Not to Smooth? Biometrika 1987, 74, 469–479. [Google Scholar] [CrossRef]
- Saracco, J.F.; Pyle, P.; Kaschube, D.R.; Kohler, M.; Godwin, C.M.; Foster, K.R. Demographic Declines over Time and Variable Responses of Breeding Bird Populations to Human Footprint in the Athabasca Oil Sands Region, Alberta, Canada. Ornithol. Appl. 2022, 124, duac037. [Google Scholar] [CrossRef]
- Arciszewski, T.J.; Ussery, E.J.; McMaster, M.E. Incorporating Industrial and Climatic Covariates into Analyses of Fish Health Indicators Measured in a Stream in Canada’s Oil Sands Region. Environments 2022, 9, 73. [Google Scholar] [CrossRef]
- Chaloupka, M.; Pendoley, K.; Moro, D. Control Charts—A Robust Approach for Monitoring Endangered Species Exposure to a Major Construction Project. In Proceedings of the International Conference on Health, Safety and Environment in Oil and Gas Exploration and Production, Perth, Australia, 11–13 September 2012. [Google Scholar] [CrossRef]
- Lund, R.; Seymour, L. Assessing Temperature Anomalies for a Geographical Region: A Control Chart Approach. Environmetrics 1999, 10, 163–177. [Google Scholar] [CrossRef]
- Saulo, H.; Leiva, V.; Ruggeri, F. Monitoring Environmental Risk by a Methodology Based on Control Charts. In Theory and Practice of Risk Assessment; Kitsos, C.P., Oliveira, T.A., Rigas, A., Gulati, S., Eds.; Springer Proceedings in Mathematics & Statistics; Springer International Publishing: Cham, Switzerland, 2015; Volume 136, pp. 177–197. ISBN 978-3-319-18028-1. [Google Scholar]
- Zhou, W.; Beck, B.F.; Pettit, A.J.; Wang, J. Application of Water Quality Control Charts to Spring Monitoring in Karst Terranes. Environ. Geol. 2008, 53, 1311–1321. [Google Scholar] [CrossRef]
- Greenberg, A.E.; Navone, R. Use of the Control Chart in Checking Anion-Cation Balances in Water. Am. Water Work. Assoc. 1958, 50, 1365–1370. [Google Scholar] [CrossRef]
- Vogelgesang, J. The Quality Control Chart Principle: Application to the Routine Analysis of Pesticide Residues in Water. Fresenius’ J. Anal. Chem. 1991, 340, 384–388. [Google Scholar] [CrossRef]
- Maurer, D.; Mengel, M.; Robertson, G.; Gerlinger, T.; Lissner, A. Statistical Process Control in Sediment Pollutant Analysis. Environ. Pollut. 1999, 104, 21–29. [Google Scholar] [CrossRef]
- Thomann, M.; Rieger, L.; Frommhold, S.; Siegrist, H.; Gujer, W. An Efficient Monitoring Concept with Control Charts for On-Line Sensors. Water Sci. Technol. 2002, 46, 107–116. [Google Scholar] [CrossRef]
- Chèvre, N.; Gagné, F.; Blaise, C. Development of a Biomarker-Based Index for Assessing the Ecotoxic Potential of Aquatic Sites. Biomarkers 2003, 8, 287–298. [Google Scholar] [CrossRef]
- Scandol, J.P. Use of Cumulative Sum (CUSUM) Control Charts of Landed Catch in the Management of Fisheries. Fish. Res. 2003, 64, 19–36. [Google Scholar] [CrossRef]
- Petitgas, P. The CUSUM Out-of-Control Table to Monitor Changes in Fish Stock Status Using Many Indicators. Aquat. Living Resour. 2009, 22, 201–206. [Google Scholar] [CrossRef]
- Lee, P.-H.; Huang, Y.-H.; Kuo, T.-I.; Wang, C.-C. The Effect of the Individual Chart with Variable Control Limits on the River Pollution Monitoring. Qual. Quant. 2013, 47, 1803–1812. [Google Scholar] [CrossRef]
- Iglesias, C.; Sancho, J.; Piñeiro, J.I.; Martínez, J.; Pastor, J.J.; Taboada, J. Shewhart-Type Control Charts and Functional Data Analysis for Water Quality Analysis Based on a Global Indicator. Desalination Water Treat. 2016, 57, 2669–2684. [Google Scholar] [CrossRef]
- Mashuri, M.; Khusna, H.; Wibawati; Putri, F.D. Mixed Multivariate EWMA-CUSUM (MEC) Chart Based on MLS-SVR Model for Monitoring Drinking Water Quality. J. Phys. Conf. Ser. 2021, 2123, 012019. [Google Scholar] [CrossRef]
- Marais, H.L.; Zaccaria, V.; Odlare, M. Comparing Statistical Process Control Charts for Fault Detection in Wastewater Treatment. Water Sci. Technol. 2022, 85, 1250–1262. [Google Scholar] [CrossRef]
- Addison, P.F.E.; Cook, C.N.; de Bie, K. Conservation Practitioners’ Perspectives on Decision Triggers for Evidence-Based Management. J. Appl. Ecol. 2016, 53, 1351–1357. [Google Scholar] [CrossRef]
- Wiklund, J.A.; Hall, R.I.; Wolfe, B.B.; Edwards, T.W.D.; Farwell, A.J.; Dixon, D.G. Use of Pre-Industrial Floodplain Lake Sediments to Establish Baseline River Metal Concentrations Downstream of Alberta Oil Sands: A New Approach for Detecting Pollution of Rivers. Environ. Res. Lett. 2014, 9, 124019. [Google Scholar] [CrossRef]
- Harvey, R.; Lye, L.; Khan, A. Recent Advances in the Analysis of Real-Time Water Quality Data Collected in Newfoundland and Labrador. Can. Water Resour. J. / Rev. Can. Des Ressour. Hydr. 2011, 36, 349–361. [Google Scholar] [CrossRef]
- Addison, P.F.E.; Rumpff, L.; Bau, S.S.; Carey, J.M.; Chee, Y.E.; Jarrad, F.C.; McBride, M.F.; Burgman, M.A. Practical Solutions for Making Models Indispensable in Conservation Decision-Making. Divers. Distrib. 2013, 19, 490–502. [Google Scholar] [CrossRef]
- Foster, C.N.; O’Loughlin, L.S.; Sato, C.F.; Westgate, M.J.; Barton, P.S.; Pierson, J.C.; Balmer, J.M.; Catt, G.; Chapman, J.; Detto, T.; et al. How Practitioners Integrate Decision Triggers with Existing Metrics in Conservation Monitoring. J. Environ. Manag. 2019, 230, 94–101. [Google Scholar] [CrossRef]
- Bal, P.; Rhodes, J.R.; Carwardine, J.; Legge, S.; Tulloch, A.; Game, E.; Martin, T.G.; Possingham, H.P.; McDonald-Madden, E. How to Choose a Cost-effective Indicator to Trigger Conservation Decisions? Methods Ecol. Evol. 2021, 12, 520–529. [Google Scholar] [CrossRef]
- Hilton, M.; Walsh, J.C.; Liddell, E.; Cook, C.N. Lessons from Other Disciplines for Setting Management Thresholds for Biodiversity Conservation. Conserv. Biol. 2022, 36, e13865. [Google Scholar] [CrossRef] [PubMed]
- Mesnil, B.; Petitgas, P. Detection of Changes in Time-Series of Indicators Using CUSUM Control Charts. Aquat. Living Resour. 2009, 22, 187–192. [Google Scholar] [CrossRef]
Input Variables | PC1 | PC2 | PC3 | PC4 | PC5 |
---|---|---|---|---|---|
Diluent Naphtha–Flared/Wasted | −0.301 | 0.045 | −0.121 | −0.070 | 0.026 |
Process gas-Flared/Wasted | −0.173 | −0.175 | 0.222 | 0.662 | −0.515 |
Natural gas-Flared/Wasted | −0.171 | −0.151 | 0.586 | −0.485 | −0.449 |
Sulphur-Flared/Wasted | −0.126 | 0.205 | 0.703 | 0.286 | 0.596 |
Diluent Naphtha-Fuel | −0.177 | 0.570 | −0.132 | −0.017 | −0.048 |
Process Gas-Fuel | −0.286 | −0.197 | −0.061 | −0.002 | 0.002 |
Natural Gas-Fuel | −0.213 | 0.424 | 0.087 | −0.358 | −0.081 |
Oil Sand-Mined | −0.291 | −0.094 | −0.223 | 0.168 | 0.165 |
Natural Gas-Plant Use | 0.133 | −0.547 | 0.056 | −0.275 | 0.323 |
Petroleum Coke-Production | −0.309 | −0.058 | −0.062 | −0.011 | 0.063 |
Crude Bitumen-Production | −0.310 | −0.102 | −0.028 | −0.010 | −0.009 |
Intermediate Hydrocarbon-Production | −0.308 | −0.105 | −0.044 | −0.038 | 0.117 |
Process Gas-Production | −0.309 | −0.115 | −0.047 | −0.009 | −0.025 |
Sulfur-Production | −0.310 | −0.046 | −0.074 | −0.059 | 0.074 |
Synthetic Crude Oil-Production | −0.308 | −0.104 | −0.055 | −0.041 | 0.115 |
Standard deviation | 3.161 | 1.320 | 0.967 | 0.916 | 0.816 |
Proportion of variance | 0.67 | 0.12 | 0.06 | 0.06 | 0.04 |
Cumulative proportion of variance | 0.67 | 0.79 | 0.85 | 0.91 | 0.95 |
Industrial Variable | Feb. ‘10 | Jan. ‘11 | Feb. ‘11 | Mar. ‘11 | Apr. ‘11 | May ‘11 | Jun. ‘11 | Jul. ‘11 | Nov. ‘11 | Feb. ‘12 | May ‘13 | Aug. ‘14 | Jul. ‘16 | Oct. ‘17 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
DN-F/W | 0.02 | 0.01 | 0.01 | 0.01 | 0.01 | 0.00 | 0.00 | 0.01 | 0.00 | 0.03 | 0.00 | 0.00 | 0.01 | 0.00 |
PG-F/W | 0.00 | 0.03 | 0.00 | 0.01 | 0.02 | 0.01 | 0.01 | 0.01 | 0.00 | 0.02 | 0.00 | 0.02 | 0.10 | 0.00 |
NG-F/W | 0.00 | 0.07 | 0.04 | 0.09 | 0.13 | 0.21 | 0.07 | 0.41 | 0.00 | 0.00 | 0.00 | 0.05 | 0.29 | 0.00 |
S-F/W | 0.00 | 0.00 | 0.02 | 0.02 | 0.03 | 0.01 | 0.00 | 0.02 | 0.00 | 0.08 | 0.00 | 0.31 | 0.00 | 0.00 |
DN-F | 0.09 | 0.08 | 0.06 | 0.01 | 0.24 | 0.00 | 0.00 | 0.00 | 0.00 | 0.02 | 0.00 | 0.00 | 0.06 | 0.00 |
PG-F | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.98 | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 |
NG-F | 0.01 | 0.08 | 0.02 | 0.00 | 0.17 | 0.05 | 0.03 | 0.09 | 0.01 | 0.04 | 0.00 | 0.03 | 0.20 | 0.00 |
OS-M | 0.00 | 0.07 | 0.03 | 0.06 | 0.04 | 0.14 | 0.20 | 0.53 | 0.00 | 0.00 | 0.00 | 0.05 | 0.23 | 0.00 |
NG-PU | 0.89 | 0.00 | 0.00 | 0.00 | 0.01 | 0.02 | 0.00 | 0.01 | 0.01 | 0.02 | 0.00 | 0.00 | 0.19 | 0.00 |
PC-P | 0.01 | 0.17 | 0.00 | 0.00 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 0.07 | 0.00 | 0.43 | 0.05 | 0.00 |
CB-P | 0.00 | 0.31 | 0.00 | 0.01 | 0.10 | 0.12 | 0.13 | 0.10 | 0.00 | 0.09 | 0.00 | 0.04 | 0.04 | 0.01 |
IH-P | 0.00 | 0.02 | 0.01 | 0.02 | 0.01 | 0.01 | 0.02 | 0.10 | 0.00 | 0.07 | 0.37 | 0.07 | 0.11 | 0.02 |
PG-P | 0.00 | 0.25 | 0.02 | 0.02 | 0.05 | 0.02 | 0.01 | 0.01 | 0.01 | 0.27 | 0.00 | 0.00 | 0.02 | 0.00 |
S-P | 0.00 | 0.33 | 0.32 | 0.31 | 0.09 | 0.00 | 0.01 | 0.28 | 0.00 | 0.06 | 0.00 | 0.02 | 0.06 | 0.00 |
SCO-P | 0.00 | 0.09 | 0.02 | 0.01 | 0.06 | 0.02 | 0.03 | 0.00 | 0.00 | 0.22 | 0.43 | 0.05 | 0.21 | 0.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arciszewski, T.J. A Review of Control Charts and Exploring Their Utility for Regional Environmental Monitoring Programs. Environments 2023, 10, 78. https://doi.org/10.3390/environments10050078
Arciszewski TJ. A Review of Control Charts and Exploring Their Utility for Regional Environmental Monitoring Programs. Environments. 2023; 10(5):78. https://doi.org/10.3390/environments10050078
Chicago/Turabian StyleArciszewski, Tim J. 2023. "A Review of Control Charts and Exploring Their Utility for Regional Environmental Monitoring Programs" Environments 10, no. 5: 78. https://doi.org/10.3390/environments10050078
APA StyleArciszewski, T. J. (2023). A Review of Control Charts and Exploring Their Utility for Regional Environmental Monitoring Programs. Environments, 10(5), 78. https://doi.org/10.3390/environments10050078