An Evaluation of the Influence of Meteorological Factors and a Pollutant Emission Inventory on PM2.5 Prediction in the Beijing–Tianjin–Hebei Region Based on a Deep Learning Method
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Domain and Period Chosen
2.2. Datasets and Processing
2.2.1. Ground Air Quality Concentration
2.2.2. ECMWF-ERA5 Meteorological Factors
2.2.3. MEIC Emission Dataset
2.3. Methods and Technical Roadmap
2.3.1. The Structure of the Experimental Model
2.3.2. The Experimental Design and Result Evaluation
3. Results and Discussion
3.1. Mann–Kendall Correlation for Input Variables
3.2. Prediction Performance of the Next-Hour PM2.5 Concentration
3.3. Evaluation Performance of Air Monitoring, Meteorological Factors, and Emission Inventory on PM2.5 Prediction
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shao, M.; Dai, Q.; Yu, Z.; Zhang, Y.; Xie, M.; Feng, Y. Responses in PM2.5 and its chemical components to typical unfavorable meteorological events in the suburban area of Tianjin, China. Sci. Total Environ. 2021, 788, 147814. [Google Scholar] [CrossRef]
- Zhao, X.; Wang, G.; Wang, S.; Zhao, N.; Zhang, M.; Yue, W. Impacts of COVID-19 on air quality in mid-eastern China: An insight into meteorology and emissions. Atmos. Environ. 2021, 266, 118750. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Ding, A.; Mao, H.; Nie, W.; Zhou, D.; Liu, L.; Huang, X.; Fu, C. Impact of synoptic weather patterns and inter-decadal climate variability on air quality in the North China Plain during 1980–2013. Atmos. Environ. 2016, 124, 119–128. [Google Scholar] [CrossRef]
- Wang, Y.; Ying, Q.; Hu, J.; Zhang, H. Spatial and temporal variations of six criteria air pollutants in 31 provincial capital cities in China during 2013–2014. Environ. Int. 2014, 73, 413–422. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.W.; Kim, Y.J. Characteristics of visibility-impairing aerosol observed during the routine monitoring periods in Gwangju, Korea. Atmos. Environ. 2018, 193, 40–56. [Google Scholar] [CrossRef]
- Cabrera López, C.; Urrutia Landa, I.; Jiménez-Ruiz, C.A. SEPAR’s year: Air quality. SEPAR statement on climate change. Arch. Bronconeumol. (Engl. Ed.) 2021, 57, 313–314. [Google Scholar] [CrossRef]
- Sá, E.; Martins, H.; Ferreira, J.; Marta-Almeida, M.; Rocha, A.; Carvalho, A.; Freitas, S.; Borrego, C. Climate change and pollutant emissions impacts on air quality in 2050 over Portugal. Atmos. Environ. 2016, 131, 209–224. [Google Scholar] [CrossRef]
- Chen, H.; Li, Q.; Kaufman, J.S.; Wang, J.; Copes, R.; Su, Y.; Benmarhnia, T. Effect of air quality alerts on human health: A regression discontinuity analysis in Toronto, Canada. Lancet Planet. Health 2018, 2, e19–e26. [Google Scholar] [CrossRef]
- Fattore, E.; Paiano, V.; Borgini, A.; Tittarelli, A.; Bertoldi, M.; Crosignani, P.; Fanelli, R. Human health risk in relation to air quality in two municipalities in an industrialized area of Northern Italy. Environ. Res. 2011, 111, 1321–1327. [Google Scholar] [CrossRef]
- Liao, Z.; Gao, M.; Sun, J.; Fan, S. The impact of synoptic circulation on air quality and pollution-related human health in the Yangtze River Delta region. Sci. Total Environ. 2017, 607–608, 838–846. [Google Scholar] [CrossRef]
- Nowak, D.J.; Hirabayashi, S.; Doyle, M.; McGovern, M.; Pasher, J. Air pollution removal by urban forests in Canada and its effect on air quality and human health. Urban For. Urban Green. 2018, 29, 40–48. [Google Scholar] [CrossRef]
- Teoldi, F.; Lodi, M.; Benfenati, E.; Colombo, A.; Baderna, D. Air quality in the Olona Valley and in vitro human health effects. Sci. Total Environ. 2017, 579, 1929–1939. [Google Scholar] [CrossRef]
- Lin, J.; Long, C.; Yi, C. Has central environmental protection inspection improved air quality? Evidence from 291 Chinese cities. Environ. Impact Assess. 2021, 90, 106621. [Google Scholar] [CrossRef]
- Liu, Z.; Xue, W.; Ni, X.; Qi, Z.; Zhang, Q.; Wang, J. Fund gap to high air quality in China: A cost evaluation for PM2.5 abatement based on the Air Pollution Prevention and control Action Plan. J. Clean. Prod. 2021, 319, 128715. [Google Scholar] [CrossRef]
- Xue, W.; Wang, J.; Niu, H.; Yang, J.; Han, B.; Lei, Y.; Chen, H.; Jiang, C. Assessment of air quality improvement effect under the National Total Emission Control Program during the Twelfth National Five-Year Plan in China. Atmos. Environ. 2013, 68, 74–81. [Google Scholar] [CrossRef]
- Cai, W.-J.; Wang, H.-W.; Wu, C.-L.; Lu, K.-F.; Peng, Z.-R.; He, H.-D. Characterizing the interruption-recovery patterns of urban air pollution under the COVID-19 lockdown in China. Build. Environ. 2021, 205, 108231. [Google Scholar] [CrossRef] [PubMed]
- Huang, G.; Blangiardo, M.; Brown, P.E.; Pirani, M. Long-term exposure to air pollution and COVID-19 incidence: A multi-country study. Spat. Spatio-Temporal 2021, 39, 100443. [Google Scholar] [CrossRef] [PubMed]
- Herwehe, J.A.; Otte, T.L.; Mathur, R.; Rao, S.T. Diagnostic analysis of ozone concentrations simulated by two regional-scale air quality models. Atmos. Environ. 2011, 45, 5957–5969. [Google Scholar] [CrossRef]
- José, R.S.; Pérez, J.L.; Morant, J.L.; González, R.M. Elevated PM10 and PM2.5 concentrations in Europe: A model experiment with MM5-CMAQ and WRF-CHEM. WIT Trans. Ecol. Environ. 2018, 116, 3–12. [Google Scholar]
- Lee, M.; Lin, L.; Chen, C.-Y.; Tsao, Y.; Yao, T.-H.; Fei, M.-H.; Fang, S.-H. Forecasting air quality in Taiwan by using machine learning. Sci. Rep. 2020, 10, 4153. [Google Scholar] [CrossRef]
- Kaginalkar, A.; Kumar, S.; Gargava, P.; Niyogi, D. Review of urban computing in air quality management as smart city service: An integrated IoT, AI, and cloud technology perspective. Urban Clim. 2021, 39, 100972. [Google Scholar] [CrossRef]
- Kalia, P.; Ansari, M.A. IOT based air quality and particulate matter concentration monitoring system. Mater. Today Proc. 2020, 32, 468–475. [Google Scholar] [CrossRef]
- Senthilkumar, R.; Venkatakrishnan, P.; Balaji, N. Intelligent based novel embedded system based IoT enabled air pollution monitoring system. Microprocess. Microsy 2020, 77, 103172. [Google Scholar] [CrossRef]
- Gao, C.; Li, S.; Liu, M.; Zhang, F.; Achal, V.; Tu, Y.; Zhang, S.; Cai, C. Impact of the COVID-19 pandemic on air pollution in Chinese megacities from the perspective of traffic volume and meteorological factors. Sci. Total Environ. 2021, 773, 145545. [Google Scholar] [CrossRef] [PubMed]
- Ma, T.; Duan, F.; He, K.; Qin, Y.; Tong, D.; Geng, G.; Liu, X.; Li, H.; Yang, S.; Ye, S.; et al. Air pollution characteristics and their relationship with emissions and meteorology in the Yangtze River Delta region during 2014–2016. J. Environ. Sci 2019, 83, 8–20. [Google Scholar] [CrossRef]
- Ulpiani, G.; Ranzi, G.; Santamouris, M. Local synergies and antagonisms between meteorological factors and air pollution: A 15-year comprehensive study in the Sydney region. Sci. Total Environ. 2021, 788, 147783. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Q.; Li, W.; Fan, Z.; He, X.; Sun, W.; Chen, S.; Wen, J.; Gao, J.; Wang, J. Evaluation of the ERA5 reanalysis precipitation dataset over Chinese Mainland. J. Hydrol. 2021, 595, 125660. [Google Scholar] [CrossRef]
- Zhang, S.-Q.; Ren, G.-Y.; Ren, Y.-Y.; Zhang, Y.-X.; Xue, X.-Y. Comprehensive evaluation of surface air temperature reanalysis over China against urbanization-bias-adjusted observations. Adv. Clim. Chang. Res. 2021, 12, 783–794. [Google Scholar] [CrossRef]
- Zhang, L.; Zhao, T.L.; Gong, S.L.; Kong, S.F.; Tang, L.L.; Liu, D.Y.; Wang, Y.W.; Jin, L.J.; Shan, Y.P.; Tan, C.H.; et al. Updated emission inventories of power plants in simulating air quality during haze periods over East China. Atmos. Chem. Phys. 2018, 18, 2065–2079. [Google Scholar] [CrossRef]
- Chen, D.; Tian, X.; Lang, J.; Zhou, Y.; Li, Y.; Guo, X.; Wang, W.; Liu, B. The impact of ship emissions on PM2.5 and the deposition of nitrogen and sulfur in Yangtze River Delta, China. Sci. Total Environ. 2019, 649, 1609–1619. [Google Scholar] [CrossRef]
- Chauhan, R.; Kaur, H.; Alankar, B. Air quality forecast using convolutional Neural Network for sustainable development in urban environments. Sustain. Cities Soc. 2021, 75, 103239. [Google Scholar] [CrossRef]
- Masood, A.; Ahmad, K. A review on emerging artificial intelligence (AI) techniques for air pollution forecasting: Fundamentals, application and performance. J. Clean. Prod. 2021, 322, 129072. [Google Scholar] [CrossRef]
- Sharma, E.; Deo, R.C.; Prasad, R.; Parisi, A.V. A hybrid air quality early-warning framework: An hourly forecasting model with online sequential extreme learning machines and empirical mode decomposition algorithms. Sci. Total Environ. 2020, 709, 135934. [Google Scholar] [CrossRef] [PubMed]
- Singh, D.; Dahiya, M.; Kumar, R.; Nanda, C. Sensors and systems for air quality assessment monitoring and management: A review. J. Environ. Manag. 2021, 289, 112510. [Google Scholar] [CrossRef] [PubMed]
- Han, S.; Dong, H.; Teng, X.; Li, X.; Wang, X. Correlational graph attention-based Long Short-Term Memory network for multivariate time series prediction. Appl. Soft Comput. 2021, 106, 107377. [Google Scholar] [CrossRef]
- Seng, D.; Zhang, Q.; Zhang, X.; Chen, G.; Chen, X. Spatiotemporal prediction of air quality based on LSTM neural network. Alex. Eng. J. 2021, 60, 2021–2032. [Google Scholar] [CrossRef]
- Zhao, J.; Deng, F.; Cai, Y.; Chen, J. Long short-term memory—Fully connected (LSTM-FC) neural network for PM2.5 concentration prediction. Chemosphere 2019, 220, 486–492. [Google Scholar] [CrossRef]
- Heo, G.; McDonald-Buller, E.; Carter, W.P.L.; Yarwood, G.; Whitten, G.Z.; Allen, D.T. Modeling ozone formation from alkene reactions using the Carbon Bond chemical mechanism. Atmos. Environ. 2012, 59, 141–150. [Google Scholar] [CrossRef]
- Luecken, D.J.; Phillips, S.; Sarwar, G.; Jang, C. Effects of using the CB05 vs. SAPRC99 vs. CB4 chemical mechanism on model predictions: Ozone and gas-phase photochemical precursor concentrations. Atmos. Environ. 2008, 42, 5805–5820. [Google Scholar] [CrossRef]
- Shahade, A.K.; Walse, K.H.; Thakare, V.M.; Atique, M. Multi-lingual opinion mining for social media discourses: An approach using deep learning based hybrid fine-tuned smith algorithm with adam optimizer. Int. J. Inf. Manag. Data Insights 2023, 3, 100182. [Google Scholar] [CrossRef]
- Zhong, Z.M.; Zheng, J.Y.; Zhu, M.N.; Huang, Z.J.; Zhang, Z.W.; Jia, G.L.; Wang, X.L.; Bian, Y.H.; Wang, Y.L.; Li, N. Recent developments of anthropogenic air pollutant emission inventories in Guangdong province, China. Sci. Total Environ. 2018, 627, 1080–1092. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Wu, J.R.; Elser, M.; Feng, T.; Cao, J.J.; El-Haddad, I.; Huang, R.J.; Tie, X.X.; Prévôt, A.S.H.; Li, G.H. Contributions of residential coal combustion to the air quality in Beijing-Tianjin-Hebei (BTH), China: A case study. Atmos. Chem. Phys. 2018, 18, 10675–10691. [Google Scholar] [CrossRef]
- Kotake, S.; Sano, T. Simulation-model of air-pollution in complex terrains including streets and buildings. Atmos. Environ. 1981, 15, 1001–1009. [Google Scholar] [CrossRef]
- Song, S.F.; Zhang, X.Z.; Gao, Z.B.; Yan, X.D. Evaluation of atmospheric circulations for dynamic downscaling in CMIP6 models over East Asia. Clim. Dynam 2022, 60, 2437–2458. [Google Scholar] [CrossRef]
Category | Variables | Unit | Notes | |
---|---|---|---|---|
Air quality monitoring dataset | PM2.5, PM10 | μg/m3 | ||
SO2, NO2, O3 and CO | mg/m3 | |||
ECMWF-ERA5 Meteorological factors | surface pressure (SPRE) | Pa | ||
relative humidity (RH) | % | |||
2 m temperature (TMP) | °C | |||
u component of wind speed(U) | m/s | Eastern direction is positive, western is negative | ||
v component of wind speed(V) | m/s | Northern direction is positive, southern is negative | ||
Chemical components of MEIC dataset | ALD2, ALDx, BENZENE, CO, ETH, ETHA, EOH, FORM, HONO, IOLE, ISOP, MEOH, NH3, NO, NO2, NVOL, OLE, PAR, SO2, SULF, TERP, TOL | moles/s | CO, NOx, SO2, VOCs, NH3, PM2.5, PM-coarse, BC, and OC are converted to the input variable by SMOKE | |
PAL, PCA, PCL, PEC, PFE, PH2O, PK, PMC, UNR, XYL, PMG, PMN, PMOTHER, PNA, PNCOM, PNH4, PNO3, POC, PSI, PSO4, PTI | g/s |
(a) Air quality monitoring dataset and ECMWF-ERA5 meteorological factors. | ||||||||||||||||
Stations | PM2.5 (t − 1) | PM10 (t − 1) | CO (t − 1) | O3 (t − 1) | NO2 (t − 1) | SO2 (t − 1) | SPRE (t − 1) | TMP (t − 1) | RH (t − 1) | WD (t − 1) | WS (t − 1) | |||||
MS | 0.847 | 0.66 | 0.65 | −0.161 | 0.47 | 0.313 | −0.081 | - | 0.317 | - | −0.187 | |||||
FR | 0.829 | 0.66 | 0.522 | −0.205 | 0.429 | 0.392 | - | −0.082 | 0.177 | −0.092 | −0.161 | |||||
SH | 0.852 | 0.689 | 0.615 | −0.245 | 0.476 | 0.399 | 0.152 | −0.235 | 0.198 | - | −0.168 | |||||
PB | 0.837 | 0.69 | 0.391 | −0.24 | 0.509 | 0.405 | - | −0.098 | 0.242 | - | −0.179 | |||||
QMS | 0.844 | 0.69 | 0.492 | −0.136 | 0.402 | 0.307 | - | 0.242 | −0.15 | −0.132 | ||||||
STP | 0.848 | 0.673 | 0.463 | −0.269 | 0.402 | 0.295 | 0.089 | −0.167 | 0.174 | −0.169 | ||||||
BMS | 0.86 | 0.722 | 0.594 | −0.315 | 0.504 | 0.426 | 0.13 | −0.229 | 0.152 | - | −0.188 | |||||
HV | 0.756 | 0.564 | 0.535 | 0.519 | 0.349 | - | 0.134 | 0.178 | −0.129 | |||||||
DZ | 0.844 | 0.705 | 0.558 | −0.175 | 0.514 | 0.394 | - | - | 0.253 | - | −0.206 | |||||
NCIA | 0.865 | 0.723 | 0.605 | −0.225 | 0.416 | 0.443 | - | 0.292 | - | −0.238 | ||||||
TRS | 0.837 | 0.668 | 0.486 | −0.237 | 0.43 | 0.332 | −0.172 | 0.161 | −0.161 | |||||||
MMS | 0.849 | 0.63 | 0.526 | −0.269 | 0.408 | 0.324 | 0.097 | −0.182 | 0.188 | - | −0.155 | |||||
RBC | 0.836 | 0.674 | 0.536 | −0.283 | 0.469 | 0.342 | 0.136 | −0.216 | 0.154 | - | −0.146 | |||||
(b) Kendall test of MEIC chemical component dataset for PM2.5 concentration prediction. | ||||||||||||||||
Stations | XYL (t − 1) | PNCOM (t − 1) | POC (t − 1) | ALD2 (t − 1) | ALDX (t − 1) | BENZENE (t − 1) | ETOH (t − 1) | FORM (t − 1) | ISOP (t − 1) | MEOH (t − 1) | NVOL (t − 1) | PAR (t − 1) | NO (t − 1) | NO2 (t − 1) | HONO (t − 1) | NH3 (t − 1) |
unit: g/s | unit: moles/s | |||||||||||||||
MS | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | −0.115 |
FR | - | - | - | - | - | - | - | - | - | - | - | - | - | - | −0.085 | - |
SH | - | - | - | 0.090 | 0.110 | 0.087 | - | - | 0.089 | - | - | - | - | −0.188 | ||
PB | - | - | - | - | - | - | - | - | - | - | - | - | −0.89 | |||
QMS | - | - | - | - | - | - | - | - | - | - | - | - | −0.108 | |||
STP | - | - | - | - | - | 0.086 | - | - | - | 0.080 | 0.109 | - | - | - | - | −0.167 |
BMS | −0.083 | - | - | - | - | - | −0.118 | - | - | - | - | −0.081 | −0.113 | -0.115 | -0.092 | −0.174 |
HV | - | - | - | - | - | - | - | - | - | - | - | - | −0.103 | - | - | |
DZ | - | - | - | - | - | - | - | - | - | - | - | - | −0.098 | |||
NCIA | - | - | - | - | - | - | - | - | - | - | - | - | −0.107 | |||
TRS | - | - | - | - | - | - | −0.102 | - | - | - | - | −0.099 | -0.100 | −0.089 | −0.133 | |
MMS | - | - | - | - | - | - | −0.089 | - | - | - | - | −0.086 | -0.087 | −0.088 | −0.149 | |
RBC | - | 0.089 | 0.086 | 0.092 | 0.103 | - | - | 0.086 | 0.092 | - | - | - | −0.204 |
(a) Performance evaluation in different seasons. | ||||||||
Stations | Spring | Summer | Autumn | Winter | ||||
MAE | R2 | MAE | R2 | MAE | R2 | MAE | R2 | |
MS | 9.743 | 0.916 | 7.945 | 0.832 | 6.997 | 0.941 | 11.480 | 0.932 |
FR | 10.019 | 0.915 | 7.980 | 0.801 | 7.262 | 0.913 | 11.324 | 0.944 |
SH | 16.265 | 0.823 | 13.491 | 0.566 | 13.964 | 0.848 | 19.078 | 0.932 |
PB | 11.869 | 0.803 | 7.211 | 0.754 | 8.490 | 0.900 | 13.069 | 0.928 |
QMS | 8.953 | 0.845 | 7.451 | 0.829 | 6.500 | 0.911 | 8.962 | 0.930 |
STP | 11.146 | 0.843 | 11.835 | 0.724 | 10.810 | 0.863 | 17.615 | 0.898 |
BMS | 10.715 | 0.897 | 8.640 | 0.718 | 8.247 | 0.907 | 18.104 | 0.916 |
HV | 7.170 | 0.853 | 6.869 | 0.719 | 5.223 | 0.869 | 7.101 | 0.911 |
DZ | 5.320 | 0.911 | 4.821 | 0.898 | 5.015 | 0.899 | 7.774 | 0.833 |
NCIA | 9.019 | 0.905 | 6.751 | 0.839 | 7.194 | 0.916 | 11.494 | 0.952 |
TRS | 12.649 | 0.855 | 10.770 | 0.640 | 11.526 | 0.814 | 15.070 | 0.902 |
MMS | 9.146 | 0.831 | 7.504 | 0.831 | 7.612 | 0.911 | 15.835 | 0.916 |
RBC | 12.965 | 0.791 | 11.246 | 0.663 | 12.316 | 0.847 | 20.398 | 0.898 |
Average | 10.383 | 0.861 | 8.655 | 0.755 | 8.551 | 0.888 | 13.639 | 0.915 |
(b) Performance evaluation at different levels. | ||||||||
Stations | Level-1 (0–75 μg/m3) | Level-2 (75–150 μg/m3) | Level-3 (>150 μg/m3) | |||||
MAE | R2 | MAE | R2 | MAE | R2 | |||
MS | 7.271 | 0.430 | 10.483 | 0.396 | 20.686 | 0.873 | ||
FR | 7.493 | 0.663 | 10.443 | 0.298 | 19.728 | 0.756 | ||
SH | 12.812 | 0.256 | 18.008 | 0.464 | 24.236 | 0.846 | ||
PB | 7.270 | 0.479 | 15.685 | 0.165 | 23.487 | 0.626 | ||
QMS | 6.491 | 0.649 | 13.843 | 0.136 | 18.504 | 0.722 | ||
STP | 9.131 | 0.101 | 14.498 | 0.010 | 22.212 | 0.689 | ||
BMS | 7.520 | 0.359 | 13.893 | 0.068 | 24.379 | 0.801 | ||
HV | 5.471 | 0.738 | 15.572 | 0.114 | 43.651 | 0.384 | ||
DZ | 4.295 | 0.819 | 13.546 | 0.146 | 30.787 | 0.297 | ||
NCIA | 6.390 | 0.654 | 13.286 | 0.157 | 19.091 | 0.820 | ||
TRS | 10.859 | 0.170 | 14.858 | 0.068 | 23.269 | 0.681 | ||
MMS | 6.324 | 0.461 | 12.946 | 0.190 | 24.189 | 0.705 | ||
RBC | 10.488 | 0.045 | 17.154 | 0.257 | 24.432 | 0.753 | ||
Average | 7.832 | 0.448 | 14.170 | 0.190 | 24.512 | 0.689 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, X.; Li, B.; Gao, X.; Yabo, S.D.; Wang, K.; Qi, H.; Ding, J.; Fu, D.; Zhang, W. An Evaluation of the Influence of Meteorological Factors and a Pollutant Emission Inventory on PM2.5 Prediction in the Beijing–Tianjin–Hebei Region Based on a Deep Learning Method. Environments 2024, 11, 107. https://doi.org/10.3390/environments11060107
Shi X, Li B, Gao X, Yabo SD, Wang K, Qi H, Ding J, Fu D, Zhang W. An Evaluation of the Influence of Meteorological Factors and a Pollutant Emission Inventory on PM2.5 Prediction in the Beijing–Tianjin–Hebei Region Based on a Deep Learning Method. Environments. 2024; 11(6):107. https://doi.org/10.3390/environments11060107
Chicago/Turabian StyleShi, Xiaofei, Bo Li, Xiaoxiao Gao, Stephen Dauda Yabo, Kun Wang, Hong Qi, Jie Ding, Donglei Fu, and Wei Zhang. 2024. "An Evaluation of the Influence of Meteorological Factors and a Pollutant Emission Inventory on PM2.5 Prediction in the Beijing–Tianjin–Hebei Region Based on a Deep Learning Method" Environments 11, no. 6: 107. https://doi.org/10.3390/environments11060107
APA StyleShi, X., Li, B., Gao, X., Yabo, S. D., Wang, K., Qi, H., Ding, J., Fu, D., & Zhang, W. (2024). An Evaluation of the Influence of Meteorological Factors and a Pollutant Emission Inventory on PM2.5 Prediction in the Beijing–Tianjin–Hebei Region Based on a Deep Learning Method. Environments, 11(6), 107. https://doi.org/10.3390/environments11060107