Temporal Evolution of Vehicle Exhaust Plumes in a Congested Street Canyon Environment
Abstract
:1. Introduction
2. Methodology
2.1. Instrumentation
2.2. Site
2.3. Plume Segment Description
- Cx,y,z (g m−3)—concentrations in a plume at location (x, y, z)
- y (m)—the distance of the sensor from the vehicle exhaust in crosswind direction
- z (m)—the distance of the sensor from the vehicle exhaust in vertical direction
- H (m)—elevation height from the ground
- σz, σy—the pollutants advect with the wind and disperse vertically (z-direction) and crosswind-wise (y-direction)
- u (m/s)—windspeed
- Qp (g s−1)—source strength
2.4. Data Analysis and Deconvolution
2.5. Statistical Analysis
3. Results
3.1. Evaluating Plume Parameters and Deconvolution
3.2. Dispersive Parameters within Plume Segments
3.3. Plume Segments at Different Nodes
3.4. Estimates for Vehicular Emissions from Plume Segments
4. Conclusions and Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Johansson, C.; Norman, M.; Gidhagen, L. Spatial & Temporal Variations of PM10 and Particle Number Concentrations in Urban Air. Environ. Monit. Assess. 2007, 127, 477–487. [Google Scholar] [CrossRef]
- Pateraki, S.; Manousakas, M.; Bairachtari, K.; Kantarelou, V.; Eleftheriadis, K.; Vasilakos, C.; Assimakopoulos, V.D.; Maggos, T. The Traffic Signature on the Vertical PM Profile: Environmental and Health Risks within an Urban Roadside Environment. Sci. Total Environ. 2019, 646, 448–459. [Google Scholar] [CrossRef] [PubMed]
- Godri, K.J.; Green, D.C.; Fuller, G.W.; Dall’Osto, M.; Beddows, D.C.; Kelly, F.J.; Harrison, R.M.; Mudway, I.S. Particulate Oxidative Burden Associated with Firework Activity. Environ. Sci. Technol. 2010, 44, 8295–8301. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Vu, T.V.; Harrison, R.M.; Yan, J.; Hu, X.; Cui, Y.; Shi, A.; Liu, X.; Shen, Y.; Zhang, G.; et al. Long-Term Characterization of Roadside Air Pollutants in Urban Beijing and Associated Public Health Implications. Environ. Res. 2022, 212, 113277. [Google Scholar] [CrossRef] [PubMed]
- Ai, Z.T.; Mak, C.M. From Street Canyon Microclimate to Indoor Environmental Quality in Naturally Ventilated Urban Buildings: Issues and Possibilities for Improvement. Build. Environ. 2015, 94, 489–503. [Google Scholar] [CrossRef] [PubMed]
- Chu, M.; Brimblecombe, P.; Wei, P.; Liu, C.H.; Du, X.; Sun, Y.; Yam, Y.S.; Ning, Z. Kerbside NOx and CO Concentrations and Emission Factors of Vehicles on a Busy Road. Atmos. Environ. 2022, 271, 118878. [Google Scholar] [CrossRef]
- Krecl, P.; Targino, A.C.; Landi, T.P.; Ketzel, M. Determination of Black Carbon, PM2.5, Particle Number and NOx Emission Factors from Roadside Measurements and Their Implications for Emission Inventory Development. Atmos. Environ. 2018, 186, 229–240. [Google Scholar] [CrossRef]
- Voordeckers, D.; Lauriks, T.; Denys, S.; Billen, P.; Tytgat, T.; Van Acker, M. Guidelines for Passive Control of Traffic-Related Air Pollution in Street Canyons: An Overview for Urban Planning. Landsc. Urban Plan. 2021, 207, 103980. [Google Scholar] [CrossRef]
- Voordeckers, D.; Meysman, F.J.R.; Billen, P.; Tytgat, T.; Van Acker, M. The Impact of Street Canyon Morphology and Traffic Volume on NO2 Values in the Street Canyons of Antwerp. Build. Environ. 2021, 197, 107825. [Google Scholar] [CrossRef]
- Westerdahl, D.; Wang, X.; Pan, X.; Zhang, K.M. Characterization of On-Road Vehicle Emission Factors and Microenvironmental Air Quality in Beijing, China. Atmos. Environ. 2009, 43, 697–705. [Google Scholar] [CrossRef]
- Wang, H.; Brimblecombe, P.; Ngan, K. A Numerical Study of Local Traffic Volume and Air Quality within Urban Street Canyons. Sci. Total Environ. 2021, 791, 148138. [Google Scholar] [CrossRef] [PubMed]
- Vardoulakis, S.; Fisher, B.E.A.; Pericleous, K.; Gonzalez-Flesca, N. Modelling Air Quality in Street Canyons: A Review. Atmos. Environ. 2003, 37, 155–182. [Google Scholar] [CrossRef]
- Xing, Y.; Brimblecombe, P.; Ning, Z. Fine-Scale Spatial Structure of Air Pollutant Concentrations along Bus Routes. Sci. Total Environ. 2019, 658, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.; Kaul, D.; Wong, K.C.; Westerdahl, D.; Sun, L.; Ho, K.; Tian, L.; Brimblecombe, P.; Ning, Z. Heterogeneity of Passenger Exposure to Air Pollutants in Public Transport Microenvironments. Atmos. Environ. 2015, 109, 42–51. [Google Scholar] [CrossRef]
- Duan, G.; Brimblecombe, P.; Chu, Y.L.; Ngan, K. Turbulent Flow and Dispersion inside and around Elevated Walkways. Build. Environ. 2020, 173, 106711. [Google Scholar] [CrossRef]
- Abhijith, K.V.; Kumar, P. Field Investigations for Evaluating Green Infrastructure Effects on Air Quality in Open-Road Conditions. Atmos. Environ. 2019, 201, 132–147. [Google Scholar] [CrossRef]
- Buccolieri, R.; Jeanjean, A.P.R.; Gatto, E.; Leigh, R.J. The Impact of Trees on Street Ventilation, NOx and PM2.5 Concentrations across Heights in Marylebone Rd Street Canyon, Central London. Sustain. Cities Soc. 2018, 41, 227–241. [Google Scholar] [CrossRef]
- Kumar, P.; Zavala-Reyes, J.C.; Tomson, M.; Kalaiarasan, G. Understanding the Effects of Roadside Hedges on the Horizontal and Vertical Distributions of Air Pollutants in Street Canyons. Environ. Int. 2022, 158, 106883. [Google Scholar] [CrossRef]
- Brimblecombe, P.; Chu, M.Y.; Liu, C.H.; Ning, Z. NOx and CO Fluctuations in a Busy Street Canyon. Environments 2021, 8, 137. [Google Scholar] [CrossRef]
- Zhao, Y.; Jiang, C.; Song, X. Numerical Evaluation of Turbulence Induced by Wind and Traffic, and Its Impact on Pollutant Dispersion in Street Canyons. Sustain. Cities Soc. 2021, 74, 103142. [Google Scholar] [CrossRef]
- Gosse, K.; Gonzalez, M.; Paranthoën, P. Mixing in the Three-Dimensional Wake of an Experimental Modelled Vehicle. Environ. Fluid Mech. 2011, 11, 573–589. [Google Scholar] [CrossRef]
- Lin, J.; Ge, Y.E. Impacts of Traffic Heterogeneity on Roadside Air Pollution Concentration. Transp. Res. D Transp. Environ. 2006, 11, 166–170. [Google Scholar] [CrossRef]
- Zhang, K.; Chen, G.; Zhang, Y.; Liu, S.; Wang, X.; Wang, B.; Hang, J. Integrated Impacts of Turbulent Mixing and NOX-O3 Photochemistry on Reactive Pollutant Dispersion and Intake Fraction in Shallow and Deep Street Canyons. Sci. Total Environ. 2020, 712, 135553. [Google Scholar] [CrossRef]
- Olivares, G.; Johansson, C.; Ström, J.; Hansson, H.-C. The Role of Ambient Temperature for Particle Number Concentrations in a Street Canyon. Atmos. Environ. 2007, 41, 2145–2155. [Google Scholar] [CrossRef]
- Stevanovic, S.; Gali, N.K.; Salimi, F.; Brown, R.A.; Ning, Z.; Cravigan, L.; Brimblecombe, P.; Bottle, S.; Ristovski, Z.D. Diurnal Profiles of Particle-Bound ROS of PM2.5 in Urban Environment of Hong Kong and Their Association with PM2.5, Black Carbon, Ozone and PAHs. Atmos. Environ. 2019, 219, 117023. [Google Scholar] [CrossRef]
- Stieb, D.M.; Evans, G.J.; To, T.M.; Lakey, P.S.J.; Shiraiwa, M.; Hatzopoulou, M.; Minet, L.; Brook, J.R.; Burnett, R.T.; Weichenthal, S.A. Within-City Variation in Reactive Oxygen Species from Fine Particle Air Pollution and COVID-19. Am. J. Respir. Crit. Care Med. 2021, 204, 168–177. [Google Scholar] [CrossRef] [PubMed]
- Mihăiţă, A.S.; Dupont, L.; Chery, O.; Camargo, M.; Cai, C. Evaluating Air Quality by Combining Stationary, Smart Mobile Pollution Monitoring and Data-Driven Modelling. J. Clean. Prod. 2019, 221, 398–418. [Google Scholar] [CrossRef]
- Violante, F.S.; Barbieri, A.; Curti, S.; Sanguinetti, G.; Graziosi, F.; Mattioli, S. Urban Atmospheric Pollution: Personal Exposure versus Fixed Monitoring Station Measurements. Chemosphere 2006, 64, 1722–1729. [Google Scholar] [CrossRef] [PubMed]
- Rakowska, A.; Wong, K.C.; Townsend, T.; Chan, K.L.; Westerdahl, D.; Ng, S.; Močnik, G.; Drinovec, L.; Ning, Z. Impact of Traffic Volume and Composition on the Air Quality and Pedestrian Exposure in Urban Street Canyon. Atmos. Environ. 2014, 98, 260–270. [Google Scholar] [CrossRef]
- Zwack, L.M.; Paciorek, C.J.; Spengler, J.D.; Levy, J.I. Characterizing Local Traffic Contributions to Particulate Air Pollution in Street Canyons Using Mobile Monitoring Techniques. Atmos. Environ. 2011, 45, 2507–2514. [Google Scholar] [CrossRef]
- Liu, Q.; Hallquist, Å.M.; Fallgren, H.; Jerksjö, M.; Jutterström, S.; Salberg, H.; Hallquist, M.; Le Breton, M.; Pei, X.; Pathak, R.K.; et al. Roadside Assessment of a Modern City Bus Fleet: Gaseous and Particle Emissions. Atmos. Environ. X 2019, 3, 100044. [Google Scholar] [CrossRef]
- Wang, J.S.; Chan, T.L.; Cheung, C.S.; Leung, C.W.; Hung, W.T. Three-Dimensional Pollutant Concentration Dispersion of a Vehicular Exhaust Plume in the Real Atmosphere. Atmos. Environ. 2006, 40, 484–497. [Google Scholar] [CrossRef]
- Xiang, S.; Yu, Y.T.; Hu, Z.; Noll, K.E. Characterization of Dispersion and Ultrafine-Particle Emission Factors Based on Near-Roadway Monitoring Part I: Light Duty Vehicles. Aerosol. Air Qual. Res. 2019, 19, 2410–2420. [Google Scholar] [CrossRef]
- Yu, Y.T.; Xiang, S.; Noll, K.E. Evaluation of the Relationship between Momentum Wakes behind Moving Vehicles and Dispersion of Vehicle Emissions Using Near-Roadway Measurements. Environ. Sci. Technol. 2020, 54, 10483–10492. [Google Scholar] [CrossRef]
- Environmental Protection Department of Hong Kong, Hong Kong Special Administrative Region. Hong Kong Air Pollutant Emission Inventory. Available online: https://www.epd.gov.hk/epd/english/environmentinhk/air/data/emission_inve.html#sectoral_analysis (accessed on 27 February 2023).
- Census and Statistics Department, Hong Kong Special Administrative Region. Hong Kong Monthly Digest of Statistics. Available online: https://www.censtatd.gov.hk/sc/ (accessed on 27 February 2023).
- Environmental Protection Department of Hong Kong, Hong Kong Special Administrative Region. Past Air Quality Monitoring Data. Available online: https://www.epd.gov.hk/epd/english/environmentinhk/air/data/air_data.html (accessed on 27 February 2023).
- Yu, X. Influence of Intrinsic Culture: Use of Public Space by Filipina Domestic Helpers in Hong Kong. J. Cult. Res. 2009, 13, 97–114. [Google Scholar] [CrossRef]
- Liu, Y.H.; He, Z.; Chan, T.L. Three-Dimensional Simulation of Exhaust Particle Dispersion and Concentration Fields in the Near-Wake Region of the Studied Ground Vehicle. Aerosol. Sci. Technol. 2011, 45, 1019–1030. [Google Scholar] [CrossRef]
- Men, Y.; Lai, Y.; Dong, S.; Du, X.; Liu, Y. Research on CO Dispersion of a Vehicular Exhaust Plume Using Lattice Boltzmann Method and Large Eddy Simulation. Transp. Res. D Transp. Environ. 2017, 52, 202–214. [Google Scholar] [CrossRef]
- Yasuda, R.; Miyajima, T.; Yoshida, A. Numerical Simulation of Turbulent Dispersion on a Two-Way Facing Traffic Road. Int. J. Environ. Pollut. 2011, 44, 164–172. [Google Scholar] [CrossRef]
- Huang, Y.; Ng, E.C.Y.; Surawski, N.C.; Yam, Y.S.; Mok, W.C.; Liu, C.H.; Zhou, J.L.; Organ, B.; Chan, E.F.C. Large Eddy Simulation of Vehicle Emissions Dispersion: Implications for on-Road Remote Sensing Measurements. Environ. Pollut. 2020, 259, 113974. [Google Scholar] [CrossRef] [PubMed]
- Ning, Z.; Cheung, C.; Lu, Y.; Liu, M.; Hung, W. Experimental and Numerical Study of the Dispersion of Motor Vehicle Pollutants under Idle Condition. Atmos. Environ. 2005, 39, 7880–7893. [Google Scholar] [CrossRef]
- He, H.; Shi, W.; Lu, W.-Z. Investigation of Exhaust Gas Dispersion in the Near-Wake Region of a Light-Duty Vehicle. Stoch. Environ. Res. Risk Assess. 2017, 31, 775–783. [Google Scholar] [CrossRef]
- Deng, B.; Chen, Y.; Duan, X.; Li, D.; Li, Q.; Tao, D.; Ran, J.; Hou, K. Dispersion Behaviors of Exhaust Gases and Nanoparticle of a Passenger Vehicle under Simulated Traffic Light Driving Pattern. Sci. Total Environ. 2020, 740, 140090. [Google Scholar] [CrossRef] [PubMed]
- Bhautmage, U.; Gokhale, S. Effects of Moving-Vehicle Wakes on Pollutant Dispersion inside a Highway Road Tunnel. Environ. Pollut. 2016, 218, 783–793. [Google Scholar] [CrossRef]
- Liu, W. Numerical Models for Vehicle Exhaust Dispersion in Complex Urban Areas. Int. J. Numer. Methods Fluids 2011, 67, 787–804. [Google Scholar] [CrossRef]
- Yassin, M.F.; Kellnerová, R.; Jaňour, Z. Retraction Note to: Numerical Simulation on Pollutant Dispersion from Vehicle Exhaust in Street Configurations. Environ. Monit. Assess. 2017, 189, 7. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Chen, G.; Wang, X.; Liu, S.; Mak, C.M.; Fan, Y.; Hang, J. Numerical Evaluations of Urban Design Technique to Reduce Vehicular Personal Intake Fraction in Deep Street Canyons. Sci. Total Environ. 2019, 653, 968–994. [Google Scholar] [CrossRef]
- Michioka, T.; Takimoto, H.; Sato, A. Large-Eddy Simulation of Pollutant Removal from a Three-Dimensional Street Canyon. Bound. Layer Meteorol. 2014, 150, 259–275. [Google Scholar] [CrossRef]
- Karra, S.; Malki-Epshtein, L.; Neophytou, M.K.A. Air Flow and Pollution in a Real, Heterogeneous Urban Street Canyon: A Field and Laboratory Study. Atmos. Environ. 2017, 165, 370–384. [Google Scholar] [CrossRef]
- Sun, D.; Zhang, Y. Influence of Avenue Trees on Traffic Pollutant Dispersion in Asymmetric Street Canyons: Numerical Modeling with Empirical Analysis. Transp. Res. D Transp. Environ. 2018, 65, 784–795. [Google Scholar] [CrossRef]
- Huang, Y.; Li, M.; Ren, S.; Wang, M.; Cui, P. Impacts of Tree-Planting Pattern and Trunk Height on the Airflow and Pollutant Dispersion inside a Street Canyon. Build. Environ. 2019, 165, 106385. [Google Scholar] [CrossRef]
- Merlier, L.; Jacob, J.; Sagaut, P. Lattice-Boltzmann Large-Eddy Simulation of Pollutant Dispersion in Street Canyons Including Tree Planting Effects. Atmos. Environ. 2018, 195, 89–103. [Google Scholar] [CrossRef]
- Zhang, Y.; Gu, Z.; Yu, C.W. Impact Factors on Airflow and Pollutant Dispersion in Urban Street Canyons and Comprehensive Simulations: A Review. Curr. Pollut. Rep. 2020, 6, 425–439. [Google Scholar] [CrossRef]
- Steffens, J.T.; Heist, D.K.; Perry, S.G.; Isakov, V.; Baldauf, R.W.; Zhang, K.M. Effects of Roadway Configurations on Near-Road Air Quality and the Implications on Roadway Designs. Atmos. Environ. 2014, 94, 74–85. [Google Scholar] [CrossRef]
- Moriguchi, Y.; Uehara, K. Numerical and Experimental Simulation of Vehicle Exhaust Gas Dispersion for Complex Urban Roadways and Their Surroundings. J. Wind Eng. Ind. Aerodyn. 1993, 46–47, 689–695. [Google Scholar] [CrossRef]
- Zheng, X.; Yang, J. CFD Simulations of Wind Flow and Pollutant Dispersion in a Street Canyon with Traffic Flow: Comparison between RANS and LES. Sustain. Cities Soc. 2021, 75, 103307. [Google Scholar] [CrossRef]
- Chew, L.W.; Glicksman, L.R.; Norford, L.K. Buoyant Flows in Street Canyons: Comparison of RANS and LES at Reduced and Full Scales. Build. Environ. 2018, 146, 77–87. [Google Scholar] [CrossRef]
- Li, X.X.; Liu, C.H.; Leung, D.Y.C.; Lam, K.M. Recent Progress in CFD Modelling of Wind Field and Pollutant Transport in Street Canyons. Atmos. Environ. 2006, 40, 5640–5658. [Google Scholar] [CrossRef]
- Xiang, S.; Zhou, J.; Fu, X.; Zheng, L.; Wang, Y.; Zhang, Y.; Yi, K.; Liu, J.; Ma, J.; Tao, S. Fast Simulation of High Resolution Urban Wind Fields at City Scale. Urban Clim. 2021, 39, 100941. [Google Scholar] [CrossRef]
- Briant, R.; Seigneur, C.; Gadrat, M.; Bugajny, C. Evaluation of Roadway Gaussian Plume Models with Large-Scale Measurement Campaigns. Geosci. Model Dev. 2013, 6, 445–456. [Google Scholar] [CrossRef]
- McArthur, D.; Burton, D.; Thompson, M.; Sheridan, J. On the near Wake of a Simplified Heavy Vehicle. J. Fluids Struct. 2016, 66, 293–314. [Google Scholar] [CrossRef]
- Weiss, M.; Bonnel, P.; Hummel, R.; Provenza, A.; Manfredi, U. On-Road Emissions of Light-Duty Vehicles in Europe. Environ. Sci. Technol. 2011, 45, 8575–8581. [Google Scholar] [CrossRef] [PubMed]
- Hong Kong Government Clean Air Plan for Hong Kong 2035. Available online: http://www.epd.gov.hk/epd/english/resources_pub/policy_documents/index.html (accessed on 10 March 2024).
- Rom, W.N.; Boushey, H.; Caplan, A. Experimental Human Exposure to Air Pollutants Is Essential to Understand Adverse Health Effects. Am. J. Respir. Cell Mol. Biol. 2013, 49, 691–696. [Google Scholar] [CrossRef]
- Zong, H.; Brimblecombe, P.; Sun, L.; Wei, P.; Ho, K.-F.; Zhang, Q.; Cai, J.; Kan, H.; Chu, M.; Che, W.; et al. Reducing the Influence of Environmental Factors on Performance of a Diffusion-Based Personal Exposure Kit. Sensors 2021, 21, 4637. [Google Scholar] [CrossRef]
- The Government of the Hong Kong Special Administrative Region Tightened Emission Requirements of Franchised Bus Low Emission Zones to Euro V Standard Take Effect Today. Available online: https://www.info.gov.hk/gia/general/201912/31/P2019123100268.htm (accessed on 27 February 2023).
- Wei, P.; Sun, L.; Abhishek, A.; Zhang, Q.; Huixin, Z.; Deng, Z.; Wang, Y.; Ning, Z. Development and Evaluation of a Robust Temperature Sensitive Algorithm for Long Term NO2 Gas Sensor Network Data Correction. Atmos. Environ. 2020, 230, 117509. [Google Scholar] [CrossRef]
- Joseph, G.M.D.; Hargreaves, D.M.; Lowndes, I.S. Reconciling Gaussian Plume and Computational Fluid Dynamics Models of Particulate Dispersion. Atmos. Environ. X 2020, 5, 100064. [Google Scholar] [CrossRef]
- Hanna, S.R.; Briggs, G.A.; Hosker, R.P., Jr. Handbook on Atmospheric Diffusion; U.S. Department of Energy: Washington, DC, USA, 1982. [CrossRef]
- Stockie, J.M. The Mathematics of Atmospheric Dispersion Modeling. SIAM Rev. 2011, 53, 349–372. [Google Scholar] [CrossRef]
- Xing, Y.; Brimblecombe, P. Dispersion of Traffic Derived Air Pollutants into Urban Parks. Sci. Total Environ. 2018, 622–623, 576–583. [Google Scholar] [CrossRef]
- Virtanen, P.; Gommers, R.; Oliphant, T.E.; Haberland, M.; Reddy, T.; Cournapeau, D.; Burovski, E.; Peterson, P.; Weckesser, W.; Bright, J.; et al. SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nat. Methods 2020, 17, 261–272. [Google Scholar] [CrossRef] [PubMed]
- Martinez, D.; Burgués, J.; Marco, S. Fast Measurements with MOX Sensors: A Least-Squares Approach to Blind Deconvolution. Sensors 2019, 19, 4029. [Google Scholar] [CrossRef]
- O’Haver, T. Intro to Signal Processing-Deconvolution. Available online: https://terpconnect.umd.edu/~toh/spectrum/Deconvolution.html (accessed on 19 August 2022).
- Wessa, P. Wessa.Net-Free Statistics and Forecasting Software (Calculators) v.1.2.1. Available online: https://www.wessa.net/ (accessed on 27 February 2023).
- Electrical and Mechanical Services Department of the Hong Kong, H.K.S. Energy Utilisation Index-Transport Sector. Available online: https://ecib.emsd.gov.hk/index.php/en/energy-utilisation-index-en/transport-sector-en (accessed on 27 February 2023).
- Hu, L.; Bi, H.; Wang, C.; Ye, Z.; Cheng, J.; Wu, H. Unraveling Nonlinear and Interaction Effects of Various Determinants on Bus Gaseous Emissions. Sci. Total Environ. 2022, 812, 151427. [Google Scholar] [CrossRef]
- Liu, D.; Lou, D.; Liu, J.; Fang, L.; Huang, W. Evaluating Nitrogen Oxides and Ultrafine Particulate Matter Emission Features of Urban Bus Based on Real-World Driving Conditions in the Yangtze River Delta Area, China. Sustainability 2018, 10, 2051. [Google Scholar] [CrossRef]
- Ko, S.; Park, J.; Kim, H.; Kang, G.; Lee, J.; Kim, J.; Lee, J. NOx Emissions from Euro 5 and Euro 6 Heavy-Duty Diesel Vehicles under Real Driving Conditions. Energies 2020, 13, 218. [Google Scholar] [CrossRef]
- O’Driscoll, R.; ApSimon, H.M.; Oxley, T.; Molden, N.; Stettler, M.E.J.; Thiyagarajah, A. A Portable Emissions Measurement System (PEMS) Study of NOx and Primary NO2 Emissions from Euro 6 Diesel Passenger Cars and Comparison with COPERT Emission Factors. Atmos. Environ. 2016, 145, 81–91. [Google Scholar] [CrossRef]
- Keramydas, C.; Papadopoulos, G.; Ntziachristos, L.; Lo, T.S.; Ng, K.L.; Wong, H.L.A.; Wong, C.K.L. Real-World Measurement of Hybrid Buses’ Fuel Consumption and Pollutant Emissions in a Metropolitan Urban Road Network. Energies 2018, 11, 2569. [Google Scholar] [CrossRef]
- Lau, C.F.; Rakowska, A.; Townsend, T.; Brimblecombe, P.; Chan, T.L.; Yam, Y.S.; Močnik, G.; Ning, Z. Evaluation of Diesel Fleet Emissions and Control Policies from Plume Chasing Measurements of On-Road Vehicles. Atmos. Environ. 2015, 122, 171–182. [Google Scholar] [CrossRef]
- Birks, J.W.; Turnipseed, A.A.; Andersen, P.C.; Williford, C.J.; Strunk, S.; Carpenter, B.; Ennis, C.A. Portable Calibrator for NO Based on the Photolysis of N2O and a Combined NO2/NO/O3 Source for Field Calibrations of Air Pollution Monitors. Atmos. Meas. Tech. 2020, 13, 1001–1018. [Google Scholar] [CrossRef]
NO | NO2 | CO2 | |
---|---|---|---|
Sensor | Dynamic baseline tracking and electrochemical sensing NO-A4 | Dynamic baseline tracking and electrochemical sensing NO2-A43F | Temperature compensated NDIR measurement PREMIER IR CO2 |
Measurement range | 0~5000 ppb | 0~5000 ppb | 0~5000 ppm |
Resolution | ≤1 ppb | ≤1 ppb | ≤1 ppm |
Noise | ≤5 ppb | ≤5 ppb | ≤50 ppb |
Lower detection limit | 5 ppb | 5 ppb | 0.05 ppm |
e-folding time 1 | 5 s | 5 s | -- |
Synchroneity | ±1–2 s | ±1–2 s | ±1–2 s |
X1/g m−3 | X2/g s2 m−3 | X3/s2 | |
---|---|---|---|
Q1 | 0.00029 | 0.272 | 19.4 |
(0.00028) | (0.133) | (7.1) | |
Median | 0.00044 | 0.462 | 30.1 |
(0.00044) | (0.244) | (9.7) | |
Q3 | 0.00064 | 1.003 | 42.7 |
(0.00063) | (0.498) | (15.6) | |
Mean | 0.00052 | 0.661 | 36.0 |
(0.00049) | (0.364) | (13.8) | |
SD | 0.00036 | 0.541 | 24.9 |
(0.00038) | (0.321) | (12.6) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chu, M.-Y.; Brimblecombe, P.; Wei, P.; Liu, C.-H.; Ning, Z. Temporal Evolution of Vehicle Exhaust Plumes in a Congested Street Canyon Environment. Environments 2024, 11, 57. https://doi.org/10.3390/environments11030057
Chu M-Y, Brimblecombe P, Wei P, Liu C-H, Ning Z. Temporal Evolution of Vehicle Exhaust Plumes in a Congested Street Canyon Environment. Environments. 2024; 11(3):57. https://doi.org/10.3390/environments11030057
Chicago/Turabian StyleChu, Meng-Yuan, Peter Brimblecombe, Peng Wei, Chun-Ho Liu, and Zhi Ning. 2024. "Temporal Evolution of Vehicle Exhaust Plumes in a Congested Street Canyon Environment" Environments 11, no. 3: 57. https://doi.org/10.3390/environments11030057
APA StyleChu, M. -Y., Brimblecombe, P., Wei, P., Liu, C. -H., & Ning, Z. (2024). Temporal Evolution of Vehicle Exhaust Plumes in a Congested Street Canyon Environment. Environments, 11(3), 57. https://doi.org/10.3390/environments11030057