Definition and Validation of Vineyard Management Zones Based on Soil Apparent Electrical Conductivity and Altimetric Survey
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Soil Apparent Electrical Conductivity (ECa) Surveys and Processing
2.3. Definition of Management Zones (MZ)
2.4. Validation of Management Zones (MZ)s
2.4.1. Soil Sampling Collection and Reference Analysis
2.4.2. Cone Index (CI) Measurements
2.4.3. Multispectral Measurements by Remote Sensing
2.5. Statistical Analysis of the Data
3. Results
3.1. From Spatial Variability to the Definition of Management Zones (MZ)
3.2. Validation of Management Zones (MZ)
4. Discussion
4.1. Spatial Variability
4.2. Validation of Management Zones (MZ)
4.3. Study Limitations and Perspectives
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Casson, A.; Ortuani, B.; Giovenzana, V.; Brancadoro, L.; Corsi, S.; Gharsallah, O.; Guidetti, R.; Facchi, A. A multidisciplinary approach to assess environmental and economic impact of conventional and innovative vineyards management systems in Northern Italy. Sci. Total Environ. 2022, 838, 156181. [Google Scholar] [CrossRef]
- Ammoniaci, M.; Kartsiotis, S.-P.; Perria, R.; Storchi, P. State of the art of monitoring technologies and data processing for Precision Viticulture. Agriculture 2021, 11, 201. [Google Scholar] [CrossRef]
- Ferrer, M.; Echeverría, G.; Pereyra, G.; Gonzalez-Neves, G.; Pan, D.; Mirás-Avalos, J.M. Mapping vineyard vigor using airborne remote sensing: Relations with yield, berry composition and sanitary status under humid climate conditions. Prec. Agric. 2020, 21, 178–197. [Google Scholar] [CrossRef]
- Córdoba, M.; Bruno, C.; Costa, J.; Balzarini, M. Subfield management class delineation using cluster analysis from spatial principal components of soil variables. Comput. Electron. Agric. 2013, 97, 6–14. [Google Scholar] [CrossRef]
- Unamunzaga, O.; Besga, G.; Castellón, A.; Usón, M.A.; Chéry, P.; Gallejones, P.; Aizpurua, A. Spatial and vertical analysis of soil properties in a Mediterranean vineyard soil. Soil Use Manag. 2014, 30, 285–296. [Google Scholar] [CrossRef]
- Verdugo-Vásquez, N.; Acevedo-Opazo, C.; Valdés-Gómez, H.; Pañitrur-De la Fuente, C.; Ingram, B.; García de Cortázar-Atauri, I.; Tisseyre, B. Identification of main factors affecting the within-field spatial variability of grapevine phenology and total soluble solids accumulation: Towards the vineyard zoning using auxiliary information. Precis. Agric. 2022, 23, 253–277. [Google Scholar] [CrossRef]
- Moral, F.; Terrón, J.; Silva, J.M. Delineation of management zones using mobile measurements of soil apparent electrical conductivity and multivariate geostatistical techniques. Soil Tillage Res. 2010, 106, 335–343. [Google Scholar] [CrossRef]
- Sams, B.; Bramley, R.G.V.; Sanchez, L.; Dokoozlian, N.; Ford, C.; Pagay, V. Remote sensing, yield, physical characteristics, and fruit composition variability in Cabernet Sauvignon vineyards. Am. J. Enol. Vitic. 2022, 73, 93–105. [Google Scholar] [CrossRef]
- Esteves, C.; Fangueiro, D.; Braga, R.P.; Martins, M.; Botelho, M.; Ribeiro, H. Assessing the contribution of ECa and NDVI in the delineation of management zones in a vineyard. Agronomy 2022, 12, 1331. [Google Scholar] [CrossRef]
- Tardaguila, J.; Stoll, M.; Gutiérrez, S.; Proffitt, T.; Diago, M.P. Smart applications and digital technologies in viticulture: A review. Smart Agric. Technol. 2021, 1, 100005. [Google Scholar] [CrossRef]
- Bottega, E.L.; Marin, C.K.; Oliveira, Z.B.d.; Lamb, C.D.C.; Amado, T.J.C. Soil density characterization in management zones based on apparent soil electrical conductivity in two field systems: Rainfeed and center-pivot irrigation. AgriEngineering 2023, 5, 460–472. [Google Scholar] [CrossRef]
- Sudduth, K.A.; Kitchen, N.R.; Bollero, G.A.; Bullock, D.G.; Wiebold, W.J. Comparison of electromagnetic induction and direct sensing of soil electrical conductivity. Agron. J. 2003, 95, 472–482. [Google Scholar] [CrossRef]
- Serrano, J.; Marques, J.; Shahidian, S.; Carreira, E.; Marques da Silva, J.; Paixão, L.; Paniagua, L.L.; Moral, F.; Ferraz de Oliveira, I.; Sales-Baptista, E. Sensing and mapping the effects of cow trampling on the soil compaction of the montado Mediterranean ecosystem. Sensors 2023, 23, 888. [Google Scholar] [CrossRef] [PubMed]
- Serrano, J.; Carreira, E.; Shahidian, S.; de Carvalho, M.; Marques da Silva, J.; Paniagua, L.L.; Moral, F.; Pereira, A. Impact of deferred versus continuous sheep grazing on soil compaction in the Mediterranean Montado ecosystem. AgriEngineering 2023, 5, 761–776. [Google Scholar] [CrossRef]
- Pias, O.H.C.; Cherubin, M.R.; Basso, C.J.; Santi, A.L.; Molin, J.P.; Bayer, C. Soil penetration resistance mapping quality: Effect of the number of subsamples. Acta Sci. 2018, 40, e34989. [Google Scholar] [CrossRef] [Green Version]
- Comparetti, A.; Marques da Silva, J.R. Use of Sentinel-2 satellite for spatially variable rate fertiliser management in a Sicilian vineyard. Sustainability 2022, 14, 1688. [Google Scholar] [CrossRef]
- Hubbard, S.S.; Schmutz, M.; Balde, A.; Falco, N.; Peruzzo, L.; Dafon, B.; Léger, E.; Wu, Y. Estimation of soil classes and their relationship to grapevine vigor in a Bordeaux vineyard: Advancing the practical joint use of electromagnetic induction (EMI) and NDVI datasets for precision viticulture. Precis. Agric. 2021, 22, 1353–1376. [Google Scholar] [CrossRef]
- Gatti, M.; Garavani, A.; Squeri, C.; Diti, I.; Monte, A.; Scotti, C.; Poni, S. Effects of intra-vineyard variability and soil heterogeneity on vine performance, dry matter and nutrient partitioning. Precis. Agric. 2022, 23, 150–177. [Google Scholar] [CrossRef]
- FAO. World Reference Base for Soil Resources; Food and Agriculture Organization of the United Nations, World Soil Resources Reports N 103; FAO: Rome, Italy, 2006. [Google Scholar]
- Peel, M.C.; Finlayson, B.L.; McMahon, T.A. Updated world map of the Köppen-Geiger climate classification. Hydrol. Earth Syst. Sci. 2007, 11, 1633–1644. [Google Scholar] [CrossRef] [Green Version]
- Höppner, F.; Klawonn, F.; Kruse, R.; Runkler, T.A. Fuzzy Cluster Analysis; Wiley: Chichester, UK, 1999. [Google Scholar]
- Fridgen, J.J.; Kitchen, N.R.; Sudduth, K.A.; Drummond, S.T.; Wiebold, W.J.; Fraisse, C.W. Management Zone Analyst (MZA): Software for subfield management zone delineation. Agron. J. 2004, 96, 100–108. [Google Scholar] [CrossRef]
- Tagarakis, A.; Liakos, V.; Fountas, S.; Koundouras, S.; Gemtos, T.A. Management zones delineation using fuzzy clustering techniques in grapevines. Precis. Agric. 2013, 14, 18–39. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis of AOAC International, 18th ed.; AOAC International: Arlington, VA, USA, 2005. [Google Scholar]
- Barriguinha, A.; de Castro Neto, M.; Gil, A. Vineyard yield estimation, prediction, and forecasting: A systematic literature review. Agronomy 2021, 11, 1789. [Google Scholar] [CrossRef]
- Cataldo, E.; Fucile, M.; Mattii, G.B. A review: Soil management, sustainable strategies and approaches to improve the quality of modern viticulture. Agronomy 2021, 11, 2359. [Google Scholar] [CrossRef]
- Rodríguez-Pérez, J.R.; Plant, R.E.; Lambert, J.-J.; Smart, D.R. Using apparent soil electrical conductivity (ECa) to characterize vineyard soils of high clay content. Precis. Agric. 2011, 12, 775–794. [Google Scholar] [CrossRef] [Green Version]
- Serrano, J.; Shahidian, S.; Da Silva, J.M.; Paixão, L.; Calado, J.; De Carvalho, M. Integration of soil electrical conductivity and indices obtained through satellite imagery for differential management of pasture fertilization. AgriEngineering 2019, 1, 567–585. [Google Scholar] [CrossRef] [Green Version]
- Serrano, J.; Shahidian, S.; Marques da Silva, J. Apparent electrical conductivity in dry versus wet soil conditions in a shallow soil. Precis. Agric. 2013, 14, 99–114. [Google Scholar] [CrossRef]
- Su, A.S.M.; Adamchuk, V.I. Temporal and operation-induced instability of apparent soil electrical conductivity measurements. Front. Soil Sci. 2023, 3, 1137731. [Google Scholar]
- Serrano, J.; Shahidian, S.; Paixão, L.; Marques da Silva, J.; Moral, F. Management zones in pastures based on soil apparent electrical conductivity and altitude: NDVI, soil and biomass sampling validation. Agronomy 2022, 12, 778. [Google Scholar] [CrossRef]
- Corwin, D.; Lesch, S. Apparent soil electrical conductivity measurements in agriculture. Comput. Electron. Agric. 2005, 46, 11–43. [Google Scholar] [CrossRef]
- Farrel, M.; Leizica, E.; Gili, A.; Noellemeyer, E. Identification of management zones with different potential moisture availability for sustainable intensification of dryland agriculture. Precis. Agric. 2023, 24, 1116–1131. [Google Scholar] [CrossRef]
- Krajco, J. Detection of Soil Compaction Using Soil Electrical Conductivity. Master’s Thesis, Cranfield University, Silsoe, UK, 2007; pp. 3–92. [Google Scholar]
- Pentos, K.; Pieczarka, K.; Serwata, K. The relationship between soil electrical parameters and compaction of sandy clay loam soil. Agriculture 2021, 11, 114. [Google Scholar] [CrossRef]
- Kasimati, A.; Psiroukis, V.; Darra, N.; Kalogrias, A.; Kalivas, D.; Taylor, J.A.; Fountas, S. Investigation of the similarities between NDVI maps from different proximal and remote sensing platforms in explaining vineyard variability. Precis. Agric. 2023, 24, 1220–1240. [Google Scholar] [CrossRef]
- Katz, L.; Ben-Gal, A.; Litaor, M.I.; Naor, A.; Peres, M.; Bahat, I.; Netzer, Y.; Peeters, A.; Alchanatis, V.; Cohen, Y. Spatiotemporal normalized ratio methodology to evaluate the impact of field-scale variable rate application. Precis. Agric. 2022, 23, 1125–1152. [Google Scholar] [CrossRef]
- Fabiani, S.; Vanino, S.; Napoli, R.; Zajicek, A.; Duffkova, R.; Evangelou, E.; Nino, P. Assessment of the economic and environmental sustainability of Variable Rate Technology (VRT) application in different wheat intensive European agricultural areas. A Water energy food nexus approach. Environ. Sci. Policy 2020, 114, 366–376. [Google Scholar] [CrossRef]
Parameter | Vineyard “W” (White Grapes) | Vineyard “R” (Red Grapes) | ||||
---|---|---|---|---|---|---|
Date | Mean ± SD | CV (%) | Range | Mean ± SD | CV (%) | Range |
ECa (mS·m−1) 29 September | 3.6 ± 2.4 | 67.6 | 0.1–13.2 | – | – | – |
24 October | 5.3 ± 3.4 | 64.9 | 0.8–17.8 | 4.6 ± 2.6 | 55.8 | 0.3–17.1 |
SMC (%) 29 September | 14.6 ±4.1 | 28.1 | 10.3–19.5 | – | – | – |
24 October | 17.7 ± 5.2 | 29.2 | 14.5–38.8 | 16.2 ± 1.3 | 8.1 | 14.0–18.7 |
Soil Parameter | Vineyard “W” (White Grapes) | Vineyard “R” (Red Grapes) | ||||
---|---|---|---|---|---|---|
(25 January 2023) | Mean ± SD | CV (%) | Range | Mean ± SD | CV (%) | Range |
Clay (%) | 14.9 ± 4.8 | 32.2 | 10.4–23.9 | 14.6 ± 6.0 | 41.2 | 7.4–26.5 |
Silt (%) | 13.6 ± 3.0 | 22.4 | 10.6–19.0 | 11.3 ± 2.4 | 20.9 | 7.8–15.4 |
Sand (%) | 71.5 ± 7.6 | 10.7 | 58.4–78.7 | 74.0 ± 7.9 | 10.7 | 61.1–84.9 |
SMC (%) | 17.6± 4.4 | 25.0 | 11.2–27.5 | 14.6 ± 3.7 | 25.2 | 7.2–18.5 |
OM (%) | 1.7 ± 0.5 | 30.7 | 1.0–2.5 | 1.0 ± 0.2 | 23.6 | 0.7–1.5 |
pH | 6.5 ± 0.5 | 7.0 | 5.8–7.1 | 6.1 ± 0.5 | 8.8 | 5.6–7.0 |
P2O5 (mg.kg−1) | 350.7 ± 209.1 | 59.6 | 101.4–722.6 | 28.9 ± 12.4 | 42.9 | 16.3–53.1 |
K2O (mg.kg−1) | 118.7 ± 44.5 | 37.5 | 44.0–201.0 | 40.0 ± 24.7 | 61.8 | 10.0–78.2 |
DBS (%) | 61.1 ± 33.6 | 55.0 | 13.5–121.9 | 61.4 ± 42.3 | 69.0 | 15.5–118.0 |
SEB (cmol.kg−1) | 8.2 ± 5.4 | 65.0 | 3.3–18.0 | 8.7 ± 7.1 | 81.1 | 2.0–19.7 |
CEC (cmol.kg−1) | 14.9 ± 5.9 | 39.5 | 8.2–28.0 | 18.2 ± 11.1 | 61.0 | 8.3–41.8 |
MZ | Clay (%) | Silt (%) | Sand (%) | SMC (%) | OM (%) | pH | P2O5 (mg·kg−1) | K2O (mg·kg−1) | DBS (%) | SEB (cmol·kg−1) | CEC (cmol·kg−1) |
---|---|---|---|---|---|---|---|---|---|---|---|
“White” | |||||||||||
Less | 12.2 a | 11.3 a | 76.5 a | 14.7 a | 1.2 a | 6.0 a | 204.7 a | 113.8 a | 34.0 a | 3.7 a | 14.2 a |
Inter. | 11.7 a | 12.2 a | 76.2 a | 18.2 b | 1.6 b | 6.6 b | 341.2 b | 134.5 b | 46.4 b | 5.9 b | 16.7 b |
More | 20.9 b | 17.4 b | 61.8 b | 19.8 c | 2.2 c | 7.0 c | 506.1 c | 107.8 a | 103.0 c | 15.1 c | 18.0 c |
“Red” | |||||||||||
Less | 10.8 a | 9.6 a | 79.6 a | 12.1 a | 0.9 a | 5.7 a | 38.0 a | 47.8 a | 23.2 a | 2.5 a | 15.1 a |
More | 18.5 b | 13.1 b | 68.5 b | 17.0 b | 1.2 b | 6.6 b | 19.9 b | 33.0 b | 99.5 b | 15.0 b | 21.3 b |
CI (kPa) | Vineyard “W” (White Grapes) | Vineyard “R” (Red Grapes) | ||
---|---|---|---|---|
MZ—Depth (cm) | Mean ± SD | Range | Mean ± SD | Range |
Less potential | ||||
0–15 | 1278 ± 632 | 440–2091 | 1872 ± 511 | 1169–2467 |
15–30 | 2502 ± 184 | 2256–2673 | 2513 ± 183 | 2283–2730 |
30–45 | 2550 ± 308 | 2078–2928 | 3316 ± 340 | 2973–3967 |
Intermediate | ||||
0–15 | 916 ± 639 | 172–1768 | – | – |
15–30 | 2072 ± 151 | 1941–2355 | – | – |
30–45 | 1698 ± 338 | 1265–2070 | – | – |
More potential | ||||
0–15 | 902 ± 281 | 405–1143 | 1081 ± 274 | 677–1393 |
15–30 | 1139 ± 98 | 1030–1298 | 1802 ± 224 | 1587–2199 |
30–45 | 1122 ± 92 | 970–1220 | 2240 ± 302 | 1759–2557 |
NDVI | Vineyard “W” (White Grapes) | Vineyard “R” (Red Grapes) | ||
---|---|---|---|---|
MZ—Date (2022) | Mean ± SD | Range | Mean ± SD | Range |
Less potential | ||||
24 May | 0.499 ± 0.030 | 0.469–0.538 | 0.446 ± 0.019 | 0.432–0.460 |
28 June | 0.467 ± 0.022 | 0.447–0.498 | 0.378 ± 0.037 | 0.352–0.404 |
28 July | 0.351 ± 0.015 | 0.343–0.374 | 0.306 ± 0.029 | 0.286–0.326 |
27 August | 0.353 ± 0.003 | 0.350–0.357 | 0.320 ± 0.027 | 0.300–0.339 |
Intermediate | ||||
24 May | 0.539 ± 0.018 | 0.527–0.559 | – | – |
28 June | 0.581 ± 0.047 | 0.527–0.613 | – | – |
28 July | 0.452 ± 0.046 | 0.400–0.485 | – | – |
27 August | 0.396 ± 0.010 | 0.384–0.402 | – | – |
More potential | ||||
24 May | 0.514 ± 0.022 | 0.488–0.526 | 0.483 ± 0.031 | 0.450–0.525 |
28 June | 0.521 ± 0.004 | 0.519–0.526 | 0.426 ± 0.042 | 0.381–0.474 |
28 July | 0.404 ± 0.003 | 0.400–0.405 | 0.331 ± 0.026 | 0.301–0.364 |
27 August | 0.395 ± 0.010 | 0.384–0.401 | 0.338 ± 0.023 | 0.311–0.362 |
NDWI | Vineyard “W” (White Grapes) | Vineyard “R” (Red Grapes) | ||
---|---|---|---|---|
MZ—Date (2022) | Mean ± SD | Range | Mean ± SD | Range |
Less potential | ||||
24 May | 0.126 ± 0.013 | 0.113–0.139 | 0.087 ± 0.013 | 0.078–0.097 |
28 June | 0.061 ± 0.018 | 0.038–0.082 | 0.012 ± 0.003 | 0.010–0.014 |
28 July | 0.016 ± 0.007 | 0.006–0.022 | −0.010 ± 0.002 | −0.012–(−0.009) |
27 August | 0.006 ± 0.005 | 0.000–0.013 | −0.008 ± 0.006 | −0.012–(−0.003) |
Intermediate | ||||
24 May | 0.108 ± 0.015 | 0.095–0.126 | – | – |
28 June | 0.117 ± 0.041 | 0.059–0.149 | – | – |
28 July | 0.063 ± 0.031 | 0.022–0.097 | – | – |
27 August | 0.029 ± 0.021 | −0.002–0.041 | – | – |
More potential | ||||
24 May | 0.131 ± 0.008 | 0.121–0.137 | 0.101 ± 0.019 | 0.073–0.115 |
28 June | 0.145 ± 0.014 | 0.137–0.165 | 0.041 ± 0.028 | 0.006–0.065 |
28 July | 0.088 ± 0.001 | 0.087–0.089 | 0.005 ± 0.017 | −0.017–0.020 |
27 August | 0.054 ± 0.003 | 0.051–0.056 | −0.003 ± 0.016 | −0.020–0.011 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Serrano, J.; Mau, V.; Rodrigues, R.; Paixão, L.; Shahidian, S.; Marques da Silva, J.; Paniagua, L.L.; Moral, F.J. Definition and Validation of Vineyard Management Zones Based on Soil Apparent Electrical Conductivity and Altimetric Survey. Environments 2023, 10, 117. https://doi.org/10.3390/environments10070117
Serrano J, Mau V, Rodrigues R, Paixão L, Shahidian S, Marques da Silva J, Paniagua LL, Moral FJ. Definition and Validation of Vineyard Management Zones Based on Soil Apparent Electrical Conductivity and Altimetric Survey. Environments. 2023; 10(7):117. https://doi.org/10.3390/environments10070117
Chicago/Turabian StyleSerrano, João, Vasco Mau, Rodrigo Rodrigues, Luís Paixão, Shakib Shahidian, José Marques da Silva, Luís L. Paniagua, and Francisco J. Moral. 2023. "Definition and Validation of Vineyard Management Zones Based on Soil Apparent Electrical Conductivity and Altimetric Survey" Environments 10, no. 7: 117. https://doi.org/10.3390/environments10070117
APA StyleSerrano, J., Mau, V., Rodrigues, R., Paixão, L., Shahidian, S., Marques da Silva, J., Paniagua, L. L., & Moral, F. J. (2023). Definition and Validation of Vineyard Management Zones Based on Soil Apparent Electrical Conductivity and Altimetric Survey. Environments, 10(7), 117. https://doi.org/10.3390/environments10070117