Modeling Cyanotoxin Production, Fate, and Transport in Surface Water Bodies Using CE-QUAL-W2
Abstract
:1. Introduction
2. Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chen, L.; Giesy, J.P.; Adamovsky, O.; Svirčev, Z.; Meriluoto, J.; Codd, G.A.; Mijovic, B.; Shi, T.; Tuo, X.; Li, S.-C.; et al. Challenges of using blooms of Microcystis spp. in animal feeds: A comprehensive review of nutritional, toxicological and microbial health evaluation. Sci. Total Environ. 2021, 764, 142319. [Google Scholar] [CrossRef] [PubMed]
- Fristachi, A.; Sinclair, J.L.; Hall, S.; Hambrook Berkman, J.A.; Boyer, G.; Burkholder, J.; Burns, J.; Carmichael, W.; DuFour, A.; Frazier, W.; et al. Occurrence of Cyanobacterial Harmful Algal Blooms Workgroup Report. In Cyanobacterial Harmful Algal Blooms: State of the Science and Research Needs; Hudnell, H.K., Ed.; Springer: New York, NY, USA, 2008; pp. 45–103. ISBN 978-0-387-75865-7. [Google Scholar]
- O’Neil, J.M.; Davis, T.W.; Burford, M.A.; Gobler, C.J. The rise of harmful cyanobacteria blooms: The potential roles of eutrophication and climate change. Harmful Algae 2012, 14, 313–334. [Google Scholar] [CrossRef]
- Paerl, H.W.; Gardner, W.S.; Havens, K.E.; Joyner, A.R.; McCarthy, M.J.; Newell, S.E.; Qin, B.; Scott, J.T. Mitigating cyanobacterial harmful algal blooms in aquatic ecosystems impacted by climate change and anthropogenic nutrients. Harmful Algae 2016, 54, 213–222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, I.-S.; Zimba, P.V. Cyanobacterial bioactive metabolites—A review of their chemistry and biology. Harmful Algae 2019, 83, 42–94. [Google Scholar] [CrossRef]
- United States Environmental Protection Agency (US EPA) Cyanobacteria and Cyanotoxins: Information for Drinking Water Systems, 2014, EPA-810F11001. Available online: https://www.epa.gov/sites/default/files/2014-08/documents/cyanobacteria_factsheet.pdf (accessed on 24 February 2020).
- United States Environmental Protection Agency (US EPA) Contaminant Candidate List 5—CCL 5. Available online: https://www.epa.gov/ccl/contaminant-candidate-list-5-ccl-5 (accessed on 5 December 2022).
- Buratti, F.M.; Manganelli, M.; Vichi, S.; Stefanelli, M.; Scardala, S.; Testai, E.; Funari, E. Cyanotoxins: Producing organisms, occurrence, toxicity, mechanism of action and human health toxicological risk evaluation. Arch. Toxicol. 2017, 91, 1049–1130. [Google Scholar] [CrossRef]
- Chorus, I.; Welker, M. Toxic Cyanobacteria in Water: A Guide to Their Public Health Consequences, Monitoring and Management, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2021; ISBN 978-1-00-308144-9. [Google Scholar]
- Cirés, S.; Ballot, A. A review of the phylogeny, ecology and toxin production of bloom-forming Aphanizomenon spp. and related species within the Nostocales (cyanobacteria). Harmful Algae 2016, 54, 21–43. [Google Scholar] [CrossRef]
- Corbel, S.; Mougin, C.; Bouaïcha, N. Cyanobacterial toxins: Modes of actions, fate in aquatic and soil ecosystems, phytotoxicity and bioaccumulation in agricultural crops. Chemosphere 2014, 96, 1–15. [Google Scholar] [CrossRef]
- Merel, S.; Walker, D.; Chicana, R.; Snyder, S.; Baurès, E.; Thomas, O. State of knowledge and concerns on cyanobacterial blooms and cyanotoxins. Environ. Int. 2013, 59, 303–327. [Google Scholar] [CrossRef]
- Pearson, L.A.; Dittmann, E.; Mazmouz, R.; Ongley, S.E.; D’Agostino, P.M.; Neilan, B.A. The genetics, biosynthesis and regulation of toxic specialized metabolites of cyanobacteria. Harmful Algae 2016, 54, 98–111. [Google Scholar] [CrossRef]
- Testai, E.; Scardala, S.; Vichi, S.; Buratti, F.M.; Funari, E. Risk to human health associated with the environmental occurrence of cyanobacterial neurotoxic alkaloids anatoxins and saxitoxins. Crit. Rev. Toxicol. 2016, 46, 385–419. [Google Scholar] [CrossRef]
- Ballot, A.; Krienitz, L.; Kotut, K.; Wiegand, C.; Pflugmacher, S. Cyanobacteria and cyanobacterial toxins in the alkaline crater lakes Sonachi and Simbi, Kenya. Harmful Algae 2005, 4, 139–150. [Google Scholar] [CrossRef]
- Preußel, K.; Chorus, I.; Fastner, J. Nitrogen Limitation Promotes Accumulation and Suppresses Release of Cylindrospermopsins in Cells of Aphanizomenon Sp. Toxins 2014, 6, 2932–2947. [Google Scholar] [CrossRef] [Green Version]
- Preußel, K.; Wessel, G.; Fastner, J.; Chorus, I. Response of cylindrospermopsin production and release in Aphanizomenon flos-aquae (Cyanobacteria) to varying light and temperature conditions. Harmful Algae 2009, 8, 645–650. [Google Scholar] [CrossRef]
- Rohrlack, T.; Hyenstrand, P. Fate of intracellular microcystins in the cyanobacterium Microcystis aeruginosa (Chroococcales, Cyanophyceae). Phycologia 2007, 46, 277–283. [Google Scholar] [CrossRef]
- Harris, T.D.; Graham, J.L. Predicting cyanobacterial abundance, microcystin, and geosmin in a eutrophic drinking-water reservoir using a 14-year dataset. Lake Reserv. Manag. 2017, 33, 32–48. [Google Scholar] [CrossRef]
- Grover, J.P.; Roelke, D.L.; Brooks, B.W. Modeling of plankton community dynamics characterized by algal toxicity and allelopathy: A focus on historical Prymnesium parvum blooms in a Texas reservoir. Ecol. Modell. 2012, 227, 147–161. [Google Scholar] [CrossRef]
- Grover, J.P.; Baker, J.W.; Roelke, D.L.; Brooks, B.W. Current Status of Mathematical Models for Population Dynamics of Prymnesium parvum in a Texas Reservoir. J. Am. Water Resour. Assoc. 2010, 46, 92–107. [Google Scholar] [CrossRef]
- Huo, X.; Chang, D.-W.; Tseng, J.-H.; Burch, M.D.; Lin, T.-F. Exposure of Microcystis aeruginosa to Hydrogen Peroxide under Light: Kinetic Modeling of Cell Rupture and Simultaneous Microcystin Degradation. Environ. Sci. Technol. 2015, 49, 5502–5510. [Google Scholar] [CrossRef]
- Jähnichen, S.; Long, B.M.; Petzoldt, T. Microcystin production by Microcystis aeruginosa: Direct regulation by multiple environmental factors. Harmful Algae 2011, 12, 95–104. [Google Scholar] [CrossRef]
- American Water Works Association AWWA Resources on Cyanobacteria/Cyanotoxins. Available online: https://www.awwa.org/Resources-Tools/Resource-Topics/Source-Water-Protection/Cyanobacteria-Cyanotoxins (accessed on 28 November 2022).
- Stanford, B.; Crafton, L.; Owen, C. A Digital Twin Model for Cyanotoxin Removal at Drinking Water Plants. Available online: https://www.hazenandsawyer.com/articles/a-digital-twin-model-for-cyanotoxin-removal-at-drinking-water-plants (accessed on 5 December 2022).
- Wells, S.A. CE-QUAL-W2 Hydrodynamic and Water Quality Model. Available online: https://cee.pdx.edu/w2/ (accessed on 20 December 2021).
- Wells, S.A. CE-QUAL-W2: A Two-Dimensional, Laterally Averaged, Hydrodynamic and Water Quality Model, Version 4.5; User Manual; Department of Civil and Environmental Engineering, Portland State University: Portland, OR, USA, 2021. [Google Scholar]
- Chapra, S.C. Surface Water-Quality Modeling; Waveland Press, Inc.: Long Grove, IL, USA, 2008; ISBN 978-1-57766-605-9. [Google Scholar]
- Halinen, K.; Jokela, J.; Fewer, D.P.; Wahlsten, M.; Sivonen, K. Direct Evidence for Production of Microcystins by Anabaena Strains from the Baltic Sea. Appl. Environ. Microbiol. 2007, 73, 6543–6550. [Google Scholar] [CrossRef] [Green Version]
- Long, B.M.; Jones, G.J.; Orr, P.T. Cellular Microcystin Content in N-Limited Microcystis aeruginosa Can Be Predicted from Growth Rate. Appl. Environ. Microbiol. 2001, 67, 278–283. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jähnichen, S.; Ihle, T.; Petzoldt, T.; Benndorf, J. Impact of Inorganic Carbon Availability on Microcystin Production by Microcystis aeruginosa PCC 7806. Appl. Environ. Microbiol. 2007, 73, 6994–7002. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Orr, P.T.; Jones, G.J. Relationship between microcystin production and cell division rates in nitrogen-limited Microcystis aeruginosa cultures. Limnol. Oceanogr. 1998, 43, 1604–1614. [Google Scholar] [CrossRef]
- Oh, H.-M.; Lee, S.J.; Jang, M.-H.; Yoon, B.-D. Microcystin Production by Microcystis aeruginosa in a Phosphorus-Limited Chemostat. Appl. Environ. Microbiol. 2000, 66, 176–179. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kosol, S.; Schmidt, J.; Kurmayer, R. Variation in peptide net production and growth among strains of the toxic cyanobacterium Planktothrix spp. Eur. J. Phycol. 2009, 44, 49–62. [Google Scholar] [CrossRef] [Green Version]
- Preußel, K.; Stüken, A.; Wiedner, C.; Chorus, I.; Fastner, J. First report on cylindrospermopsin producing Aphanizomenon flos-aquae (Cyanobacteria) isolated from two German lakes. Toxicon 2006, 47, 156–162. [Google Scholar] [CrossRef]
- Cirés, S.; Wörmer, L.; Timón, J.; Wiedner, C.; Quesada, A. Cylindrospermopsin production and release by the potentially invasive cyanobacterium Aphanizomenon ovalisporum under temperature and light gradients. Harmful Algae 2011, 10, 668–675. [Google Scholar] [CrossRef]
- Davis, T.W.; Orr, P.T.; Boyer, G.L.; Burford, M.A. Investigating the production and release of cylindrospermopsin and deoxy-cylindrospermopsin by Cylindrospermopsis raciborskii over a natural growth cycle. Harmful Algae 2014, 31, 18–25. [Google Scholar] [CrossRef]
- Harada, K.; Nagai, H.; Kimura, Y.; Suzuki, M.; Park, H.-D.; Watanabe, M.F.; Luukkainen, R.; Sivonen, K.; Carmichael, W.W. Liquid Chromatography/Mass Spectrometric Detection of Anatoxin-a, a Neurotoxin from Cyanobacteria. Tetrahedron 1993, 49, 9251–9260. [Google Scholar] [CrossRef]
- Ballot, A.; Fastner, J.; Lentz, M.; Wiedner, C. First report of anatoxin-a-producing cyanobacterium Aphanizomenon issatschenkoi in northeastern Germany. Toxicon 2010, 56, 964–971. [Google Scholar] [CrossRef]
- Gagnon, A.; Pick, F.R. Effect of nitrogen on cellular production and release of the neurotoxin anatoxin-a in a nitrogen-fixing cyanobacterium. Front. Microbiol. 2012, 3, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Aráoz, R.; Nghiêm, H.-O.; Rippka, R.; Palibroda, N.; de Marsac, N.T.; Herdman, M. Neurotoxins in axenic oscillatorian cyanobacteria: Coexistence of anatoxin-a and homoanatoxin-a determined by ligand-binding assay and GC/MS. Microbiology 2005, 151, 1263–1273. [Google Scholar] [CrossRef]
- Negri, A.P.; Jones, G.J. Bioaccumulation of paralytic shellfish poisoning (PSP) toxins from the cyanobacterium Anabaena circinalis by the freshwater mussel Alathyria condola. Toxicon 1995, 33, 667–678. [Google Scholar] [CrossRef] [PubMed]
- Velzeboer, R.M.A.; Baker, P.D.; Rositano, J.; Heresztyn, T.; Codd, G.A.; Raggett, S.L. Geographical patterns of occurrence and composition of saxitoxins in the cyanobacterial genus Anabaena (Nostocales, Cyanophyta) in Australia. Phycologia 2000, 39, 395–407. [Google Scholar] [CrossRef]
- Ongley, S.E.; Pengelly, J.J.L.; Neilan, B.A. Elevated Na+ and pH influence the production and transport of saxitoxin in the cyanobacteria Anabaena circinalis AWQC131C and Cylindrospermopsis raciborskii T3. Environ. Microbiol. 2016, 18, 427–438. [Google Scholar] [CrossRef]
- Tsuji, K.; Naito, S.; Kondo, F.; Ishikawa, N.; Watanabe, M.F.; Suzuki, M.; Harada, K. Stability of Microcystins from Cyanobacteria: Effect of Light on Decomposition and Isomerization. Environ. Sci. Technol. 1994, 28, 173–177. [Google Scholar] [CrossRef]
- León, C.; Boix, C.; Beltrán, E.; Peñuela, G.; López, F.; Sancho, J.V.; Hernández, F. Study of cyanotoxin degradation and evaluation of their transformation products in surface waters by LC-QTOF MS. Chemosphere 2019, 229, 538–548. [Google Scholar] [CrossRef]
- Edwards, C.; Graham, D.; Fowler, N.; Lawton, L.A. Biodegradation of microcystins and nodularin in freshwaters. Chemosphere 2008, 73, 1315–1321. [Google Scholar] [CrossRef]
- Chiswell, R.K.; Shaw, G.R.; Eaglesham, G.; Smith, M.J.; Norris, R.L.; Seawright, A.A.; Moore, M.R. Stability of Cylindrospermopsin, the Toxin from the Cyanobacterium, Cylindrospermopsis raciborskii: Effect of pH, Temperature, and Sunlight on Decomposition. Environ. Toxicol. 1999, 14, 155–161. [Google Scholar] [CrossRef]
- Smith, C.; Sutton, A. The Persistence of Anatoxin-a in Reservoir Water; Report No FR0427; Foundation for Water Research: Marlow, UK, 1993. [Google Scholar]
- Stevens, D.K.; Krieger, R.I. Stability studies on the cyanobacterial nicotinic alkaloid anatoxin-a. Toxicon 1991, 29, 167–179. [Google Scholar] [CrossRef]
- Pereira, P.; Dias, E.; Franca, S. Persistence of Paralytic Shellfish Toxins in Freshwater Environments. In Proceedings of the 10th International Conference on Harmful Algae, St. Pete Beach, FL, USA, 21–25 October 2002; Steidinger, K.A., Landsberg, J.H., Tomas, C.R., Vargo, G.A., Eds.; Florida Fish and Wildlife Conservation Commission, Florida Institute of Oceanography, and Intergovernmental Oceanographic Commission of UNESCO: St. Petersburg, FL, USA, 2004; pp. 166–168. [Google Scholar]
- Jones, G.J.; Negri, A.P. Persistence and degradation of cyanobacterial paralytic shellfish poisons (PSPs) in freshwaters. Water Res. 1997, 31, 525–533. [Google Scholar] [CrossRef]
- Wells, S.A.; Garstecki, B.; Berger, C.J.; Mansell, S. Tualatin River and Hagg Lake 2013–2020 Water Quality Model Development and Calibration. Department of Civil and Environmental Engineering. Portland State University: Portland, OR, USA, 2022; Unpublished work. [Google Scholar]
- Mansell, S.; Clean Water Services, Hillsboro, OR, USA. Personal communication, 2021.
Toxin | Microcystins | Cylindrospermopsins | Anatoxin-a | Saxitoxins |
---|---|---|---|---|
Toxin Type | Hepatotoxin | Cytotoxin | Neurotoxin | Neurotoxin |
Occurrence | Mostly found intracellularly. Extracellular portion likely due mainly to cell lysis. | High extracellular fractions observed. Extracellular portion likely due to active release from cells in addition to cell lysis. | Extracellular portion likely due mainly to cell lysis. | STX congeners may undergo reactions that can change their toxicity. |
Species | Ratio of Toxin to Dry Weight (μg Toxin g−1 DW) | Cell Quota (fg Toxin Cell−1) | Ratio of Toxin to Chlorophyll a (µg Toxin µg−1 chl a) | Percent Extracellular of Total Toxin (Intracellular + Extracellular) | References |
---|---|---|---|---|---|
Microcystins | |||||
Anabaena | 1300–3900 | [29] | |||
Microcystis aeruginosa | 1180–6470 | 0.59 | [30] | ||
Microcystis aeruginosa | 18–24 | 0.70–0.81 a | 21–47 | [31] | |
Microcystis aeruginosa | 1500–9500 b | 56–165 | [32] | ||
Microcystis aeruginosa | 555–1113 | [33] | |||
Planktothrix agardhii | 1170–4460 | 44–343 | 0–62 | [34] | |
Planktothrix rubescens | 320–4510 | 27–857 | 0–23 | [34] | |
Cylindrospermopsins | |||||
Aphanizomenon flos-aquae | 2300–6600 | [35] | |||
Aphanizomenon flos-aquae | 8–58 | [17] | |||
Aphanizomenon ovalisporum | 90–6370 | 2–191 | 0.01–0.53 | 23–64 | [36] |
Cylindrospermopsis raciborskii | 10–25 b | 14–50 | [37] | ||
Anatoxin-a | |||||
Anabaena circinalis | 1396 | [38] | |||
Anabaena flos-aquae | 1107–13,013 | [38] | |||
Aphanizomenon sp. | 1562 | [38] | |||
Aphanizomenon issatschenkoi | 100 | 21–39 | [39] | ||
Aphanizomenon issatschenkoi | 6–1683 | 3–47 | [40] | ||
Oscillatoria sp. | 4000 | [41] | |||
Oscillatoria sp. | 2713 | [38] | |||
Saxitoxins | |||||
Anabaena circinalis | 1580 c | [42] | |||
Anabaena circinalis | 7–2553 c | <1–1105 c | [43] | ||
Anabaena circinalis | 36–38 d | [44] | |||
Cylindrospermopsis raciborskii | 53–63 d | [44] |
Parameter | Toxin Degradation Rates a | References |
---|---|---|
Microcystins | ||
Sunlight and range of water-extractable pigment concentrations from 0–5 mg mL−1 | 0.006–0.159 day−1 (1–85% left after 29 days as estimated from figure in the cited reference) | [45] |
Artificial equivalence to approximately 20 days of natural sunlight in surface water | 0.071 day−1 (24% left after 144 h of light, equivalent to 20 days of natural sunlight) | [46] |
254 nm UV light at 250 W m−2 in surface water | 1326 day−1 (1% left after 5 min) | [46] |
Chlorination by 3.0 mg L−1 NaOCl in surface water | 798 day−1 (33% left after 2 min) | [46] |
Biodegradation in water samples | 0.039–0.173 day−1 (half-lives of 4–18 days) | [47] |
Cylindrospermopsins | ||
Natural sunlight | 4.2–11.1 day−1 (half-lives of 1.5 and 4 h for algal extract solutions) 0.046–0.063 day−1 (half-lives of 11 and 15 days for natural water samples) | [48] |
Range of artificial light from 9–42 μE m−2 s−1 with initial toxin concentrations of 1 and 4 mg L−1 | 0.005–0.025 day−1 (42–84% left after 5 weeks) | [48] |
Range of pH values from 4–10 with initial toxin concentrations of 1 and 4 mg L−1 | 0.004–0.005 day−1 (75–81% left after 8 weeks) | [48] |
Range of temperatures from 4–35 °C with initial toxin concentrations of 1 and 4 mg L−1 | 0.008–0.019 day−1 (77–89% left after 14 days) | [48] |
257 nm UV light at 300 mW m−2 | 10.3 day−1 (concentration decreased from 1.5 to 1.3 mg L−1 after 20 min) | [48] |
257 nm UV light at 400 mW m−2 | 0.924 day−1 (half-life of 18 h) | [48] |
Artificial equivalence to approximately 20 days of natural sunlight in surface water | 0.032 day−1 (53% left after 144 h of light, equivalent to 20 days of natural sunlight) | [46] |
254 nm UV light at 250 W m−2 in surface water | 27 day−1 (1% left after 250 min) | [46] |
Chlorination by 3.0 mg L−1 NaOCl in surface water | 2318 day−1 (4% left after 2 min) | [46] |
Anatoxin-a | ||
Normal pH conditions and microbes | 0.139 day−1 (half-life of 5 days) | [49] |
Natural sunlight at pH range of 6–12 in aqueous toxin solution | 3.0–10.4 day−1 (half-lives ranging between 96 and 330 min) | [50] |
Natural sunlight at pH of 9 in algal lysate solution | 1.4 day−1 (half-life of 690 min) | [50] |
Headspace purged with nitrogen at pH of 9 | 0.069 day−1 (half-life of 10 days) | [50] |
Headspace purged with oxygen at pH of 9 | 0.139 day−1 (half-life of 5 days) | [50] |
Saxitoxins | ||
Temperature of 20 °C and pH values of 7 or 9 in sterile water | 0.011 day−1 (total saxitoxins) | [51] |
Temperature of 30 °C and pH value of 7 in sterile water | 0.022 day−1 (total saxitoxins) | [51] |
Temperature of 20 °C in culture medium under different sterilization and deproteinization conditions | 0.089–0.240 day−1 (total saxitoxins) | [51] |
Sterile water at 25 °C | 0.015–0.033 day−1 (individual congeners) | [52] |
Irrigation drain water at 25 °C | 0.025–0.075 day−1 (individual congeners) | [52] |
Parameter | MC | CYN | ATX | STX |
---|---|---|---|---|
CTP, fraction of cyanobacteria concentration producing toxin | Water body dependent, determined by species present | |||
CTB, ratio of intracellular toxin to dry weight biomass (mg-toxin mg-DW−1) | 0.0005–0.01 | 0.0001–0.01 | 0.0001–0.015 | 0.0001–0.005 |
CTR, release rate day−1 | Approx. 0–1 times excretion rate | Approx. 0–2 times excretion rate | Approx. 0–1 times excretion rate | Approx. 0–1 times excretion rate |
CTD, extracellular decay day−1 | 0.01–0.2 | 0.001–0.1 | 0.05–1.0 | 0.01–0.1 |
Parameter | Scenario 1 | Scenario 2 | Scenario 3 | Scenario 4 | ||||
---|---|---|---|---|---|---|---|---|
MC | CYN | MC | CYN | MC | CYN | MC | CYN | |
CTP, fraction of cyanobacteria producing toxin, fraction | 0 | 0 | 0.1 | 0.3 | 0.1 | 0.3 | 0.1 | 0.3 |
CTB, ratio of intracellular toxin to dry weight biomass, fraction | 0 | 0 | 0.01 | 0.005 | 0.01 | 0.005 | 0.01 | 0.005 |
CTR, release rate, day−1 | 0 | 0 | 0 | 0 | 0.01 | 0.03 | 0.01 | 0.03 |
CTD, extracellular decay rate, day−1 | 0.1 | 0.05 | 0.1 | 0.05 | 0.1 | 0.05 | 0.1 | 0.05 |
Initial concentration | 10 ng mL−1 | 0 ng mL−1 | 0 ng mL−1 | 0 ng mL−1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garstecki, B.; Wells, S. Modeling Cyanotoxin Production, Fate, and Transport in Surface Water Bodies Using CE-QUAL-W2. Environments 2023, 10, 122. https://doi.org/10.3390/environments10070122
Garstecki B, Wells S. Modeling Cyanotoxin Production, Fate, and Transport in Surface Water Bodies Using CE-QUAL-W2. Environments. 2023; 10(7):122. https://doi.org/10.3390/environments10070122
Chicago/Turabian StyleGarstecki, Bernadel, and Scott Wells. 2023. "Modeling Cyanotoxin Production, Fate, and Transport in Surface Water Bodies Using CE-QUAL-W2" Environments 10, no. 7: 122. https://doi.org/10.3390/environments10070122
APA StyleGarstecki, B., & Wells, S. (2023). Modeling Cyanotoxin Production, Fate, and Transport in Surface Water Bodies Using CE-QUAL-W2. Environments, 10(7), 122. https://doi.org/10.3390/environments10070122