Documenting Loss and Fragmentation of Intertidal Oyster (Crassostrea virginica) Reefs in a Subtropical Estuary
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Ground-Truthing
3.2. 2021 Reef Analysis and Comparison
3.3. Restored Reef Analysis and Ground Truthing
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, D.; Yang, Y.; Xia, F.; Sun, W.; Li, X.; Xie, Y. Exploring the influences of different processes of habitat fragmentation on ecosystem services. Landsc. Urban Plan. 2022, 227, 104544. [Google Scholar] [CrossRef]
- Fahrig, L. Effects of Habitat Fragmentation on Biodiverstiy. Annu. Rev. Ecol. Evol. Syst. 2003, 34, 487–515. [Google Scholar] [CrossRef] [Green Version]
- Lindenmayer, D.B.; Fischer, J. Tackling the habitat fragmentation panchreston. Trends Ecol. Evol. 2007, 22, 127–132. [Google Scholar] [CrossRef] [PubMed]
- Debinski, D.M.; Holt, R.D. A Survey and Overview of Habitat Fragmentation Experiments. Conserv. Biol. 2000, 14, 342–355. [Google Scholar] [CrossRef] [Green Version]
- Yeager, L.A.; Estrada, J.; Holt, K.; Keyser, S.R.; Oke, T.A. Are Habitat Fragmentation Effects Stronger in Marine Systems? A Review and Meta-analysis. Curr. Landsc. Ecol. Rep. 2020, 5, 58–67. [Google Scholar] [CrossRef]
- Haddad, N.M.; Brudvig, L.A.; Clobert, J.; Davies, K.F.; Gonzalez, A.; Holt, R.D.; Lovejoy, T.E.; Sexton, J.O.; Austin, M.P.; Collins, C.D.; et al. Habitat fragmentation and its lasting impact on Earth’s ecosystems. Sci. Adv. 2015, 1, e1500052. [Google Scholar] [CrossRef] [Green Version]
- Werner, K.J.; Zedler, J.B. How Sedge Meadow Microtopography, and Vegetation Respond to Sedimentation. Wetlands 2002, 22, 451–466. [Google Scholar] [CrossRef]
- Carroll, J.M.; Keller, D.A.; Furman, B.T.; Stubler, A.D. Rough Around the Edges: Lessons Learned and Future Directions in Marine Edge Effects Studies. Curr. Landsc. Ecol. Rep. 2019, 4, 91–102. [Google Scholar] [CrossRef]
- Meyer, D.L.; Posey, M.H. Influence of Salt Marsh Size and Landscape Setting on Salt Marsh Nekton Populations. Estuaries Coasts 2014, 37, 548–560. [Google Scholar] [CrossRef]
- Bell, S.S.; Brooks, R.A.; Robbins, B.D.; Fonseca, M.S.; Hall, M.O. Faunal response to fragmentation in seagrass habitats: Implications for seagrass conservation. Biol. Conserv. 2001, 100, 115–123. [Google Scholar] [CrossRef]
- Lewis, D.B.; Eby, L.A. Spatially heterogeneous refugia and predation risk in intertidal salt marshes. Oikos 2002, 96, 119–129. [Google Scholar] [CrossRef]
- Carroll, J.M.; Peterson, B.J. Ecological trade-offs in seascape ecology: Bay scallop survival and growth across a seagrass seascape. Landsc. Ecol. 2013, 28, 1401–1413. [Google Scholar] [CrossRef]
- Carroll, J.M.; Furman, B.T.; Tettelbach, S.T.; Peterson, B.J. Balancing the edge effects budget: Bay scallop settlement and loss along a seagrass edge. Ecology 2012, 93, 1637–1647. [Google Scholar] [CrossRef] [Green Version]
- Novak, C.S. Benthic Community Development on Edge Vs. Interior of Created Salt Marshes. Ph.D. Thesis, University of North Carolina Wilmington, Chapel Hill, NC, USA, 2011. [Google Scholar]
- Whaley, S.D.; Minello, T.J. The Distribution of Benthic Infauna og a Texas Salt Marsh in Relation to the Marsh Edge. Wetlands 2002, 22, 753–766. [Google Scholar] [CrossRef]
- Smith, T.M.; Hindell, J.S.; Jenkins, G.P.; Connolly, R.M. Edge effects on fish associated with seagrass and sand patches. Mar. Ecol. Prog. Ser. 2008, 359, 203–213. [Google Scholar] [CrossRef] [Green Version]
- Tanner, J.E. Edge effects on fauna in fragmented seagrass meadows. Austral Ecol. 2005, 30, 210–218. [Google Scholar] [CrossRef]
- Eggleston, D.B.; Elis, W.E.; Etherington, L.L.; Dahlgren, C.P.; Posey, M.H. Organism responses to habitat fragmentation and diversity: Habitat colonization by estuarine macrofauna. J. Exp. Mar. Biol. Ecol. 1999, 236, 107–132. [Google Scholar] [CrossRef]
- Eggleston, D.B.; Etherington, L.L.; Elis, W.E. Organism response to habitat patchiness: Species and habitat-dependent recruitment of decapod crustaceans. J. Exp. Mar. Biol. Ecol. 1998, 223, 111–132. [Google Scholar] [CrossRef]
- Harwell, H.D.; Posey, M.H.; Alphin, T.D. Landscape aspects of oyster reefs: Effects of fragmentation on habitat utilization. J. Exp. Mar. Biol. Ecol. 2011, 409, 30–41. [Google Scholar] [CrossRef]
- Coen, L.D.; Luckenbach, M.W.; Breitburg, D.L. The role of oyster reefs as essential fish habitat: A review of current knowledge and some new perspectives. Am. Fish. Soc. Symp. 1999, 22, 438–454. [Google Scholar]
- Grizzle, R.E.; Greene, J.K.; Coen, L.D. Seston Removal by Natural and Constructed Intertidal Eastern Oyster (Crassostrea virginica) Reefs: A Comparison with Previous Laboratory Studies, and the Value of in situ Methods. Estuaries Coasts 2008, 31, 1208–1220. [Google Scholar] [CrossRef]
- Beck, M.W.; Brumbaugh, R.D.; Airoldi, L.; Carranza, A.; Coen, L.D.; Crawford, C.; Defeo, O.; Edgar, G.J.; Hancock, B.; Kay, M.C.; et al. Oyster Reefs at Risk and Recommendations for Conservation, Restoration, and Management. Bioscience 2011, 61, 107–116. [Google Scholar] [CrossRef] [Green Version]
- Kyzar, T.; Safak, I.; Cebrian, J.; Clark, M.W.; Dix, N.; Dietz, K.; Gittman, R.K.; Jaeger, J.; Radabaugh, K.R.; Roddenberry, A.; et al. Challenges and opportunities for sustaining coastal wetlands and oyster reefs in the southeastern United States. J. Environ. Manag. 2021, 296, 113178. [Google Scholar] [CrossRef] [PubMed]
- Rothschild, B.J.; Ault, J.S.; Goulletquer, P.; Héral, M. Decline of the Chesapeake Bay oyster population: A century of habitat destruction and overfishing. Mar. Ecol. Prog. Ser. 1994, 111, 29–39. [Google Scholar] [CrossRef]
- Hanke, M.H.; Posey, M.H.; Alphin, T.D. Spatial Dynamics of Two Host-Parasite Relationships on Intertidal Oyster Reefs. Diversity 2021, 13, 260. [Google Scholar] [CrossRef]
- Hanke, M.H.; Posey, M.H.; Alphin, T.D. The effects of intertidal oyster reef habitat characteristics on faunal utilization. Mar. Ecol. Prog. Ser. 2017, 581, 57–70. [Google Scholar] [CrossRef]
- Hanke, M.H.; Posey, M.H.; Alphin, T.D. The influence of habitat characteristics on intertidal oyster Crassostrea virginica populations. Mar. Ecol. Prog. Ser. 2017, 571, 121–138. [Google Scholar] [CrossRef]
- Griffitt, J.; Posey, M.; Alphin, T. Effects of Edge Fragmentatiion on Oyster Reef Utilization by Transient Nekton. J. Elisha Mitchell Sci. Soc. 1999, 115, 98–103. [Google Scholar]
- Grabowski, J.H.; Brumbaugh, R.D.; Conrad, R.F.; Keeler, A.G.; Opaluch, J.J.; Peterson, C.H.; Piehler, M.F.; Powers, S.P.; Smyth, A.R. Economic Valuation of Ecosystem Services Provided by Oyster Reefs. Bioscience 2012, 62, 900–909. [Google Scholar] [CrossRef] [Green Version]
- Garvis, S.K.; Sacks, P.E.; Walters, L.J. Formation, Movement, and Restoration of Dead Intertidal Oyster Reefs in Canaveral National Seashore and Mosquito Lagoon, Florida. J. Shellfish Res. 2015, 34, 251–258. [Google Scholar] [CrossRef]
- Walters, L.J.; Sacks, P.E.; Bobo, M.Y.; Richardson, D.L.; Coen, L.D. Impact of Hurricanes and Boar Wakes on Intertidal Oyster Reefs in the Indian River Lagoon: Reef Profiles and Disease Prevalence. Fla. Sci. 2007, 70, 506–521. [Google Scholar]
- Searles, A.R.; Gipson, E.E.; Walters, L.J.; Cook, G.S. Oyster reef restoration facilitates the recovery of macroinvertebrate abundance, diversity, and composition in estuarine communities. Sci. Rep. 2022, 12, 8163. [Google Scholar] [CrossRef] [PubMed]
- Loch, J.M.H.; Walters, L.J.; Donnelly, M.L.; Cook, G.S. Restored Coastal Habitat Can “Reel In” Juvenile Sportfish: Population and Community Responses in the Indian River Lagoon, Florida, USA. Sustainability 2021, 13, 12832. [Google Scholar] [CrossRef]
- Copertino, J.L.; Harris, K.; Chute, L.; Walters, L.J. Impact of Oyster (Crassostrea virginica) Reef Restoration on Benthic Invertebrates and Coastal Birds in a Subtropical Estuary. Sustainability 2022, 14, 2371. [Google Scholar] [CrossRef]
- Shaffer, M. Does Intertidal Oyster Reef Restoration Affect Avian Community Structure and Behavior in a Shallow Estuarine System? A Post-Restoration Analysis. Fla. Field Nat. 2019, 47, 37–59. [Google Scholar]
- Meyer, D.L.; Townsend, E.C.; Thayer, G.W. Stabilization and Erosion Control Value of Oyster Cultch for Intertidal Marsh. Restor. Ecol. 1997, 5, 93–99. [Google Scholar] [CrossRef]
- McClenachan, G.M.; Donnelly, M.J.; Shaffer, M.N.; Sacks, P.E.; Walters, L.J. Does size matter? Quantifying the cumulative impact of small-scale living shoreline and oyster reef restoration projects on shoreline erosion. Restor. Ecol. 2020, 28, 1365–1371. [Google Scholar] [CrossRef]
- Grizzle, R.E.; Adams, J.R.; Walters, L.J. Historical changes in intertidal oyster (Crassostrea virginica) reefs in a Florida lagoon potentially related to boating activities. J. Shellfish Res. 2002, 21, 749–756. [Google Scholar]
- One Lagoon. Looking Ahead to 2030: A 10-Year Comprehensive Conservation Managment Plan for the Indian River Lagoon, Florida; One Lagoon: Sebastian, FL, USA, 2019. [Google Scholar]
- Vessel Owner Statistics. Available online: https://www.flhsmv.gov/motor-vehicles-tags-titles/vessels/vessel-owner-statistics/ (accessed on 23 May 2023).
- Walters, L.J.; Sacks, P.E.; Campbell, D.E. Boating impacts and boat-wake resilient restoration of the eastern oyster Crassostrea virginica in Mosquito Lagoon, Florida, USA. Fla. Sci. 2021, 84, 173–199. [Google Scholar]
- McClenachan, G.; Witt, M.; Walters, L.J. Replacement of oyster reefs by mangroves: Unexpected climate-driven ecosystem shifts. Glob. Change Biol. 2021, 27, 1226–1238. [Google Scholar] [CrossRef]
- Walters, L.J.; McClenachan, G. Commentary on Osland et al.: Tropicalization of temperate ecosystems in North America: The northward range expansion of tropical organisms in response to warming winter temperatures. Glob. Change Biol. 2021, 27, 3006–3008. [Google Scholar] [CrossRef] [PubMed]
- Hesterberg, S.G.; Jackson, K.; Bell, S.S. Climate drives coupled regime shifts across subtropical estuarine ecosystems. Proc. Natl. Acad. Sci. USA 2022, 119, e2121654119. [Google Scholar] [CrossRef] [PubMed]
- Howie, A.H.; Bishop, M.J. Contemporary Oyster Reef Restoration: Responding to a Changing World. Front. Ecol. Evol. 2021, 9, 689915. [Google Scholar] [CrossRef]
- Reeves, S.E.; Renzi, J.J.; Fobert, E.K.; Silliman, B.R.; Hancock, B.; Gillies, C.L. Facilitating Better Outcomes: How Positive Species Interactions Can Improve Oyster Reef Restoration. Front. Mar. Sci. 2020, 7, 656. [Google Scholar] [CrossRef]
- Coen, L.D.; Brumbaugh, R.D.; Bushek, D.; Grizzle, R.; Luckenbach, M.W.; Posey, M.H.; Powers, S.P.; Tolley, S.G. Ecosystem services related to oyster restoration. Mar. Ecol. Prog. Ser. 2007, 341, 303–307. [Google Scholar] [CrossRef] [Green Version]
- Nitsch, C.K.; Walters, L.J.; Sacks, J.S.; Sacks, P.E.; Chambers, L.G. Biodegradable Material for Oyster Reef Restoration: First-Year Performance and Biogeochemical Considerations in a Coastal Lagoon. Sustainability 2021, 13, 7415. [Google Scholar] [CrossRef]
- Cannon, D.; Kibler, K.; Walters, L.; Chambers, L. Hydrodynamic and biogeochemical evolution of a restored intertidal oyster (Crassostrea virginica) reef. Sci. Total Environ. 2022, 831, 154879. [Google Scholar] [CrossRef]
- Chambers, L.G.; Gaspar, S.A.; Pilato, C.J.; Steinmuller, H.E.; McCarthy, K.J.; Sacks, P.E.; Walters, L.J. How Well Do Restored Intertidal Oyster Reefs Support Key Biogeochemical Properties in a Coastal Lagoon? Estuaries Coasts 2018, 41, 784–799. [Google Scholar] [CrossRef]
- Provancha, J.A.; Hall, C.R.; Oddy, D.M. Mosquito Lagoon Environmental Resources Inventory; National Aeronautics and Space Administration: Washington, DC, USA, 1992. [Google Scholar]
- Smith, N.P. Tidal and Nontidal Flushing of Florida’s Indian River Lagoon. Estuaries 1993, 16, 739–746. [Google Scholar] [CrossRef]
- Johnson, D.R.; Funicelli, N.A.; Bohnsack, J.A. Effectiveness of an Existing Estuarine No-Take Fish Sanctuary within the Kennedy Space Center, Florida. North Am. J. Fish. Manag. 1999, 19, 436–453. [Google Scholar] [CrossRef]
- Garvis, S.; Donnelly, M.; Hernandez, E.; Walters, L.; Weishampel, J.; Brockmeyer, R. Remote sensing of live and dead intertidal oyster reefs using aerial photo interpretation in Northeast Florida. J. Coast. Conserv. 2020, 24, 14. [Google Scholar] [CrossRef]
- Viera, A.J.; Garrett, J.M. Understanding interobserver agreement: The kappa statistic. Fam. Med. 2005, 37, 360–363. [Google Scholar] [PubMed]
- Brooks, M.E.; Kristensen, K.; Benthem, K.J.v.; Magnusson, A.; Berg, C.W.; Nielsen, A.; Skaug, H.J.; Mächler, M.; Bolker, B.M. glmmTMB Balances Speed and Flexibility Among Packages for Zero-inflated Generalized Linear Mixed Modeling. R J. 2017, 9, 378. [Google Scholar] [CrossRef] [Green Version]
- Laurance, W.F. Theory meets reality: How habitat fragmentation research has transcended island biogeographic theory. Biol. Conserv. 2008, 141, 1731–1744. [Google Scholar] [CrossRef]
- Parkinson, R.W. Decelerating Holocene sea-level rise and its influence on Southwest Florida coastal evolution; a transgressive/regressive stratigraphy. J. Sediment. Petrol. 1989, 59, 960–972. [Google Scholar] [CrossRef]
Year | Live Reefs | Dead Reefs | Live Reef Area (ha) | Dead Reef Area (ha) | Total Reefs with Juvenile Mangroves | Live Reefs with Juvenile Mangroves |
---|---|---|---|---|---|---|
2009 (Comparison Zone) | 2542 | 247 | 46.34 | 4.30 | Not recorded | Not recorded |
2021 (Comparison Zone) | 2668 | 230 | 22.87 | 1.81 | 539 | 486 |
2021 (Full Study Area) | 3244 | 230 | 25.96 | 1.81 | 598 | 545 |
Total Reefs Analyzed (Unrestored 2009 Live Reefs) | Reefs That Fragmented | Areas That no Longer Had Visible C. virginica Reef Footprint | Reefs Where Area Change < 20% | Reefs That Lost >50% of Area |
---|---|---|---|---|
2497 | 219 | 988 | 198 | 856 |
Total Reefs Fragmented | Fragmented into ≤3 Reefs | Mean Number of Fragmented Reefs Created ± SD | Maximum Number of Fragmented Reefs Created |
---|---|---|---|
219 | 76 | 2.7 ± 1.4 | 14 |
Variable | Estimated Effect on Probability of Having a Detectable Footprint | Z-Statistic | p-Value |
---|---|---|---|
Reef Area in 2009 | 7.47 × 10−3 | 12.436 | 2.00 × 10−16 |
Reef Location (In Primary Boat Channel: Yes/No) | 1.88 × 10−2 | −0.098 | 0.922 |
Interaction of Reef Area and Reef Location | −4.19 × 10−3 | −4.689 | 2.74 × 10−6 |
Variable | Estimated Effect on Fragmentation Probability | Z-Statistic | p-Value |
---|---|---|---|
Reef Area in 2009 | 2.907 | 10.917 | 2 × 10−16 |
Reef Location (In Primary Boat Channel: Yes/No) | −0.3826 | −1.059 | 0.29 |
Interaction of Reef Area and Reef Location | 9.013 × 10−5 | 0.163 | 0.87 |
Year | Number of Reefs Restored | Total Restored Footprint (m2) | Total Live Area on Restored Footprint in 2021 (m2) | % of Restored Footprint Live in 2021 (±SD) |
---|---|---|---|---|
2007 | 7 | 803 | 659 | 82.1% (±19.2) |
2008 | 12 | 985 | 623 | 63.2% (±32.1) |
2009 | 12 | 900 | 579 | 64.3% (±23.5) |
2010 | 11 | 1395 | 680 | 48.7% (±38.3) |
2011 | 8 | 1295 | 625 | 48.3% (±35.8) |
2012 | 8 | 1363 | 822 | 60.3% (±39.3) |
2013 | 5 | 473 | 373 | 78.9% (±36.6) |
2014 | 5 | 789 | 623 | 79.0% (±7.1) |
2015 | 5 | 938 | 752 | 80.2% (±34.9) |
2016 | 4 | 320 | 203 | 63.4% (±41.0) |
2017 | 5 | 378 | 175 | 46.3% (±39.3) |
2018 | 6 | 420 | 256 | 61.0% (±23.7) |
2019 | 4 | 165 | 130 | 78.8% (±13.7) |
2020 | 2 | 69 | 50 | 72.5% (±29.0) |
Total | 94 | 10,293 | 6550 | 63.6% (±31.3) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Benson, G.W.; Donnelly, M.J.; Sacks, P.E.; Walters, L.J. Documenting Loss and Fragmentation of Intertidal Oyster (Crassostrea virginica) Reefs in a Subtropical Estuary. Environments 2023, 10, 133. https://doi.org/10.3390/environments10080133
Benson GW, Donnelly MJ, Sacks PE, Walters LJ. Documenting Loss and Fragmentation of Intertidal Oyster (Crassostrea virginica) Reefs in a Subtropical Estuary. Environments. 2023; 10(8):133. https://doi.org/10.3390/environments10080133
Chicago/Turabian StyleBenson, Gabriel W., Melinda J. Donnelly, Paul E. Sacks, and Linda J. Walters. 2023. "Documenting Loss and Fragmentation of Intertidal Oyster (Crassostrea virginica) Reefs in a Subtropical Estuary" Environments 10, no. 8: 133. https://doi.org/10.3390/environments10080133
APA StyleBenson, G. W., Donnelly, M. J., Sacks, P. E., & Walters, L. J. (2023). Documenting Loss and Fragmentation of Intertidal Oyster (Crassostrea virginica) Reefs in a Subtropical Estuary. Environments, 10(8), 133. https://doi.org/10.3390/environments10080133