Valorization of Acid Mine Drainage into an Iron Catalyst to Initiate the Solar Photo-Fenton Treatment of Municipal Wastewater
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Experimental Procedure
2.3. Analytical Methods
2.3.1. Solid Characterization
2.3.2. Aqueous Characterization
3. Results and Discussion
3.1. AMD-Recovered Catalyst
3.1.1. Map Sum Spectrums
3.1.2. Microstructural Morphology from Transmission Electron Microscopy
3.1.3. Focused Ion Beam Scanning Electron Microscopy
3.1.4. Mapping of Elemental Distribution Using EDS
3.2. Photo-Fenton Treatment Process Using AMD-Recovered Catalysts
3.3. AMD Catalyzed Photo-Fenton Reaction
3.4. Effect of H2O2 Concentration
3.5. Effect of Influent’s Organic Content
3.6. Treatment of Real Municipal Wastewater Catalyzed by AMD
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Masindi, V.; Akinwekomi, V.; Maree, J.; Muedi, K. Comparison of mine water neutralisation efficiencies of different alkaline generating agents. J. Environ. Chem. Eng. 2017, 5, 3903–3913. [Google Scholar] [CrossRef]
- Seo, J.; Kwon, D.; Yoon, T.H.; Jung, J. Potential risks of the natural nanoparticles from the acid mine drainage and a novel approach for their toxicity assessment. Toxicol. Environ. Health Sci. 2010, 2, 215–220. [Google Scholar] [CrossRef]
- Talukdar, B.; Kalita, H.; Baishya, R.; Basumatary, S.; Sarma, D. Evaluation of genetic toxicity caused by acid mine drainage of coal mines on fish fauna of Simsang River, Garohills, Meghalaya, India. Ecotoxicol. Environ. Saf. 2016, 131, 65–71. [Google Scholar] [CrossRef] [PubMed]
- Masindi, V.; Osman, M.S.; Shingwenyana, R. Valorization of acid mine drainage (AMD): A simplified approach to reclaim drinking water and synthesize valuable minerals—Pilot study. J. Environ. Chem. Eng. 2019, 7, 103082. [Google Scholar] [CrossRef]
- Wang, Z.; Xu, Y.; Zhang, Z.; Zhang, Y. Review: Acid Mine Drainage (AMD) in Abandoned Coal Mines of Shanxi, China. Water 2021, 13, 8. [Google Scholar] [CrossRef]
- Armstrong, D.A.; Huie, R.E.; Lymar, S.; Koppenol, W.H.; Merényi, G.; Neta, P.; Ruscic, B.; Stanbury, D.M.; Steenken, S.; Wardman, P. Standard Electrode Potentials Involving Radicals in Aqueous Solution: Inorganic Radicals. BioInorganic React. Mech. 2013, 9, 59–61. [Google Scholar] [CrossRef] [Green Version]
- Kefeni, K.K.; Msagati, T.A.M.; Mamba, B.B. Acid mine drainage: Prevention, treatment options, and resource recovery: A review. J. Clean. Prod. 2017, 151, 475–493. [Google Scholar] [CrossRef]
- Yuan, J.; Ding, Z.; Bi, Y.; Li, J.; Wen, S.; Bai, S. Resource Utilization of Acid Mine Drainage (AMD): A Review. Water 2022, 14, 2385. [Google Scholar] [CrossRef]
- Masindi, V.; Foteinis, S.; Renforth, P.; Ndiritu, J.; Maree, J.P.; Tekere, M.; Chatzisymeon, E. Challenges and avenues for acid mine drainage treatment, beneficiation, and valorisation in circular economy: A review. Ecol. Eng. 2022, 183, 106740. [Google Scholar] [CrossRef]
- Akinwekomi, V.; Maree, J.P.; Masindi, V.; Zvinowanda, C.; Osman, M.S.; Foteinis, S.; Mpenyana-Monyatsi, L.; Chatzisymeon, E. Beneficiation of acid mine drainage (AMD): A viable option for the synthesis of goethite, hematite, magnetite, and gypsum—Gearing towards a circular economy concept. Miner. Eng. 2020, 148, 106204. [Google Scholar] [CrossRef]
- Fonseka, C.; Ryu, S.; Naidu, G.; Kandasamy, J.; Vigneswaran, S. Recovery of water and valuable metals using low pressure nanofiltration and sequential adsorption from acid mine drainage. Environ. Technol. Innov. 2022, 28, 102753. [Google Scholar] [CrossRef]
- Menzel, K.; Barros, L.; Garcia, A.; Ruby-Figueroa, R.; Estay, H. Metal sulfide precipitation coupled with membrane filtration process for recovering copper from acid mine drainage. Sep. Purif. Technol. 2021, 270, 118721. [Google Scholar] [CrossRef]
- León, R.; Macias, F.; Canovas, C.R.; Perez-Lopez, R.; Ayora, C.; Nieto, J.M.; Olias, M. Mine waters as a secondary source of rare earth elements worldwide: The case of the Iberian Pyrite Belt. J. Geochem. Explor. 2021, 224, 106742. [Google Scholar] [CrossRef]
- Bahmani, P.; Maleki, A.; Ghahramani, E.; Rashidi, A. Decolorization of the dye reactive black 5 using Fenton oxidation. Afr. J. Biotechnol. 2013, 12, 4115–4122. [Google Scholar]
- Muhammad, A.; Shafeeq, A.; Butt, M.; Rizvi, Z.; Chughtai, M.; Rehman, S. Decolorization and removal of cod and bodfrom raw and biotreated textile dye bath effluent through advanced oxidation processes (AOPS). Braz. J. Chem. Eng. 2008, 25, 453–459. [Google Scholar] [CrossRef]
- Neamtu, M.; Yediler, A.; Siminiceanu, I.; Macoveanu, M.; Kettrup, A. Decolorization of disperse red 354 azo dye in water by several oxidation processes—A comparative study. Dye. Pigment. 2004, 60, 61–68. [Google Scholar] [CrossRef]
- Nidheesh, P.; Gandhimathi, R. Trends in electro-Fenton process for water and wastewater treatment: An overview. Desalination 2012, 299, 1–15. [Google Scholar] [CrossRef]
- Tantak, N.P.; Chaudhari, S. Degradation of azo dyes by sequential Fenton’s oxidation and aerobic biological treatment. J. Hazard. Mater. 2006, 136, 698–705. [Google Scholar] [CrossRef]
- Lima, J.P.P.; Tabelini, C.H.B.; Aguiar, A. A Review of Gallic Acid-Mediated Fenton Processes for Degrading Emerging Pollutants and Dyes. Molecules 2023, 28, 1166. [Google Scholar] [CrossRef]
- Klamerth, N.; Malato, S.; Maldonado, M.; Aguera, A.; Fernandez-Alba, A. Modified photo-Fenton for degradation of emerging contaminants in municipal wastewater effluents. Catal. Today 2011, 161, 241–246. [Google Scholar] [CrossRef]
- Marcelino, R.; Queiroz, M.; Amorim, C.; Leao, M.; Brites-Nobrega, F. Solar energy for wastewater treatment: Review of international technologies and their applicability in Brazil. Environ. Sci. Pollut. Res. 2015, 22, 762–773. [Google Scholar] [CrossRef] [PubMed]
- Tony, M.A.; Lin, L.-S. Performance of acid mine drainage sludge as an innovative catalytic oxidation source for treating vehicle-washing wastewater. J. Dispers. Sci. Technol. 2022, 43, 50–60. [Google Scholar] [CrossRef]
- Masindi, V.; Foteinis, S.; Chatzisymeon, E. Co-treatment of acid mine drainage and municipal wastewater effluents: Emphasis on the fate and partitioning of chemical contaminants. J. Hazard. Mater. 2022, 421, 126677. [Google Scholar] [CrossRef] [PubMed]
- Akinwekomi, V.; Maree, J.; Zvinowanda, C.; Masindi, V. Synthesis of magnetite from iron-rich mine water using sodium carbonate. J. Environ. Chem. Eng. 2017, 5, 2699–2707. [Google Scholar] [CrossRef]
- Masindi, V.; Osman, M.S.; Mbhele, R.N.; Rikhotso, R. Fate of pollutants post treatment of acid mine drainage with basic oxygen furnace slag: Validation of experimental results with a geochemical model. J. Clean. Prod. 2018, 172, 2899–2909. [Google Scholar] [CrossRef]
- Ali, N.S.; Kalash, K.R.; Ahmed, A.N.; Albayati, T.M. Performance of a solar photocatalysis reactor as pretreatment for wastewater via UV, UV/TiO2, and UV/H2O2 to control membrane fouling. Sci. Rep. 2022, 12, 16782. [Google Scholar] [CrossRef]
- Dashairya, L.; Sharma, S.; Rathi, A.; Saha, P.; Basu, S. Solar-light-driven photocatalysis by Sb2S3/carbon based composites towards degradation of noxious organic pollutants. Mater. Chem. Phys. 2021, 273, 125120. [Google Scholar] [CrossRef]
- Mancuso, A.; Morante, N.; De Carluccio, M.; Sacco, O.; Rizzo, L.; Fontana, M.; Esposito, S.; Vaiano, V.; Sannino, D. Solar driven photocatalysis using iron and chromium doped TiO2 coupled to moving bed biofilm process for olive mill wastewater treatment. Chem. Eng. J. 2022, 450, 138107. [Google Scholar] [CrossRef]
Synthetic Wastewater (SWW) | |||
---|---|---|---|
Composition | Physicochemical Characteristics | ||
Chemical Compound | Concentration (mg/L) | Property | Value |
C2H9NaO5 | 1500 | pH | 7.08 |
NH4Cl | 400 | COD | 768 mg/L |
K2HPO4 | 21 | ||
FeSO4.7H2O | 10 | ||
MgSO4.7H2O | 12 | ||
CaCl2.2H2O | 14 |
Property | Acid Mine Drainage (AMD) | Municipal Wastewater (MWW) |
---|---|---|
pH | 2.6 | 12.2 |
COD | 111 mg/L | 255 mg/L |
Total solids | 29.19 mg/L | 1.68 mg/L |
Iron | 4652.1 mg/L | 0.03 mg/L |
Calcium | 562.4 mg/L | 11.05 mg/L |
Magnesium | 481.9 mg/L | 0.43 mg/L |
Manganese | 94.25 mg/L | 0.00237 mg/L |
Zinc | 9.12 mg/L | 0.00715 mg/L |
Copper | 5.98 mg/L | 0.00281 mg/L |
Cobalt | 1.22 mg/L | 0.0012 mg/L |
Arsenic | - | 0.00424 mg/L |
Cadmium | 0.02 mg/L | <0.0015 mg/L |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aslam, T.; Masindi, V.; Ahmad, A.A.; Chatzisymeon, E. Valorization of Acid Mine Drainage into an Iron Catalyst to Initiate the Solar Photo-Fenton Treatment of Municipal Wastewater. Environments 2023, 10, 132. https://doi.org/10.3390/environments10080132
Aslam T, Masindi V, Ahmad AA, Chatzisymeon E. Valorization of Acid Mine Drainage into an Iron Catalyst to Initiate the Solar Photo-Fenton Treatment of Municipal Wastewater. Environments. 2023; 10(8):132. https://doi.org/10.3390/environments10080132
Chicago/Turabian StyleAslam, Tooba, Vhahangwele Masindi, Abdulbari A. Ahmad, and Efthalia Chatzisymeon. 2023. "Valorization of Acid Mine Drainage into an Iron Catalyst to Initiate the Solar Photo-Fenton Treatment of Municipal Wastewater" Environments 10, no. 8: 132. https://doi.org/10.3390/environments10080132
APA StyleAslam, T., Masindi, V., Ahmad, A. A., & Chatzisymeon, E. (2023). Valorization of Acid Mine Drainage into an Iron Catalyst to Initiate the Solar Photo-Fenton Treatment of Municipal Wastewater. Environments, 10(8), 132. https://doi.org/10.3390/environments10080132