A Systematic Review of the Latest Research Trends on the Use of Satellite Imagery in Solid Waste Disposal Applications from 2012 to 2021
Abstract
:1. Introduction
2. Materials and Methods
2.1. Collected Studies
2.2. Data Processing and Screening
2.2.1. Irrelevant to the Integration of RS and WDS
2.2.2. Crewed-Aircraft-Based Data Collection
2.2.3. UAV-Based Data Collection
2.2.4. Unknown Satellite Imagery, Remote Measurements, and Review Papers
2.3. Further Investigated Articles
3. Results and Discussion
3.1. Satellite Based RS for WDS by Regions
3.2. Integrated Methods Used for RS in WDS Studies
3.3. Type of Application on WDS Studies from 2012 to 2021
3.4. Limitations
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
ASTER | Advanced Spaceborne Thermal Emission and Reflection Radiometer. |
AVIRIS-NG | Airborne Visible Infrared Imaging Spectrometer—Next Generation. |
CERES | Clouds and the Earth’s Radiant Energy System. |
GIS | Geographical Information System. |
LST | Land Surface Temperature. |
MISR | Multi-angle Imaging SpectroRadiometer. |
MODIS | Moderate Resolution Imaging Spectroradiometer. |
MOPITT | Measurement of Pollution in The Troposphere. |
NDVI | Normalized Difference Vegetation Index. |
RS | Remote Sensing. |
SAVI | Soil Adjusted Vegetation Index. |
SSWD | Suitable Site detection for Waste Disposal site. |
SWM | Solid Waste Management. |
UAV | Unmanned Aerial Vehicle. |
WDS | Waste Disposal Site. |
WDSA | Waste-Disposal-Site-Induced Anomaly detection. |
WDSD | Waste Disposal Site Detection. |
References
- Richter, A.; Ng, K.T.W.; Karimi, N. The role of compactness distribution on the development of regionalized waste management systems. J. Clean. Prod. 2021, 296, 126594. [Google Scholar] [CrossRef]
- Karimi, N.; Ng, K.T.W.; Richter, A. Development of a regional solid waste management framework and its application to a prairie province in central Canada. Sustain. Cities Soc. 2022, 82, 103904. [Google Scholar] [CrossRef]
- Singh, M.; Karimi, N.; Ng, K.T.W.; Mensah, D.; Stilling, D.; Adusei, K. Hospital waste generation during the first wave of COVID-19 pandemic: A case study in Delhi. Environ. Sci. Pollut. Res. 2022, 29, 50780–50789. [Google Scholar] [CrossRef] [PubMed]
- Espuny, M.; Neto, A.F.; Reis, J.S.D.M.; Neto, S.T.D.S.; Nunhes, T.V.; de Oliveira, O.J. Building new paths for responsible solid waste management. Environ. Monit. Assess. 2021, 193, 442. [Google Scholar] [CrossRef]
- Moustafa, S.S.; Al-Arifi, N.; Naeem, M.; Jafri, M.K. An integrated technique for delineating groundwater contaminated zones using geophysical and remote sensing techniques: A case study of Al-Quway’iyah, central Saudi Arabia. Can. J. Earth Sci. 2014, 51, 797–808. [Google Scholar] [CrossRef]
- Aouadi, A.; Samraoui, F.; Touati, L.; Nedjah, R.; Souiki, L.; Samraoui, B. Close to the Madding Crowd: Waterbird Responses to Land Use Conversion in and Around a Mediterranean Urban Wetland. Wetlands 2021, 41, 85. [Google Scholar] [CrossRef]
- Hawash, E.; El-Hassanin, A.; Amer, W.; El-Nahry, A.; Effat, H. Change detection and urban expansion of Port Sudan, Red Sea, using remote sensing and GIS. Environ. Monit. Assess. 2021, 193, 723. [Google Scholar] [CrossRef]
- Glenn, E.P.; Jarchow, C.J.; Waugh, W.J. Evapotranspiration dynamics and effects on groundwater recharge and discharge at an arid waste disposal site. J. Arid. Environ. 2016, 133, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Ibrahim, M.A. Risk of spontaneous and anthropogenic fires in waste management chain and hazards of secondary fires. Resour. Conserv. Recycl. 2020, 159, 104852. [Google Scholar] [CrossRef]
- van Rees, C.B.; Aragonés, D.; Bouten, W.; Thaxter, C.B.; Stienen, E.W.M.; Bustamante, J.; Green, A.J. Dynamic space use of Andalusian rice fields by Lesser Black-backed Gulls (Larus fuscus) is driven by flooding pattern. Ibis 2021, 163, 1252–1270. [Google Scholar] [CrossRef]
- Unger, D.; Bowes, C.; Farrish, K.; Hung, I.-K. Mapping oilfield brine-contaminated sites with mid-spatial resolution remotely sensed data. GIScience Remote Sens. 2013, 50, 623–632. [Google Scholar] [CrossRef]
- Alexakis, D.D.; Sarris, A.; Kalaitzidis, C.; Papadopoulos, N.; Soupios, P. Integrated use of satellite remote sensing, GIS, and ground spectroscopy techniques for monitoring olive oil mill waste disposal areas on the island of Crete, Greece. Int. J. Remote Sens. 2016, 37, 669–693. [Google Scholar] [CrossRef]
- Chen, Y.; Ng, K.T.W.; Richter, A.; Vu, H.L.; Karimi, N.; Xue, J. Spatial analysis of designated outdoor smoking areas: Accessibility and land use. J. Environ. Plan. Manag. 2021, 64, 689–702. [Google Scholar] [CrossRef]
- Karimi, N.; Ng, K.T.W.; Richter, A. Integrating Geographic Information System network analysis and nighttime light satellite imagery to optimize landfill regionalization on a regional level. Environ. Sci. Pollut. Res. 2022, 29, 81492–81504. [Google Scholar] [CrossRef]
- Abdollahi, A.; Yebra, M. Forest fuel type classification: Review of remote sensing techniques, constraints and future trends. J. Environ. Manag. 2023, 342, 118315. [Google Scholar] [CrossRef]
- Sikakwe, G.U. Mineral exploration employing drones, contemporary geological satellite remote sensing and geographical information system (GIS) procedures: A review. Remote Sens. Appl. Soc. Environ. 2023, 31, 100988. [Google Scholar] [CrossRef]
- Zhang, S.; Ma, J.; Zhang, X.; Guo, C. Atmospheric remote sensing for anthropogenic methane emissions: Applications and research opportunities. Sci. Total Environ. 2023, 893, 164701. [Google Scholar] [CrossRef]
- Richter, A.; Ng, K.T.W.; Karimi, N. A data driven technique applying GIS, and remote sensing to rank locations for waste disposal site expansion. Resour. Conserv. Recycl. 2019, 149, 352–362. [Google Scholar] [CrossRef]
- Ghosh, A.; Ng, K.T.W. Temporal and spatial distributions of waste facilities and solid waste management strategies in rural and urban Saskatchewan, Canada. Sustainability 2021, 13, 6887. [Google Scholar] [CrossRef]
- Ghosh, A.; Ng, K.T.W.; Karimi, N. An evaluation of the temporal and spatial evolution of waste facilities using a simplified spatial distance analytical framework. Environ. Dev. 2023, 45, 100820. [Google Scholar] [CrossRef]
- Hannan, M.; Al Mamun, A.; Hussain, A.; Basri, H.; Begum, R. A review on technologies and their usage in solid waste monitoring and management systems: Issues and challenges. Waste Manag. 2015, 43, 509–523. [Google Scholar] [CrossRef]
- Singh, A. Remote sensing and GIS applications for municipal waste management. J. Environ. Manag. 2019, 243, 22–29. [Google Scholar] [CrossRef]
- Gurjar, S.K.; Gaur, A. Application of remote sensing and GIS in integrated solid waste management-a short review. Adv. Org. Waste Manag. 2022, 351–362. [Google Scholar] [CrossRef]
- Karimi, N.; Ng, K.T.W.; Richter, A. Development and application of an analytical framework for mapping probable illegal dumping sites using nighttime light imagery and various remote sensing indices. Waste Manag. 2022, 143, 195–205. [Google Scholar] [CrossRef]
- Nima, K.; Amy, R.; Ng, K.T.W. Environmental and economic assessment of municipal landfill locations in Saskatchewan and Manitoba. In Proceedings of the Canadian Society of Civil Engineering Annual Conference 2021; Lecture Notes in Civil Engineering; Springer: Berlin/Heidelberg, Germany, 2023; Volume 249, pp. 155–162. [Google Scholar] [CrossRef]
- Richter, A.; Ng, K.T.; Karimi, N.; Wu, P.; Kashani, A.H. Optimization of waste management regions using recursive Thiessen polygons. J. Clean. Prod. 2019, 234, 85–96. [Google Scholar] [CrossRef]
- Richter, A.; Ng, K.T.W.; Karimi, N.; Li, R.Y.M. An iterative tessellation-based analytical approach to the design and planning of waste management regions. Comput. Environ. Urban Syst. 2021, 88, 101652. [Google Scholar] [CrossRef]
- Richter, A.; Ng, K.T.W.; Karimi, N. Meshing Centroidal Voronoi Tessellation with spatial statistics to optimize waste management regions. J. Clean. Prod. 2021, 295, 126465. [Google Scholar] [CrossRef]
- Lella, J.; Mandla, V.R.; Zhu, X. Solid waste collection/transport optimization and vegetation land cover estimation using Geographic Information System (GIS): A case study of a proposed smart-city. Sustain. Cities Soc. 2017, 35, 336–349. [Google Scholar] [CrossRef]
- Vu, H.L.; Ng, K.T.W.; Fallah, B.; Richter, A.; Kabir, G. Interactions of residential waste composition and collection truck compartment design on GIS route optimization. Waste Manag. 2020, 102, 613–623. [Google Scholar] [CrossRef]
- Dutta, D.; Goel, S. Applications of Remote Sensing and GIS in Solid Waste Management–A Review. In Advances in Solid and Hazardous Waste Management; Springer: Berlin/Heidelberg, Germany, 2017; pp. 133–151. [Google Scholar] [CrossRef]
- Ahmed, M.; Ahmad, S.; Tariq, M.; Fatima, Z.; Aslam, Z.; Raza, M.A.; Iqbal, N.; Akmal, M.; Hassan, F.-U.; Abbasi, N.A.; et al. Wastes to be the source of nutrients and energy to mitigate climate change and ensure future sustainability: Options and strategies. J. Plant Nutr. 2020, 43, 896–920. [Google Scholar] [CrossRef]
- Abdulhasan, M.J.; Hanafiah, M.M.; Satchet, M.S.; Abdulaali, H.S.; Toriman, M.E.; Al-Raad, A.A. Combining GIS, fuzzy logic and AHP models for solid waste disposal site selection in Nasiriyah, Iraq. Appl. Ecol. Environ. Res. 2019, 17, 6701–6722. [Google Scholar] [CrossRef]
- Dima, F.A.F.J.; Li, Z.; Mang, H.-P.; Zhu, L. Feasibility Analysis of Biogas Production by Using GIS and Multicriteria Decision Aid Methods in the Central African Republic. Sustainability 2022, 14, 13418. [Google Scholar] [CrossRef]
- Kapilan, S.; Elangovan, K. Potential landfill site selection for solid waste disposal using GIS and multi-criteria decision analysis (MCDA). J. Cent. South Univ. 2018, 25, 570–585. [Google Scholar] [CrossRef]
- Thelwall, M. Dimensions: A competitor to Scopus and the Web of Science? J. Inf. 2018, 12, 430–435. [Google Scholar] [CrossRef] [Green Version]
- Singh, V.K.; Singh, P.; Karmakar, M.; Leta, J.; Mayr, P. The journal coverage of Web of Science, Scopus and Dimensions: A comparative analysis. Scientometrics 2021, 126, 5113–5142. [Google Scholar] [CrossRef]
- Ho, Y.-S.; Fu, H.-Z. Mapping of metal-organic frameworks publications: A bibliometric analysis. Inorg. Chem. Commun. 2016, 73, 174–182. [Google Scholar] [CrossRef]
- Blanco, I.; Loisi, R.V.; Sica, C.; Schettini, E.; Vox, G. Agricultural plastic waste mapping using GIS. A case study in Italy. Resour. Conserv. Recycl. 2018, 137, 229–242. [Google Scholar] [CrossRef]
- Wang, L.; Chen, C.; Xie, F.; Hu, Z.; Zhang, Z.; Chen, H.; He, X.; Chu, Y. Estimation of the value of regional ecosystem services of an archipelago using satellite remote sensing technology: A case study of Zhoushan Archipelago, China. Int. J. Appl. Earth Obs. Geoinf. 2021, 105, 102616. [Google Scholar] [CrossRef]
- Glenn, E.P.; Mexicano, L.; Garcia-Hernandez, J.; Nagler, P.L.; Gomez-Sapiens, M.M.; Tang, D.; Lomeli, M.A.; Ramirez-Hernandez, J.; Zamora-Arroyo, F. Evapotranspiration and water balance of an anthropogenic coastal desert wetland: Responses to fire, inflows and salinities. Ecol. Eng. 2013, 59, 176–184. [Google Scholar] [CrossRef]
- Büyükcangaz, H.; Steele, D.D.; Tuscherer, S.R.; Hopkins, D.G.; Jia, X. Evapotranspiration mapping with METRIC to evaluate effectiveness of irrigation in flood mitigation for the Devils Lake Basin. Trans. ASABE 2017, 60, 1575–1591. [Google Scholar] [CrossRef]
- Ren, S.; Yang, X.; Wang, R.; Liu, S.; Sun, X. The Interaction between the LEO Satellite Constellation and the Space Debris Environment. Appl. Sci. 2021, 11, 9490. [Google Scholar] [CrossRef]
- Bertrand, R.; Alby, F.; Costes, T.; Dejoie, J.; Delmas, D.-R.; Delobette, D.; Gibek, I.; Gleyzes, A.; Masson, F.; Meyer, J.-R.; et al. Emergency end of life operations for CNES remote sensing satellites—Management and operational process. Acta Astronaut. 2012, 79, 79–87. [Google Scholar] [CrossRef]
- Cusworth, D.H.; Duren, R.M.; Thorpe, A.K.; Tseng, E.; Thompson, D.; Guha, A.; Newman, S.; Foster, K.T.; Miller, C.E. Using remote sensing to detect, validate, and quantify methane emissions from California solid waste operations. Environ. Res. Lett. 2020, 15, 054012. [Google Scholar] [CrossRef]
- Duren, R.M.; Thorpe, A.K.; Foster, K.T.; Rafiq, T.; Hopkins, F.M.; Yadav, V.; Bue, B.D.; Thompson, D.R.; Conley, S.; Colombi, N.K.; et al. California’s methane super-emitters. Nature 2019, 575, 180–184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guha, A.; Newman, S.; Fairley, D.; Dinh, T.M.; Duca, L.; Conley, S.C.; Smith, M.L.; Thorpe, A.K.; Duren, R.M.; Cusworth, D.H.; et al. Assessment of Regional Methane Emission Inventories through Airborne Quantification in the San Francisco Bay Area. Environ. Sci. Technol. 2020, 54, 9254–9264. [Google Scholar] [CrossRef] [PubMed]
- Emran, B.J.; Tannant, D.D.; Najjaran, H. Low-altitude aerial methane concentration mapping. Remote Sens. 2017, 9, 823. [Google Scholar] [CrossRef] [Green Version]
- Guimarães, C.C.; Barbosa, A.M.; Brasil, G.O.C. Visual interpretation of satellite and aerial images to identify and study the evolution of inadequate urban waste disposal sites. Detritus–Multidiscip. J. Waste Resour. Residues 2019, 6, 85–95. [Google Scholar] [CrossRef]
- Hollenbeck, D.; Zulevic, D.; Chen, Y. Advanced Leak Detection and Quantification of Methane Emissions Using sUAS. Drones 2021, 5, 117. [Google Scholar] [CrossRef]
- Fjelsted, L.; Christensen, A.; Larsen, J.; Kjeldsen, P.; Scheutz, C. Assessment of a landfill methane emission screening method using an unmanned aerial vehicle mounted thermal infrared camera–A field study. Waste Manag. 2019, 87, 893–904. [Google Scholar] [CrossRef]
- Tanda, G.; Balsi, M.; Fallavollita, P.; Chiarabini, V. A uav-based thermal-imaging approach for the monitoring of urban landfills. Inventions 2020, 5, 55. [Google Scholar] [CrossRef]
- Yin, Y.; Li, B.; Wang, W.; Zhan, L.; Xue, Q.; Gao, Y.; Zhang, N.; Chen, H.; Liu, T.; Li, A. Mechanism of the December 2015 Catastrophic Landslide at the Shenzhen Landfill and Controlling Geotechnical Risks of Urbanization. Engineering 2016, 2, 230–249. [Google Scholar] [CrossRef] [Green Version]
- Saffarzadeh, A.; Shimaoka, T.; Nakayama, H.; Hanashima, T.; Yamaguchi, K.; Manabe, K. Tasks and problems involved in the handling of disaster waste upon April 2016 Kumamoto Earthquake, Japan. Nat. Hazards 2017, 89, 1273–1290. [Google Scholar] [CrossRef]
- Ganesan, A.L.; Schwietzke, S.; Poulter, B.; Arnold, T.; Lan, X.; Rigby, M.; Vogel, F.; van der Werf, G.; Janssens-Maenhout, G.; Boesch, H.; et al. Advancing Scientific Understanding of the Global Methane Budget in Support of the Paris Agreement. Glob. Biogeochem. Cycles 2019, 33, 1475–1512. [Google Scholar] [CrossRef]
- Quesada-Ruiz, L.C.; Rodriguez-Galiano, V.; Jordá-Borrell, R. Characterization and mapping of illegal landfill potential occurrence in the Canary Islands. Waste Manag. 2019, 85, 506–518. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Yin, Y.; Li, B. Failure process simulation analysis of the Shenzhen “12.20” CDW landfill landslide: A case study. Arab. J. Geosci. 2021, 14, 1094. [Google Scholar] [CrossRef]
- Koo, S.; Song, Y.; Lim, S.H.; Oh, M.H.; Seo, S.N.; Baek, S. Development of a Remote Supervisory Control and Data Acquisition System for Offshore Waste Final Disposal Facility. J. Coast. Res. 2019, 90, 205–213. [Google Scholar] [CrossRef]
- Mahbub, P.; Noori, A.; Parry, J.S.; Davis, J.; Lucieer, A.; Macka, M. Continuous and real-time indoor and outdoor methane sensing with portable optical sensor using rapidly pulsed IR LEDs. Talanta 2020, 218, 121144. [Google Scholar] [CrossRef]
- Fredenslund, A.; Rees-White, T.; Beaven, R.; Delre, A.; Finlayson, A.; Helmore, J.; Allen, G.; Scheutz, C. Validation and error assessment of the mobile tracer gas dispersion method for measurement of fugitive emissions from area sources. Waste Manag. 2019, 83, 68–78. [Google Scholar] [CrossRef]
- NVIVO. Unlock Insights in Your Data with the Best Qualitative Data Analysis Software. 2022. Available online: https://www.qsrinternational.com/nvivo-qualitative-data-analysis-software/home (accessed on 10 April 2022).
- Bufoni, A.L.; Ferreira, A.C.D.S.; Oliveira, L.B. Waste management CDM projects barriers NVivo 10® qualitative dataset. Data Brief 2017, 15, 595–599. [Google Scholar] [CrossRef]
- Abbas, S.Y.; Kirwan, K.; Lu, D. Exploring Enablers and Barriers to Municipal Solid Waste (MSW) Management Technologies Adoption in the Kingdom of Bahrain. J. Environ. Prot. 2020, 11, 377–398. [Google Scholar] [CrossRef]
- Salsabila, L.; Purnomo, E.P.; Jovita, H.D. The Importance of Public Participation in Sustainable Solid Waste Management. J. Gov. Public Policy 2021, 8, 106–123. [Google Scholar] [CrossRef]
- Earth Observation. IRS-P6 Mission Databases. 2022. Available online: https://directory.eoportal.org/web/eoportal/satellite-missions/i/irs-p6 (accessed on 11 April 2022).
- European Space Agency (ESA). ERS Mission Background. 2022. Available online: https://earth.esa.int/eogateway/missions/ers/description (accessed on 11 April 2022).
- Senf, C.; Pflugmacher, D.; Zhiqiang, Y.; Sebald, J.; Knorn, J.; Neumann, M.; Hostert, P.; Seidl, R. Canopy mortality has doubled in Europe’s temperate forests over the last three decades. Nat. Commun. 2018, 9, 4978. [Google Scholar] [CrossRef] [Green Version]
- Ceccherini, G.; Duveiller, G.; Grassi, G.; Lemoine, G.; Avitabile, V.; Pilli, R.; Cescatti, A. Abrupt increase in harvested forest area over Europe after 2015. Nature 2020, 583, 72–77. [Google Scholar] [CrossRef] [PubMed]
- Heinrich, V.H.A.; Dalagnol, R.; Cassol, H.L.G.; Rosan, T.M.; de Almeida, C.T.; Junior, C.H.L.S.; Campanharo, W.A.; House, J.I.; Sitch, S.; Hales, T.C.; et al. Large carbon sink potential of secondary forests in the Brazilian Amazon to mitigate climate change. Nat. Commun. 2021, 12, 1785. [Google Scholar] [CrossRef] [PubMed]
- United States Geological Survey (USGS). Landsat Missions. 2022. Available online: https://www.usgs.gov/landsat-missions (accessed on 11 April 2022).
- European Space Agency (ESA). The Sentinel Missions. 2022. Available online: https://www.esa.int/Applications/Observing_the_Earth/Copernicus/The_Sentinel_missions (accessed on 11 April 2022).
- NASA. Terra Instruments. 2022. Available online: https://terra.nasa.gov/about/terra-instruments (accessed on 12 April 2022).
- NASA. Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER). 2022. Available online: https://terra.nasa.gov/about/terra-instruments/aster (accessed on 12 April 2022).
- European Space Agency (ESA). GEOEYE-1 Mission. 2022. Available online: https://earth.esa.int/eogateway/missions/geoeye-1 (accessed on 12 April 2022).
- Sentinel Hub. Sentinel Hub Public Collections. 2022. Available online: https://collections.sentinel-hub.com/worldview-geoeye/ (accessed on 15 April 2022).
- Sarp, G.; Ozcelik, M. Evaluation of an abandoned aggregate quarry used for uncontrolled waste disposal using remote sensing technologies (Atabey, Isparta-Turkey). Arab. J. Geosci. 2018, 11, 557. [Google Scholar] [CrossRef]
- Karimi, N.; Ng, K.T.W.; Richter, A. Prediction of fugitive landfill gas hotspots using a random forest algorithm and Sentinel-2 data. Sustain. Cities Soc. 2021, 73, 103097. [Google Scholar] [CrossRef]
- Trinh, L.H.; Zablotskii, V.R.; Vu, D.T.; Zenkov, I.V.; Tong, T.H. Mapping and Assessing Landfills Surface Temperature Using Landsat 8 Satellite Data. A Case Study in Vietnam. Izv. Atmos. Ocean. Phys. 2021, 57, 1098–1107. [Google Scholar] [CrossRef]
- Agapiou, A.; Papadopoulos, N.; Sarris, A. Detection of olive oil mill waste (OOMW) disposal areas using high resolution GeoEye’s OrbView-3 and Google Earth images. Open Geosci. 2016, 8, 700–710. [Google Scholar] [CrossRef]
- Chen, Q.; Cheng, Q.; Wang, J.; Du, M.; Zhou, L.; Liu, Y. Identification and evaluation of urban construction waste with VHR remote sensing using multi-feature analysis and a hierarchical segmentation method. Remote Sens. 2021, 13, 158. [Google Scholar] [CrossRef]
- EPA (United States Environmental Protection Agency). Landfill Methane Outreach Program (LMOP). 2022. Available online: https://www.epa.gov/lmop (accessed on 13 April 2022).
- Yan, W.Y.; Mahendrarajah, P.; Shaker, A.; Faisal, K.; Luong, R.; Al-Ahmad, M. Analysis of multi-temporal landsat satellite images for monitoring land surface temperature of municipal solid waste disposal sites. Environ. Monit. Assess. 2014, 186, 8161–8173. [Google Scholar] [CrossRef]
- Nazari, R.; Alfergani, H.; Haas, F.; Karimi, M.E.; Fahad, G.R.; Sabrin, S.; Everett, J.; Bouaynaya, N.; Peters, R.W. Application of satellite remote sensing in monitoring elevated internal temperatures of landfills. Appl. Sci. 2020, 10, 6801. [Google Scholar] [CrossRef]
- Karimi, N.; Ng, K.T.W.; Richter, A.; Williams, J.; Ibrahim, H. Thermal heterogeneity in the proximity of municipal solid waste landfills on forest and agricultural lands. J. Environ. Manag. 2021, 287, 112320. [Google Scholar] [CrossRef]
- Elhag, M.; Bahrawi, J.A. Spatial assessment of landfill sites based on remote sensing and GIS techniques in Taga-rades, Greece. Desalination Water Treat. 2017, 91, 395–401. Available online: http://uest.ntua.gr/cyprus2016/proceedings/pdf/Elhag_spatial_assessment_landfill_Thermi.pdf (accessed on 15 April 2022).
- Akintorinwa, O.J.; Okoro, O.V. Combine electrical resistivity method and multi-criteria GIS-based modeling for landfill site selection in the Southwestern Nigeria. Environ. Earth Sci. 2019, 78, 162. [Google Scholar] [CrossRef]
- Pandey, P.C.; Sharma, L.K.; Nathawat, M.S. Geospatial strategy for sustainable management of municipal solid waste for growing urban environment. Environ. Monit. Assess. 2012, 184, 2419–2431. [Google Scholar] [CrossRef]
- Monsef, H.A.-E.; Smith, S.E. Integrating remote sensing, geographic information system, and analytical hierarchy process for hazardous waste landfill site selection. Arab. J. Geosci. 2019, 12, 155. [Google Scholar] [CrossRef]
- Vambol, S.; Vambol, V.; Sundararajan, M.; Ansari, I. The nature and detection of unauthorized waste dump sites using remote sensing. Ecol. Quest. 2019, 30, 43–55. [Google Scholar] [CrossRef]
- Kamh, S.; Ashmawy, M.; Kilias, A.; Christaras, B. Evaluating urban land cover change in the Hurghada area, Egypt, by using GIS and remote sensing. Int. J. Remote Sens. 2012, 33, 41–68. [Google Scholar] [CrossRef]
- Yoshida, K.; Okuoka, K.; Miatto, A.; Schebek, L.; Tanikawa, H. Estimation of mining and landfilling activities with associated overburden through satellite data: Germany 2000–2010. Resources 2019, 8, 126. [Google Scholar] [CrossRef] [Green Version]
- Gill, J.; Faisal, K.; Shaker, A.; Yan, W.Y. Detection of waste dumping locations in landfill using multi-temporal Landsat thermal images. Waste Manag. Res. J. Sustain. Circ. Econ. 2019, 37, 386–393. [Google Scholar] [CrossRef] [Green Version]
- Al-Ruzouq, R.; Shanableh, A.; Omar, M.; Al-Khayyat, G. Macro and micro geo-spatial environment consideration for landfill site selection in Sharjah, United Arab Emirates. Environ. Monit. Assess. 2018, 190, 147. [Google Scholar] [CrossRef]
- Lyimo, N.N.; Shao, Z.; Ally, A.M.; Twumasi, N.Y.D.; Altan, O.; Sanga, C.A. A Fuzzy Logic-Based Approach for Modelling Uncertainty in Open Geospatial Data on Landfill Suitability Analysis. ISPRS Int. J. Geo-Inf. 2020, 9, 737. [Google Scholar] [CrossRef]
- Vishnuvardhan, K.; Elangovan, K. Application of remote sensing and GIS for identifying suitable sites for solid waste disposal in Erode Corporation. NISCAIR-CSIR 2020, 1479–1485. Available online: http://nopr.niscair.res.in/handle/123456789/55297 (accessed on 15 April 2022).
- Karabulut, A.I.; Yazici-Karabulut, B.; Derin, P.; Yesilnacar, M.I.; Cullu, M.A. Landfill siting for municipal solid waste using remote sensing and geographic information system integrated analytic hierarchy process and simple additive weighting methods from the point of view of a fast-growing metropolitan area in GAP area of Turkey. Environ. Sci. Pollut. Res. 2021, 29, 4044–4061. [Google Scholar] [CrossRef]
- Shah, S.A.; Musavi, S.H.A.; Tameez, A.; Alam, M.; Nawaz, A. Analyzing site suitability for solid waste disposal through GIS multi-criteria decision-making hierarchy process. 3c Tecnol. Glosas Innovación Apl. Pyme 2018, 7, 65–80. [Google Scholar] [CrossRef]
- Karimi, N.; Richter, A.; Ng, K.T.W. Siting and ranking municipal landfill sites in regional scale using nighttime satellite imagery. J. Environ. Manag. 2020, 256, 109942. [Google Scholar] [CrossRef] [PubMed]
- Othman, A.A.; Obaid, A.K.; Al-Manmi, D.A.M.; Pirouei, M.; Salar, S.G.; Liesenberg, V.; Al-Maamar, A.F.; Shihab, A.T.; Al-Saady, Y.I.; Al-Attar, Z.T. Insights for Landfill Site Selection Using GIS: A Case Study in the Tanjero River Basin, Kurdistan Region, Iraq. Sustainability 2021, 13, 12602. [Google Scholar] [CrossRef]
- Monsef, H.A.-E. Optimization of municipal landfill siting in the Red Sea coastal desert using geographic information system, remote sensing and an analytical hierarchy process. Environ. Earth Sci. 2015, 74, 2283–2296. [Google Scholar] [CrossRef]
- Mallick, J. Municipal solid waste landfill site selection based on fuzzy-AHP and geoinformation techniques in Asir Region Saudi Arabia. Sustainability 2021, 13, 1538. [Google Scholar] [CrossRef]
- Abu Qdais, H.; Shatnawi, N. Assessing and predicting landfill surface temperature using remote sensing and an artificial neural network. Int. J. Remote Sens. 2019, 40, 9556–9571. [Google Scholar] [CrossRef]
- Liu, Y.; Zhi, W.; Xu, B.; Xu, W.; Wu, W. Detecting high-temperature anomalies from Sentinel-2 MSI images. ISPRS J. Photogramm. Remote Sens. 2021, 177, 174–193. [Google Scholar] [CrossRef]
- Mahmood, K.; Batool, S.A.; Chaudhry, M.N. Studying bio-thermal effects at and around MSW dumps using Satellite Remote Sensing and GIS. Waste Manag. 2016, 55, 118–128. [Google Scholar] [CrossRef] [PubMed]
- Mahmood, K.; Ul-Haq, Z.; Faizi, F.; Batol, S.A. A comparison of satellite-based indices for hazard assessment of MSW open dumps using spatial analysis. Waste Manag. Res. J. Sustain. Circ. Econ. 2019, 37, 219–236. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mahmood, K.; Ul-Haq, Z.; Faizi, F.; Tariq, S.; Naeem, M.A.; Rana, A.D. Monitoring open dumping of municipal waste in Gujranwala, Pakistan using a combination of satellite based bio-thermal indicators and GIS analysis. Ecol. Indic. 2019, 107, 105613. [Google Scholar] [CrossRef]
- Simioni, J.P.D.; Guasselli, L.A.; Ruiz, L.F.C.; Nascimento, V.F.; De Oliveira, G. Small inner marsh area delimitation using remote sensing spectral indexes and decision tree method in southern Brazil. Rev. Teledetección 2018, 52, 55–66. [Google Scholar] [CrossRef] [Green Version]
- Aljammaz, A.; Sultan, M.; Izadi, M.; Abotalib, A.Z.; Elhebiry, M.S.; Emil, M.K.; Abdelmohsen, K.; Saleh, M.; Becker, R. Land subsidence induced by rapid urbanization in arid environments: A remote sensing-based investigation. Remote Sens. 2021, 13, 1109. [Google Scholar] [CrossRef]
- El Maguiri, A.; Souabi, S. Geomatic tools for sustainable planning: Application for locating appropriate landfills. Proc. Inst. Civ. Eng.-Munic. Eng. 2021, 174, 211–230. [Google Scholar] [CrossRef]
- Manzo, C.; Mei, A.; Zampetti, E.; Bassani, C.; Paciucci, L.; Manetti, P. Top-down approach from satellite to terrestrial rover application for environmental monitoring of landfills. Sci. Total Environ. 2017, 584–585, 1333–1348. [Google Scholar] [CrossRef]
- Requena-Sanchez, N.; Carbonel-Ramos, D.; Moonsammy, S.; Klaus, R.; Punil, L.S.; Ng, K.T.W. Virtual Methodology for Household Waste Characterization during the Pandemic in An Urban District of Peru: Citizen Science for Waste Management. Environ. Manag. 2022, 69, 1078–1090. [Google Scholar] [CrossRef]
- Requena-Sanchez, N.; Carbonel, D.; Moonsammy, S.; Demel, L.; Vallester, E.; Velásquez, D.; Cervantes, J.A.T.; Núñez, V.L.D.; García, R.V.; Cruz, M.S.; et al. COVID-19 impacts on household solid waste generation in six Latin American countries: A participatory approach. Environ. Monit. Assess. 2023, 195, 155. [Google Scholar] [CrossRef]
- Richter, A.; Ng, K.T.W.; Vu, H.L.; Kabir, G. Identification of behaviour patterns in waste collection and disposal during the first wave of COVID-19 in Regina, Saskatchewan, Canada. J. Environ. Manag. 2021, 290, 112663. [Google Scholar] [CrossRef] [PubMed]
- Richter, A.; Ng, K.T.W.; Vu, H.L.; Kabir, G. Waste disposal characteristics and data variability in a mid-sized Canadian city during COVID-19. Waste Manag. 2021, 122, 49–54. [Google Scholar] [CrossRef] [PubMed]
- Vu, H.L.; Ng, K.T.W.; Richter, A.; Karimi, N.; Kabir, G. Modeling of municipal waste disposal rates during COVID-19 using separated waste fraction models. Sci. Total Environ. 2021, 789, 148024. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karimi, N.; Ng, K.T.W.; Mahmud, T.S.; Adusei, K.K.; Kerr, S. A Systematic Review of the Latest Research Trends on the Use of Satellite Imagery in Solid Waste Disposal Applications from 2012 to 2021. Environments 2023, 10, 128. https://doi.org/10.3390/environments10070128
Karimi N, Ng KTW, Mahmud TS, Adusei KK, Kerr S. A Systematic Review of the Latest Research Trends on the Use of Satellite Imagery in Solid Waste Disposal Applications from 2012 to 2021. Environments. 2023; 10(7):128. https://doi.org/10.3390/environments10070128
Chicago/Turabian StyleKarimi, Nima, Kelvin Tsun Wai Ng, Tanvir Shahrier Mahmud, Kenneth K. Adusei, and Samantha Kerr. 2023. "A Systematic Review of the Latest Research Trends on the Use of Satellite Imagery in Solid Waste Disposal Applications from 2012 to 2021" Environments 10, no. 7: 128. https://doi.org/10.3390/environments10070128
APA StyleKarimi, N., Ng, K. T. W., Mahmud, T. S., Adusei, K. K., & Kerr, S. (2023). A Systematic Review of the Latest Research Trends on the Use of Satellite Imagery in Solid Waste Disposal Applications from 2012 to 2021. Environments, 10(7), 128. https://doi.org/10.3390/environments10070128