Mine Site Restoration: The Phytoremediation of Arsenic-Contaminated Soils
Abstract
:1. Introduction
2. Arsenic
2.1. Origin and History of Arsenic
2.2. Chemistry of Arsenic
2.3. Sources of Arsenic
2.4. Distribution of Arsenic in Nature and Living Organisms
2.5. Global Contamination of Arsenic
2.6. Arsenic Toxicity to Living Organisms and Human Health
3. Arsenic Pollution in Mine Sites
4. Restoration of Arsenic-Contaminated Soil
Approaches | Advantages | Disadvantages |
---|---|---|
Chemical technologies | ||
Soil washing | - Applicable both in situ and ex situ. | - Destroys soil quality. - Requires significant expenditure. - Promotes secondary pollution during soil transportation for ex situ. - Causes As diffusion. - High cost. |
Soil immobilisation | - Low cost. - Convenient to apply. - Applicable for field experiments. - Can use multiple agents. | - Requires long-term monitoring. - Can return As to an active state. |
Physical technologies | ||
Soil replacement/soil cover | - Not reported. | - Requires significant expenditure. - Energy demanding. - Difficulties in obtaining adequate clean soil. - Promotes secondary pollution during soil transportation. - Decreases soil nutrients. |
Turnover and attenuation | - Reduces As quickly and efficiently. | - Expensive - Decreases soil nutrients. - Needs high maintenance and expert labour. - Difficulties in obtaining sufficient clean soil. |
Electrokinetic remediation | - Decreases As rapidly. - Reduces high As in topsoil. | - Can only remove mobile fractions of As. - Reduces As at lower rate in deeper soil layers. |
Biological technologies | ||
Phytoremediation | - Low cost. - Simple to operate. - Environmentally friendly. | - Needs a longer time for plant reproduction. - Requires pollution control during plant harvest. |
Bioremediation | - Low cost. - Environmentally friendly. | - Requires a combination of microorganisms or other remediation methods to achieve high removal of As. - Limited to laboratory experiments. - Requires high adaptation of microorganisms to the environment. |
Combined technologies | ||
Phytoextraction and soil washing | - Improves As removal. | - Needs safe eluents that do not have negative effects on hyperaccumulator growth. |
Electrokinetic remediation and soil immobilisation | - Controls acidification. - Improves As removal. | - Requires the use of expensive chemicals. |
5. The Concept of Phytoremediation
6. Phytoremediation of Arsenic-Contaminated Mine Sites
7. Co-Application of Phytoremediation for Arsenic Removal from Contaminated Soils
7.1. Chemical and Physical Methods
7.2. Biological Methods
8. Importance of Macronutrients and Micronutrients for Plant Growth
9. Limitation of Nitrogen Availability in Mine Soil
10. Potential Approaches to Enhance Soil Nitrogen Content for the Phytoremediation of As and Other Pollutants
10.1. Nitrogen Fertilisers
10.2. Biochar
10.3. Compost and Manure
10.4. Nitrogen-Fixing Bacteria
11. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Atsdr’s Substance Priority List. ATSDR. Available online: https://www.atsdr.cdc.gov/SPL/# (accessed on 24 March 2024).
- Ravenscroft, P.; Brammer, H.; Richards, K. Arsenic Pollution: A Global Synthesis; John Wiley & Sons: Hoboken, NJ, USA, 2009; Volume 28. [Google Scholar]
- de Souza Neto, H.F.; da Silveira Pereira, W.V.; Dias, Y.N.; de Souza, E.S.; Teixeira, R.A.; de Lima, M.W.; Ramos, S.J.; Amarante, C.B.D.; Fernandes, A.R. Environmental and Human Health Risks of Arsenic in Gold Mining Areas in the Eastern Amazon. Environ. Pollut. 2020, 265, 114969. [Google Scholar] [CrossRef] [PubMed]
- Besedin, J.A.; Khudur, L.S.; Netherway, P.; Ball, A.S. Remediation Opportunities for Arsenic-Contaminated Gold Mine Waste. Appl. Sci. 2023, 13, 10208. [Google Scholar] [CrossRef]
- Han, F.X.; Su, Y.; Monts, D.L.; Plodinec, M.J.; Banin, A.; Triplett, G.E. Assessment of Global Industrial-Age Anthropogenic Arsenic Contamination. Naturwissenschaften 2003, 90, 395–401. [Google Scholar] [CrossRef]
- Derakhshan Nejad, Z.; Kim, J.W.; Jung, M.C. Reclamation of Arsenic Contaminated Soils around Mining Site Using Solidification/Stabilization Combined with Revegetation. Geosci. J. 2017, 21, 385–396. [Google Scholar] [CrossRef]
- Ran, H.; Guo, Z.; Yi, L.; Xiao, X.; Zhang, L.; Hu, Z.; Li, C.; Zhang, Y. Pollution Characteristics and Source Identification of Soil Metal (Loid) S at an Abandoned Arsenic-Containing Mine, China. J. Hazard. Mater. 2021, 413, 125382. [Google Scholar] [CrossRef] [PubMed]
- Bailey, A.S.; Jamieson, H.E.; Radková, A.B. Geochemical Characterization of Dust from Arsenic-Bearing Tailings, Giant Mine, Canada. Appl. Geochem. 2021, 135, 105119. [Google Scholar] [CrossRef]
- Hossain, M.A.; Begum, A.; Akhtar, K. Study on Knowledge About Arsenic Contamination in Drinking Water among the People Living in Selected Villages of Bangladesh. J. Shaheed Suhrawardy Med. Coll. 2014, 6, 57–59. [Google Scholar] [CrossRef]
- Gerwing, T.G.; Hawkes, V.C.; Gann, G.D.; Murphy, S.D. Restoration, Reclamation, and Rehabilitation: On the Need for, and Positing a Definition of, Ecological Reclamation. Restor. Ecol. 2022, 30, e13461. [Google Scholar] [CrossRef]
- Sun, W.; Ji, B.; Khoso, S.A.; Tang, H.; Liu, R.; Wang, L.; Hu, Y. An Extensive Review on Restoration Technologies for Mining Tailings. Environ. Sci. Pollut. Res. 2018, 25, 33911–33925. [Google Scholar] [CrossRef]
- Vandana, U.K.; Gulzar, A.B.M.; Singha, L.P.; Bhattacharjee, A.; Mazumder, P.B.; Pandey, P. Hyperaccumulation of Arsenic by Pteris Vittata, a Potential Strategy for Phytoremediation of Arsenic-Contaminated Soil. Environ. Sustain. 2020, 3, 169–178. [Google Scholar] [CrossRef]
- Raj, A.; Singh, N. Phytoremediation of Arsenic Contaminated Soil by Arsenic Accumulators: A Three Year Study. Bull. Environ. Contam. Toxicol. 2015, 94, 308–313. [Google Scholar] [CrossRef]
- Awa, S.H.; Hadibarata, T. Removal of Heavy Metals in Contaminated Soil by Phytoremediation Mechanism: A Review. Water Air Soil Pollut. 2020, 231, 47. [Google Scholar] [CrossRef]
- Narayanan, M.; Ma, Y. Influences of Biochar on Bioremediation/Phytoremediation Potential of Metal-Contaminated Soils. Front. Microbiol. 2022, 13, 929730. [Google Scholar] [CrossRef] [PubMed]
- Paz-Ferreiro, J.; Lu, H.; Fu, S.; Mendez, A.; Gasco, G. Use of Phytoremediation and Biochar to Remediate Heavy Metal Polluted Soils: A Review. Solid Earth 2014, 5, 65–75. [Google Scholar] [CrossRef]
- Kumari, S.; Maiti, S.K. Nitrogen Recovery in Reclaimed Mine Soil under Different Amendment Practices in Tandem with Legume and Non-Legume Revegetation: A Review. Soil Use Manag. 2022, 38, 1113–1145. [Google Scholar] [CrossRef]
- Gupta, A.; Majumdar, A.; Srivastava, S. Approaches for Assisted Phytoremediation of Arsenic Contaminated Sites. In Assisted Phytoremediation, Elsevier: Amsterdam, The Netherlands, 2022; pp. 221–242.
- Guo, J.; Feng, R.; Ding, Y.; Wang, R. Applying Carbon Dioxide, Plant Growth-Promoting Rhizobacterium and Edta Can Enhance the Phytoremediation Efficiency of Ryegrass in a Soil Polluted with Zinc, Arsenic, Cadmium and Lead. J. Environ. Manag. 2014, 141, 1–8. [Google Scholar] [CrossRef]
- Xiang, D.; Liao, S.; Tu, S.; Zhu, D.; Xie, T.; Wang, G. Surfactants Enhanced Soil Arsenic Phytoextraction Efficiency by Pteris vittata L. Bull. Environ. Contam. Toxicol. 2020, 104, 259–264. [Google Scholar] [CrossRef]
- Mehmood, T.; Ashraf, A.; Peng, L.; Shaz, M.; Ahmad, S.; Ahmad, S.; Khan, I.; Abid, M.; Gaurav, G.K.; Riaz, U. Modern Aspects of Phytoremediation of Arsenic-Contaminated Soils. In Global Arsenic Hazard: Ecotoxicology and Remediation; Springer: Cham, Switzerland, 2022; pp. 433–457. [Google Scholar]
- Wan, X.; Lei, M.; Chen, T.; Yang, J. Intercropped Pteris Vittata L. and Morus alba L. Presents a Safe Utilization Mode for Arsenic-Contaminated Soil. Sci. Total Environ. 2017, 579, 1467–1475. [Google Scholar] [CrossRef] [PubMed]
- Arita, S.; Katoh, M. Arsenic Removal from Contaminated Soil by Phytoremediation Combined with Chemical Immobilization. Paper presented at the 8th International Congress on Environmental Geotechnics Volume 3: Towards a Sustainable Geoenvironment, Hangzhou, China, 28 October–1 November 2018. [Google Scholar]
- Sevak, P.; Pushkar, B. Arsenic Pollution Cycle, Toxicity and Sustainable Remediation Technologies: A Comprehensive Review and Bibliometric Analysis. J. Environ. Manag. 2024, 349, 119504. [Google Scholar] [CrossRef]
- Kumar, V.; Thakur, M.; Seth, C.S. In Situ Remediation Techniques for Removal of Arsenic in the Environment. Curr. Opin. Environ. Sci. Health 2024, 38, 100538. [Google Scholar] [CrossRef]
- Antman, K.H. Introduction: The History of Arsenic Trioxide in Cancer Therapy. Oncologist 2001, 6, 1–2. [Google Scholar] [CrossRef] [PubMed]
- Hyson, J.M., Jr. A History of Arsenic in Dentistry. J. Calif. Dent. Assoc. 2007, 35, 135–139. [Google Scholar]
- Scheindlin, S. The Duplicitous Nature of Inorganic Arsenic. Mol. Interv. 2005, 5, 60. [Google Scholar] [CrossRef] [PubMed]
- Parascandola, J. King of Poisons: A History of Arsenic; Potomac Books, Inc.: Washington, DC, USA, 2012. [Google Scholar]
- Information, National Center for Biotechnology. Pubchem Element Summary for Atomicnumber 33, Arsenic. Available online: https://pubchem.ncbi.nlm.nih.gov/element/Arsenic (accessed on 30 January 2024).
- Yang, S.-H.; Park, J.-S.; Cho, M.-J.; Choi, H. Risk Analysis of Inorganic Arsenic in Foods. J. Food Hyg. Saf. 2016, 31, 227–249. [Google Scholar] [CrossRef]
- Flora, S.J.S. Arsenic: Chemistry, Occurrence, and Exposure. In Handbook of Arsenic Toxicology; Elsevier: Amsterdam, The Netherlands, 2015; pp. 1–49. [Google Scholar]
- Garelick, H.; Jones, H.; Dybowska, A.; Valsami-Jones, E. Arsenic Pollution Sources. Rev. Environ. Contam. Vol. 2009, 197, 17–60. [Google Scholar]
- Jang, Y.C.; Somanna, Y.; Kim, H.J.I.J. Source, Distribution, Toxicity and Remediation of Arsenic in the Environment—A Review. Int. J. Appl. Environ. Sci. 2016, 11, 559–581. [Google Scholar]
- Harvey, P.J.; Handley, H.K.; Taylor, M.P. Widespread Copper and Lead Contamination of Household Drinking Water, New South Wales, Australia. Environ. Res. 2016, 151, 275–285. [Google Scholar] [CrossRef]
- ATSDR. Case Studies in Environmental Medicine. Arsenic Toxicity. Available online: http://www.atsdr.cdc.gov/csem/arsenic/docs/arsenic.pdf (accessed on 13 January 2024).
- Hussain, M.M.; Bibi, I.; Shahid, M.; Shaheen, S.M.; Shakoor, M.B.; Bashir, S.; Younas, F.; Rinklebe, J.; Niazi, N.K. Biogeochemical Cycling, Speciation and Transformation Pathways of Arsenic in Aquatic Environments with the Emphasis on Algae. In Comprehensive Analytical Chemistry; Elsevier: Amsterdam, The Netherlands, 2019; pp. 15–51. [Google Scholar]
- Rastegari Mehr, M.; Keshavarzi, B.; Moore, F.; Hooda, P.S.; Busquets, R.; Ghorbani, Z. Arsenic in the Rock–Soil–Plant System and Related Health Risk in a Magmatic–Metamorphic Belt, West of Iran. Environ. Geochem. Health 2020, 42, 3659–3673. [Google Scholar] [CrossRef] [PubMed]
- Murcott, S. Arsenic Contamination in the World; IWA Publishing: London, UK, 2012. [Google Scholar]
- Shaji, E.; Santosh, M.; Sarath, K.V.; Prakash, P.; Deepchand, V.; Divya, B.V. Arsenic Contamination of Groundwater: A Global Synopsis with Focus on the Indian Peninsula. Geosci. Front. 2021, 12, 101079. [Google Scholar] [CrossRef]
- Muehe, E.M.; Wang, T.; Kerl, C.F.; Planer-Friedrich, B.; Fendorf, S. Rice Production Threatened by Coupled Stresses of Climate and Soil Arsenic. Nat. Commun. 2019, 10, 4985. [Google Scholar] [CrossRef]
- Sandil, S.; Óvári, M.; Dobosy, P.; Vetési, V.; Endrédi, A.; Takács, A.; Füzy, A.; Záray, G. Effect of Arsenic-Contaminated Irrigation Water on Growth and Elemental Composition of Tomato and Cabbage Cultivated in Three Different Soils, and Related Health Risk Assessment. Environ. Res. 2021, 197, 111098. [Google Scholar] [CrossRef] [PubMed]
- Wang, N.-X.; Liu, Y.-Y.; Wei, Z.-B.; Yang, L.-Y.; Miao, A.-J. Waterborne and Dietborne Toxicity of Inorganic Arsenic to the Freshwater Zooplankton Daphnia Magna. Environ. Sci. Technol. 2018, 52, 8912–8919. [Google Scholar] [CrossRef]
- Cordero, H.; Morcillo, P.; Martínez, S.; Meseguer, J.; Pérez-Sirvent, C.; Chaves-Pozo, E.; Martínez-Sanchez, M.J.; Cuesta, A.; Esteban, M.Á. Inorganic Arsenic Causes Apoptosis Cell Death and Immunotoxicity on European Sea Bass (Dicentrarchus Labrax). Mar. Pollut. Bull. 2018, 128, 324–332. [Google Scholar] [CrossRef] [PubMed]
- Schoolmeester, W.L.; White, D.R. Arsenic Poisoning. South. Med. J. 1980, 73, 198–208. [Google Scholar] [CrossRef]
- Debnath, D.; Nath, B.D.; Pervin, R.; Hossain, M.A. Arsenic Toxicity: Source, Mechanism, Global Health Complication, and Possible Way to Defeat. In Metal Toxicology Handbook; CRC Press: Boca Raton, FL, USA, 2020; pp. 373–391. [Google Scholar]
- Mochizuki, H. Arsenic Neurotoxicity in Humans. Int. J. Mol. Sci. 2019, 20, 3418. [Google Scholar] [CrossRef] [PubMed]
- Bjørklund, G.; Oliinyk, P.; Lysiuk, R.; Rahaman, M.S.; Antonyak, H.; Lozynska, I.; Lenchyk, L.; Peana, M. Arsenic Intoxication: General Aspects and Chelating Agents. Arch. Toxicol. 2020, 94, 1879–1897. [Google Scholar] [CrossRef] [PubMed]
- Igarashi, T.; Herrera, P.S.; Uchiyama, H.; Miyamae, H.; Iyatomi, N.; Hashimoto, K.; Tabelin, C.B. The Two-Step Neutralization Ferrite-Formation Process for Sustainable Acid Mine Drainage Treatment: Removal of Copper, Zinc and Arsenic, and the Influence of Coexisting Ions on Ferritization. Sci. Total Environ. 2020, 715, 136877. [Google Scholar] [CrossRef] [PubMed]
- Álvarez-Quintana, J.; Álvarez, R.; Ordóñez, A. Arsenic in Soils Affected by Mining: Microscopic Studies Vs. Sequential Chemical Extraction. Int. J. Environ. Res. Public Health 2020, 17, 8426. [Google Scholar] [CrossRef]
- Eisler, R. Arsenic Hazards to Humans, Plants, and Animals from Gold Mining. In Reviews of Environmental Contamination and Toxicology; Springer, New York, NY, USA, 2004; pp. 133–165.
- Williams, M. Arsenic in Mine Waters: An International Study. Environ. Geol. 2001, 40, 267–278. [Google Scholar] [CrossRef]
- Ko, I.; Ahn, J.S.; Park, Y.S.; Kim, K.-W. Arsenic Contamination of Soils and Sediments from Tailings in the Vicinity of Myungbong Au Mine, Korea. Chem. Speciat. Bioavailab. 2003, 15, 67–74. [Google Scholar] [CrossRef]
- Mensah, A.K.; Marschner, B.; Shaheen, S.M.; Wang, J.; Wang, S.-L.; Rinklebe, J. Arsenic Contamination in Abandoned and Active Gold Mine Spoils in Ghana: Geochemical Fractionation, Speciation, and Assessment of the Potential Human Health Risk. Environ. Pollut. 2020, 261, 114116. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.; Xie, S.; Wei, C.; Liu, J.; Zhang, H.; Chen, T.; Zhang, J. Arsenic Characteristics in the Terrestrial Environment in the Vicinity of the Shimen Realgar Mine, China. Sci. Total Environ. 2018, 626, 77–86. [Google Scholar] [CrossRef]
- Sako, A.; Bamba, O.; Gordio, A. Hydrogeochemical Processes Controlling Groundwater Quality around Bomboré Gold Mineralized Zone, Central Burkina Faso. J. Geochem. Explor. 2016, 170, 58–71. [Google Scholar] [CrossRef]
- Smith, E.; Smith, J.; Smith, L.; Biswas, T.; Correll, R.; Naidu, R. Arsenic in Australian Environment: An Overview. J. Environ. Sci. Health Part A 2003, 38, 223–239. [Google Scholar] [CrossRef]
- Wan, X.; Lei, M.; Chen, T. Review on Remediation Technologies for Arsenic-Contaminated Soil. Front. Environ. Sci. Eng. 2020, 14, 1–14. [Google Scholar]
- Bari, A.S.M.F.; Lamb, D.; MacFarlane, G.R.; Rahman, M.M. Soil Washing of Arsenic from Mixed Contaminated Abandoned Mine Soils and Fate of Arsenic after Washing. Chemosphere 2022, 296, 134053. [Google Scholar] [CrossRef]
- Doherty, S.J.; Tighe, M.K.; Wilson, S.C. Evaluation of Amendments to Reduce Arsenic and Antimony Leaching from Co-Contaminated Soils. Chemosphere 2017, 174, 208–217. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Cui, M.; Xue, S.; Li, W.; Huang, L.; Jiang, X.; Qian, Z. Remediation of Arsenic-Contaminated Paddy Soil by Iron-Modified Biochar. Environ. Sci. Pollut. Res. 2018, 25, 20792–20801. [Google Scholar] [CrossRef]
- Wan, X.; Lei, M.; Yang, J.; Chen, T. Three-Year Field Experiment on the Risk Reduction, Environmental Merit, and Cost Assessment of Four in Situ Remediation Technologies for Metal (Loid)-Contaminated Agricultural Soil. Environ. Pollut. 2020, 266, 115193. [Google Scholar] [CrossRef]
- Hawal, L.H.; Al-Sulttani, A.O. The Technique of Arsenic Elimination from Contaminated Soil with Enhanced Conditions by Electro-Kinetic Remediation. Environ. Monit. Assess. 2023, 195, 1319. [Google Scholar] [CrossRef]
- Liao, X.; Li, Y.; Avilés, R.M.; Zha, X.; Anguiano, J.H.H.; Moncada, D.; de Jesús Puy Alquiza, M.; González, V.P.; Garzon, L.F.R. In Situ Remediation and Ex Situ Treatment Practices of Arsenic-Contaminated Soil: An Overview on Recent Advances. J. Hazard. Mater. Adv. 2022, 8, 100157. [Google Scholar] [CrossRef]
- Yin, S.; Zhang, X.; Yin, H.; Zhang, X. Current Knowledge on Molecular Mechanisms of Microorganism-Mediated Bioremediation for Arsenic Contamination: A Review. Microbiol. Res. 2022, 258, 126990. [Google Scholar] [CrossRef] [PubMed]
- Cristaldi, A.; Conti, G.O.; Jho, E.H.; Zuccarello, P.; Grasso, A.; Copat, C.; Ferrante, M. Phytoremediation of Contaminated Soils by Heavy Metals and Pahs. A Brief Review. Environ. Technol. Innov. 2017, 8, 309–326. [Google Scholar] [CrossRef]
- Derakhshan Nejad, Z.; Jung, M.C.; Kim, K.-H. Remediation of Soils Contaminated with Heavy Metals with an Emphasis on Immobilization Technology. Environ. Geochem. Health 2018, 40, 927–953. [Google Scholar] [CrossRef] [PubMed]
- Pandey, V.C.; Bauddh, K. Phytomanagement of Polluted Sites: Market Opportunities in Sustainable Phytoremediation; Elsevier: Amsterdam, The Netherland, 2018. [Google Scholar]
- Su, R.; Wang, Y.; Huang, S.; Chen, R.; Wang, J. Application for Ecological Restoration of Contaminated Soil: Phytoremediation. Int. J. Environ. Res. Public Health 2022, 19, 13124. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, S.; Shukla, A.; Rajput, V.D.; Kumar, K.; Minkina, T.; Mandzhieva, S.; Shmaraeva, A.; Suprasanna, P. Arsenic Remediation through Sustainable Phytoremediation Approaches. Minerals 2021, 11, 936. [Google Scholar] [CrossRef]
- Dhingra, N.; Sharma, R.; Singh, N.S. Phytoremediation of Heavy Metal Contaminated Soil and Water. In Phytoremediation for Environmental Sustainability; Springer: Berlin/Heidelberg, Germany, 2022; pp. 47–70. [Google Scholar]
- Ghori, Z.; Iftikhar, H.; Bhatti, M.F.; Sharma, I.; Kazi, A.G.; Ahmad, P. Phytoextraction: The Use of Plants to Remove Heavy Metals from Soil. In Plant Metal Interaction; Elsevier: Amsterdam, The Netherland, 2016; pp. 385–409. [Google Scholar]
- Susarla, S.; Medina, V.F.; McCutcheon, S.C. Phytoremediation: An Ecological Solution to Organic Chemical Contamination. Ecol. Eng. 2002, 18, 647–658. [Google Scholar] [CrossRef]
- Gupta, R.K.; Bharti, R.; Pramanik, B.; Duary, B.; Pramanik, K.; Debnath, S. Utilizing Various Potentials for Phytoremediation of Arsenic Contamination—A Feasible Perspective. In Arsenic Toxicity Remediation: Biotechnological Approaches; Springer: Cham, Switzerland, 2023; pp. 277–299. [Google Scholar]
- Islam, M.S.; Akter, R.; Rahman, M.M.; Kurasaki, M. Phytoremediation: Background, Principle, and Application, Plant Species Used for Phytoremediation. In Design of Materials and Technologies for Environmental Remediation; Springer: Singapore, 2022; pp. 199–224. [Google Scholar]
- Koptsik, G.N. Problems and Prospects Concerning the Phytoremediation of Heavy Metal Polluted Soils: A Review. Eurasian Soil Sci. 2014, 47, 923–939. [Google Scholar] [CrossRef]
- Ali, H.; Khan, E.; Sajad, M.A. Phytoremediation of Heavy Metals—Concepts and Applications. Chemosphere 2013, 91, 869–881. [Google Scholar] [CrossRef]
- Lasat, M.M. Phytoextraction of Metals from Contaminated Soil: A Review of Plant/Soil/Metal Interaction and Assessment of Pertinent Agronomic Issues. J. Hazard. Subst. Res. 1999, 2, 5. [Google Scholar] [CrossRef]
- Baker, A.J.M.; Brooks, R.R. Terrestrial Higher Plants Which Hyperaccumulate Metallic Elements. A Review of Their Distribution, Ecology and Phytochemistry. Biorecovery 1989, 1, 81–126. [Google Scholar]
- Ranieri, E.; D’Onghia, G.; Ranieri, F.; Petrella, A.; Spagnolo, V.; Ranieri, A.C. Phytoextraction of Cr (Vi)-Contaminated Soil by Phyllostachys Pubescens: A Case Study. Toxics 2021, 9, 312. [Google Scholar] [CrossRef] [PubMed]
- Yu, F.; Tang, S.; Shi, X.; Liang, X.; Liu, K.; Huang, Y.; Li, Y. Phytoextraction of Metal (Loid) S from Contaminated Soils by Six Plant Species: A Field Study. Sci. Total Environ. 2022, 804, 150282. [Google Scholar] [CrossRef]
- Cunningham, S.D.; Berti, W.R. Phytoextraction and Phytostabilization: Technical, Economic, and Regulatory Considerations of the Soil-Lead Issue. In Phytoremediation of Contaminated Soil and Water; CRC Press: Boca Raton, FL, USA, 2020; pp. 359–376. [Google Scholar]
- Fernández, Y.T.; Diaz, O.; Acuña, E.; Casanova, M.; Salazar, O.; Masaguer, A. Phytostabilization of Arsenic in Soils with Plants of the Genus Atriplex Established in Situ in the Atacama Desert. Environ. Monit. Assess. 2016, 188, 235. [Google Scholar] [CrossRef]
- Li, R.; Dong, F.; Yang, G.; Zhang, W.; Zong, M.; Nie, X.; Zhou, L.; Babar, A.; Liu, J.; Ram, B.K. Characterization of Arsenic and Uranium Pollution Surrounding a Uranium Mine in Southwestern China and Phytoremediation Potential. Pol. J. Environ. Stud. 2020, 29, 173–185. [Google Scholar] [CrossRef]
- Rosli, R.A.; Harumain, Z.A.S.; Zulkalam, M.F.; Hamid, A.A.A.; Sharif, M.F.; Mohamad, M.A.N.; Noh, A.L.; Shahari, R. Phytoremediation of Arsenic in Mine Wastes by Acacia Mangium. Remediat. J. 2021, 31, 49–59. [Google Scholar] [CrossRef]
- Petelka, J.; Abraham, J.; Bockreis, A.; Deikumah, J.P.; Zerbe, S. Soil Heavy Metal (Loid) Pollution and Phytoremediation Potential of Native Plants on a Former Gold Mine in Ghana. Water Air Soil Pollut. 2019, 230, 267. [Google Scholar] [CrossRef]
- Ancheta, M.H.; Quimado, M.O.; Tiburan, C.L., Jr.; Doronila, A.; Fernando, E.S. Copper and Arsenic Accumulation of Pityrogramma Calomelanos, Nephrolepis Biserrata, and Cynodon Dactylon in Cu-and Au-Mine Tailings. J. Degrad. Min. Lands Manag. 2020, 7, 2201. [Google Scholar] [CrossRef]
- Onyia, P.C.; Ozoko, D.C.; Ifediegwu, S.I. Phytoremediation of Arsenic-Contaminated Soils by Arsenic Hyperaccumulating Plants in Selected Areas of Enugu State, Southeastern, Nigeria. Geol. Ecol. Landsc. 2021, 5, 308–319. [Google Scholar] [CrossRef]
- Eze, V.C.; Harvey, A.P. Extractive Recovery and Valorisation of Arsenic from Contaminated Soil through Phytoremediation Using Pteris Cretica. Chemosphere 2018, 208, 484–492. [Google Scholar] [CrossRef] [PubMed]
- Pan, P.; Lei, M.; Qiao, P.; Zhou, G.; Wan, X.; Chen, T. Potential of Indigenous Plant Species for Phytoremediation of Metal (Loid)-Contaminated Soil in the Baoshan Mining Area, China. Environ. Sci. Pollut. Res. 2019, 26, 23583–23592. [Google Scholar] [CrossRef]
- Ha, N.T.H.; Ha, N.T.; Nga, T.T.H.; Minh, N.N.; Anh, B.T.K.; Hang, N.T.A.; Duc, N.A.; Nhuan, M.T.; Kim, K.-W. Uptake of Arsenic and Heavy Metals by Native Plants Growing near Nui Phao Multi-Metal Mine, Northern Vietnam. Appl. Geochem. 2019, 108, 104368. [Google Scholar] [CrossRef]
- Wei, X.; Zhou, Y.; Tsang, D.C.W.; Song, L.; Zhang, C.; Yin, M.; Liu, J.; Xiao, T.; Zhang, G.; Wang, J. Hyperaccumulation and Transport Mechanism of Thallium and Arsenic in Brake Ferns (Pteris vittata L.): A Case Study from Mining Area. J. Hazard. Mater. 2020, 388, 121756. [Google Scholar] [CrossRef]
- Yildirim, D.; Sasmaz, A. Phytoremediation of as, Ag, and Pb in Contaminated Soils Using Terrestrial Plants Grown on Gumuskoy Mining Area (Kutahya Turkey). J. Geochem. Explor. 2017, 182, 228–234. [Google Scholar] [CrossRef]
- Plants Database. United States Department of Agriculture. Available online: https://plants.usda.gov/home (accessed on 24 March 2024).
- Fayiga, A.O.; Saha, U.K. Arsenic Hyperaccumulating Fern: Implications for Remediation of Arsenic Contaminated Soils. Geoderma 2016, 284, 132–143. [Google Scholar] [CrossRef]
- Kamal, M.Z.U.; Miah, M.Y. Arsenic Speciation Techniques in Soil Water and Plant: An Overview. In Arsenic Monitoring, Removal and Remediation; IntechOpen: London, UK, 2022; p. 9. [Google Scholar]
- Abbas, G.; Murtaza, B.; Bibi, I.; Shahid, M.; Niazi, N.K.; Khan, M.I.; Amjad, M.; Hussain, M.; Natasha. Arsenic Uptake, Toxicity, Detoxification, and Speciation in Plants: Physiological, Biochemical, and Molecular Aspects. Int. J. Environ. Res. Public Health 2018, 15, 59. [Google Scholar] [CrossRef] [PubMed]
- Patel, M.; Kumari, A.; Parida, A.K. Arsenic Tolerance Mechanisms in Plants and Potential Role of Arsenic Hyperaccumulating Plants for Phytoremediation of Arsenic-Contaminated Soil. In Plant Ecophysiology and Adaptation under Climate Change: Mechanisms and Perspectives II: Mechanisms of Adaptation and Stress Amelioration; Springer: Singapore, 2020; pp. 137–162. [Google Scholar]
- Fatima, K.; Imran, A.; Naveed, M.; Afzal, M. Plant-Bacteria Synergism: An Innovative Approach for the Remediation of Crude Oil-Contaminated Soils. Soil Environ. 2017, 36, 93–113. [Google Scholar] [CrossRef]
- Ranđelović, D.; Jakovljević, K.; Zeremski, T. Chelate-Assisted Phytoremediation. In Assisted Phytoremediation; Elsevier: Amsterdam, The Netherlands, 2022; pp. 131–154. [Google Scholar]
- Nambisan, P. An Introduction to Ethical, Safety and Intellectual Property Rights Issues in Biotechnology; Academic Press: London, UK, 2017. [Google Scholar]
- Jasrotia, S.; Kansal, A.; Mehra, A. Performance of Aquatic Plant Species for Phytoremediation of Arsenic-Contaminated Water. Appl. Water Sci. 2017, 7, 889–896. [Google Scholar] [CrossRef]
- Lampis, S.; Santi, C.; Ciurli, A.; Andreolli, M.; Vallini, G. Promotion of Arsenic Phytoextraction Efficiency in the Fern Pteris Vittata by the Inoculation of as-Resistant Bacteria: A Soil Bioremediation Perspective. Front. Plant Sci. 2015, 6, 80. [Google Scholar] [CrossRef]
- Sharma, S.; Anand, G.; Singh, N.; Kapoor, R. Arbuscular Mycorrhiza Augments Arsenic Tolerance in Wheat (Triticum aestivum L.) by Strengthening Antioxidant Defense System and Thiol Metabolism. Front. Plant Sci. 2017, 8, 906. [Google Scholar] [CrossRef]
- Hasan, M.M.; Uddin, M.N.; Ara-Sharmeen, I.; Alharby, H.F.; Alzahrani, Y.; Hakeem, K.R.; Zhang, L. Assisting Phytoremediation of Heavy Metals Using Chemical Amendments. Plants 2019, 8, 295. [Google Scholar] [CrossRef]
- Safarian, S. Performance Analysis of Sustainable Technologies for Biochar Production: A Comprehensive Review. Energy Rep. 2023, 9, 4574–4593. [Google Scholar] [CrossRef]
- Brassard, P.; Godbout, S.; Lévesque, V.; Palacios, J.H.; Raghavan, V.; Ahmed, A.; Hogue, R.; Jeanne, T.; Verma, M. Biochar for Soil Amendment. In Char and Carbon Materials Derived from Biomass; Elsevier: Amsterdam, The Netherlands, 2019; pp. 109–146. [Google Scholar]
- Lebrun, M.; Miard, F.; Nandillon, R.; Morabito, D.; Bourgerie, S. Biochar Application Rate: Improving Soil Fertility and Linum Usitatissimum Growth on an Arsenic and Lead Contaminated Technosol. Int. J. Environ. Res. 2021, 15, 125–134. [Google Scholar] [CrossRef]
- Rodrígueza, L.; Sáncheza, V.; López-Bellidob, F.J. Electrokinetic-Assisted Phytoremediation. In Assisted Phytoremediation; Elsevier: Amsterdam, The Netherlands, 2021; p. 371. [Google Scholar]
- Couto, N.; Guedes, P.; Zhou, D.-M.; Ribeiro, A.B. Integrated Perspectives of a Greenhouse Study to Upgrade an Antimony and Arsenic Mine Soil–Potential of Enhanced Phytotechnologies. Chem. Eng. J. 2015, 262, 563–570. [Google Scholar] [CrossRef]
- Han, D.; Wu, X.; Li, R.; Tang, X.; Xiao, S.; Scholz, M. Critical Review of Electro-Kinetic Remediation of Contaminated Soils and Sediments: Mechanisms, Performances and Technologies. Water Air Soil Pollut. 2021, 232, 335. [Google Scholar] [CrossRef]
- Nahar, N.; Rahman, A.; Nawani, N.N.; Ghosh, S.; Mandal, A. Phytoremediation of Arsenic from the Contaminated Soil Using Transgenic Tobacco Plants Expressing Acr2 Gene of Arabidopsis Thaliana. J. Plant Physiol. 2017, 218, 121–126. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.Y.; Yan, X.L.; Liao, X.Y.; Zhang, Y.X.; Ma, X. Arsenic Accumulation in Panax Notoginseng Monoculture and Intercropping with Pteris Vittata. Water Air Soil Pollut. 2015, 226, 113. [Google Scholar] [CrossRef]
- Ullah, A.; Mushtaq, H.; Ali, H.; Munis, M.F.H.; Javed, M.T.; Chaudhary, H.J. Diazotrophs-Assisted Phytoremediation of Heavy Metals: A Novel Approach. Environ. Sci. Pollut. Res. 2015, 22, 2505–2514. [Google Scholar] [CrossRef]
- Upadhyay, M.K.; Yadav, P.; Shukla, A.; Srivastava, S. Utilizing the Potential of Microorganisms for Managing Arsenic Contamination: A Feasible and Sustainable Approach. Front. Environ. Sci. 2018, 6, 24. [Google Scholar] [CrossRef]
- Govarthanan, M.; Mythili, R.; Selvankumar, T.; Kamala-Kannan, S.; Kim, H. Myco-Phytoremediation of Arsenic-and Lead-Contaminated Soils by Helianthus Annuus and Wood Rot Fungi, Trichoderma Sp. Isolated from Decayed Wood. Ecotoxicol. Environ. Saf. 2018, 151, 279–284. [Google Scholar] [CrossRef]
- Mesa, V.; Navazas, A.; Gonzalez-Gil, R.; González, A.; Weyens, N.; Lauga, B.; Gallego, J.L.R.; Sánchez, J.; Peláez, A.I. Use of Endophytic and Rhizosphere Bacteria to Improve Phytoremediation of Arsenic-Contaminated Industrial Soils by Autochthonous Betula Celtiberica. Appl. Environ. Microbiol. 2017, 83, e03411-16. [Google Scholar] [CrossRef] [PubMed]
- Ke, X.; Feng, S.; Wang, J.; Lu, W.; Zhang, W.; Chen, M.; Lin, M. Effect of Inoculation with Nitrogen-Fixing Bacterium Pseudomonas Stutzeri A1501 on Maize Plant Growth and the Microbiome Indigenous to the Rhizosphere. Syst. Appl. Microbiol. 2019, 42, 248–260. [Google Scholar] [CrossRef] [PubMed]
- Devi, R.; Kaur, T.; Kour, D.; Yadav, A.N. Microbial Consortium of Mineral Solubilizing and Nitrogen Fixing Bacteria for Plant Growth Promotion of Amaranth (Amaranthus hypochondrius L.). Biocatal. Agric. Biotechnol. 2022, 43, 102404. [Google Scholar] [CrossRef]
- Xu, J.; Kloepper, J.W.; Huang, P.; McInroy, J.A.; Hu, C.H. Isolation and Characterization of N2-Fixing Bacteria from Giant Reed and Switchgrass for Plant Growth Promotion and Nutrient Uptake. J. Basic Microbiol. 2018, 58, 459–471. [Google Scholar] [CrossRef] [PubMed]
- Hawkesford, M.J.; Cakmak, I.; Coskun, D.; De Kok, L.J.; Lambers, H.; Schjoerring, J.K.; White, P.J. Functions of Macronutrients. In Marschner’s Mineral Nutrition of Plants; Elsevier: Amsterdam, The Netherlands, 2023; pp. 201–281. [Google Scholar]
- Jiaying, M.; Tingting, C.; Jie, L.; Weimeng, F.; Baohua, F.; Guangyan, L.; Hubo, L.; Juncai, L.; Zhihai, W.; Longxing, T. Functions of Nitrogen, Phosphorus and Potassium in Energy Status and Their Influences on Rice Growth and Development. Rice Sci. 2022, 29, 166–178. [Google Scholar] [CrossRef]
- Anas, M.; Liao, F.; Verma, K.K.; Sarwar, M.A.; Mahmood, A.; Chen, Z.-L.; Li, Q.; Zeng, X.-P.; Liu, Y.; Li, Y.-R. Fate of Nitrogen in Agriculture and Environment: Agronomic, Eco-Physiological and Molecular Approaches to Improve Nitrogen Use Efficiency. Biol. Res. 2020, 53, 47. [Google Scholar] [CrossRef]
- Lizcano-Toledo, R.; Reyes-Martín, M.P.; Celi, L.; Fernández-Ondoño, E. Phosphorus Dynamics in the Soil–Plant–Environment Relationship in Cropping Systems: A Review. Appl. Sci. 2021, 11, 11133. [Google Scholar] [CrossRef]
- Oosterhuis, D.M.; Loka, D.A.; Kawakami, E.M.; Pettigrew, W.T. The Physiology of Potassium in Crop Production. Adv. Agron. 2014, 126, 203–233. [Google Scholar]
- Thalassinos, G.; Nastou, E.; Petropoulos, S.A.; Antoniadis, V. Nitrogen Effect on Growth-Related Parameters and Evaluation of Portulaca Oleracea as a Phytoremediation Species in a Cr (Vi)-Spiked Soil. Horticulturae 2021, 7, 192. [Google Scholar] [CrossRef]
- Siddiqui, H.; Singh, P.; Arif, Y.; Sami, F.; Naaz, R.; Hayat, S. Role of Micronutrients in Providing Abiotic Stress Tolerance. In Microbial Biofertilizers and Micronutrient Availability: The Role of Zinc in Agriculture and Human Health; Springer, Cham, Switzerland, 2022; pp. 115–136.
- Liščáková, P.; Nawaz, A.; Molnárová, M. Reciprocal Effects of Copper and Zinc in Plants. Int. J. Environ. Sci. Technol. 2022, 19, 9297–9312. [Google Scholar] [CrossRef]
- Leghari, S.J.; Wahocho, N.A.; Laghari, G.M.; HafeezLaghari, A.; MustafaBhabhan, G.; HussainTalpur, K.; Bhutto, T.A.; Wahocho, S.A.; Lashari, A.A. Role of Nitrogen for Plant Growth and Development: A Review. Adv. Environ. Biol. 2016, 10, 209–219. [Google Scholar]
- Ahirwal, J.; Maiti, S.K.; Reddy, M.S. Development of Carbon, Nitrogen and Phosphate Stocks of Reclaimed Coal Mine Soil within 8 Years after Forestation with Prosopis Juliflora (Sw.) Dc. CATENA 2017, 156, 42–50. [Google Scholar] [CrossRef]
- Drescher, G.L.; da Silva, L.S.; Sarfaraz, Q.; Roberts, T.L.; Nicoloso, F.T.; Schwalbert, R.; Marques, A.C.R. Available Nitrogen in Paddy Soils Depth: Influence on Rice Root Morphology and Plant Nutrition. J. Soil Sci. Plant Nutr. 2020, 20, 1029–1041. [Google Scholar] [CrossRef]
- Wang, D.; Zhang, B.; Zhu, L.; Yang, Y.; Li, M. Soil and Vegetation Development Along a 10-Year Restoration Chronosequence in Tailing Dams in the Xiaoqinling Gold Region of Central China. CATENA 2018, 167, 250–256. [Google Scholar] [CrossRef]
- Domingo, J.P.T.; David, C.P.C. Soil Amelioration Potential of Legumes for Mine Tailings. Philipp. J. Sci. 2014, 143, 1–8. [Google Scholar]
- Kalamandeen, M.; Gloor, E.; Johnson, I.; Agard, S.; Katow, M.; Vanbrooke, A.; Ashley, D.; Batterman, S.A.; Ziv, G.; Holder-Collins, K. Limited Biomass Recovery from Gold Mining in Amazonian Forests. J. Appl. Ecol. 2020, 57, 1730–1740. [Google Scholar] [CrossRef]
- Cross, A.T.; Lambers, H. Young Calcareous Soil Chronosequences as a Model for Ecological Restoration on Alkaline Mine Tailings. Sci. Total Environ. 2017, 607, 168–175. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Wu, Z.; Dong, X.; Jia, Z.; Sun, Q. Dependency of Biological Nitrogen Fixation on Organic Carbon in Acidic Mine Tailings under Light and Dark Conditions. Appl. Soil Ecol. 2019, 140, 18–25. [Google Scholar] [CrossRef]
- Ahirwal, J.; Maiti, S.K. Assessment of Soil Properties of Different Land Uses Generated Due to Surface Coal Mining Activities in Tropical Sal (Shorea Robusta) Forest, India. CATENA 2016, 140, 155–163. [Google Scholar] [CrossRef]
- Liao, X.-Y.; Chen, T.-B.; Xiao, X.-Y.; Xie, H.; Yan, X.-L.; Zhai, L.-M.; Wu, B. Selecting Appropriate Forms of Nitrogen Fertilizer to Enhance Soil Arsenic Removal by Pteris Vittata: A New Approach in Phytoremediation. Int. J. Phytoremediation 2007, 9, 269–280. [Google Scholar] [CrossRef]
- Swify, S.; Mažeika, R.; Baltrusaitis, J.; Drapanauskaitė, D.; Barčauskaitė, K. Modified Urea Fertilizers and Their Effects on Improving Nitrogen Use Efficiency (Nue). Sustainability 2023, 16, 188. [Google Scholar] [CrossRef]
- Martínez-Dalmau, J.; Berbel, J.; Ordóñez-Fernández, R. Nitrogen Fertilization. A Review of the Risks Associated with the Inefficiency of Its Use and Policy Responses. Sustainability 2021, 13, 5625. [Google Scholar] [CrossRef]
- Barłóg, P.; Grzebisz, W.; Łukowiak, R. Fertilizers and Fertilization Strategies Mitigating Soil Factors Constraining Efficiency of Nitrogen in Plant Production. Plants 2022, 11, 1855. [Google Scholar] [CrossRef]
- Purakayastha, T.J.; Bera, T.; Bhaduri, D.; Sarkar, B.; Mandal, S.; Wade, P.; Kumari, S.; Biswas, S.; Menon, M.; Pathak, H. A Review on Biochar Modulated Soil Condition Improvements and Nutrient Dynamics Concerning Crop Yields: Pathways to Climate Change Mitigation and Global Food Security. Chemosphere 2019, 227, 345–365. [Google Scholar] [CrossRef]
- Song, D.; Tang, J.; Xi, X.; Zhang, S.; Liang, G.; Zhou, W.; Wang, X. Responses of Soil Nutrients and Microbial Activities to Additions of Maize Straw Biochar and Chemical Fertilization in a Calcareous Soil. Eur. J. Soil Biol. 2018, 84, 1–10. [Google Scholar] [CrossRef]
- Faria, W.M.; de Figueiredo, C.C.; Coser, T.R.; Vale, A.T.; Schneider, B.G. Is Sewage Sludge Biochar Capable of Replacing Inorganic Fertilizers for Corn Production? Evidence from a Two-Year Field Experiment. Arch. Agron. Soil Sci. 2018, 64, 505–519. [Google Scholar] [CrossRef]
- Liu, L.; Tan, Z.; Gong, H.; Huang, Q. Migration and Transformation Mechanisms of Nutrient Elements (N, P, K) within Biochar in Straw–Biochar–Soil–Plant Systems: A Review. ACS Sustain. Chem. Eng. 2018, 7, 22–32. [Google Scholar] [CrossRef]
- Hossain, M.Z.; Bahar, M.M.; Sarkar, B.; Donne, S.W.; Ok, Y.S.; Palansooriya, K.N.; Kirkham, M.B.; Chowdhury, S.; Bolan, N. Biochar and Its Importance on Nutrient Dynamics in Soil and Plant. Biochar 2020, 2, 379–420. [Google Scholar] [CrossRef]
- Zheng, C.; Wang, X.; Liu, J.; Ji, X.; Huang, B. Biochar-Assisted Phytoextraction of Arsenic in Soil Using Pteris vittata L. Environ. Sci. Pollut. Res. 2019, 26, 36688–36697. [Google Scholar] [CrossRef]
- González, Á.; García-Gonzalo, P.; Gil-Díaz, M.M.; Alonso, J.; Lobo, M.C. Compost-Assisted Phytoremediation of as-Polluted Soil. J. Soils Sediments 2019, 19, 2971–2983. [Google Scholar] [CrossRef]
- Wan, X.; Zeng, W.; Lei, M.; Chen, T. The Influence of Diverse Fertilizer Regimes on the Phytoremediation Potential of Pteris Vittata in an Abandoned Nonferrous Metallic Mining Site. Sci. Total Environ. 2023, 880, 163246. [Google Scholar] [CrossRef] [PubMed]
- Huang, M.; Zhu, Y.; Li, Z.; Huang, B.; Luo, N.; Liu, C.; Zeng, G. Compost as a Soil Amendment to Remediate Heavy Metal-Contaminated Agricultural Soil: Mechanisms, Efficacy, Problems, and Strategies. Water Air Soil Pollut. 2016, 227, 359. [Google Scholar] [CrossRef]
- Nawab, J.; Khan, S.; Aamir, M.; Shamshad, I.; Qamar, Z.; Din, I.; Huang, Q. Organic Amendments Impact the Availability of Heavy Metal (Loid) S in Mine-Impacted Soil and Their Phytoremediation by Penisitum Americanum and Sorghum Bicolor. Environ. Sci. Pollut. Res. 2016, 23, 2381–2390. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Wang, J.; Pu, S.; Blagodatskaya, E.; Kuzyakov, Y.; Razavi, B.S. Impact of Manure on Soil Biochemical Properties: A Global Synthesis. Sci. Total Environ. 2020, 745, 141003. [Google Scholar] [CrossRef] [PubMed]
- Vats, S.; Srivastava, P.; Saxena, S.; Mudgil, B.; Kumar, N. Beneficial Effects of Nitrogen-Fixing Bacteria for Agriculture of the Future. In Soil Nitrogen Ecology; Springer: Cham, Switzerland, 2021; pp. 305–325. [Google Scholar]
- Shin, W.; Islam, R.; Benson, A.; Joe, M.M.; Kim, K.; Gopal, S.; Samaddar, S.; Banerjee, S.; Sa, T. Role of Diazotrophic Bacteria in Biological Nitrogen Fixation and Plant Growth Improvement. Korean J. Soil Sci. Fertil 2016, 49, 17–29. [Google Scholar] [CrossRef]
- Jach, M.E.; Sajnaga, E.; Ziaja, M. Utilization of Legume-Nodule Bacterial Symbiosis in Phytoremediation of Heavy Metal-Contaminated Soils. Biology 2022, 11, 676. [Google Scholar] [CrossRef]
- Padda, K.P.; Puri, A.; Chanway, C. Endophytic Nitrogen Fixation–a Possible ‘Hidden’source of Nitrogen for Lodgepole Pine Trees Growing at Unreclaimed Gravel Mining Sites. FEMS Microbiology Ecology 2019, 95, fiz172. [Google Scholar] [CrossRef] [PubMed]
- Oubohssaine, M.; Sbabou, L.; Aurag, J. Native Heavy Metal-Tolerant Plant Growth Promoting Rhizobacteria Improves Sulla spinosissima (L.) Growth in Post-Mining Contaminated Soils. Microorganisms 2022, 10, 838. [Google Scholar] [CrossRef]
- Li, Y.; Yang, R.; Häggblom, M.M.; Li, M.; Guo, L.; Li, B.; Kolton, M.; Cao, Z.; Soleimani, M.; Chen, Z. Characterization of Diazotrophic Root Endophytes in Chinese Silvergrass (Miscanthus Sinensis). Microbiome 2022, 10, 186. [Google Scholar]
- Fan, M.; Liu, Z.; Nan, L.; Wang, E.; Chen, W.; Lin, Y.; Wei, G. Isolation, Characterization, and Selection of Heavy Metal-Resistant and Plant Growth-Promoting Endophytic Bacteria from Root Nodules of Robinia Pseudoacacia in a Pb/Zn Mining Area. Microbiol. Res. 2018, 217, 51–59. [Google Scholar] [CrossRef]
- Kang, X.; Yu, X.; Zhang, Y.; Cui, Y.; Tu, W.; Wang, Q.; Li, Y.; Hu, L.; Gu, Y.; Zhao, K. Inoculation of Sinorhizobium Saheli Yh1 Leads to Reduced Metal Uptake for Leucaena Leucocephala Grown in Mine Tailings and Metal-Polluted Soils. Front. Microbiol. 2018, 9, 1853. [Google Scholar] [CrossRef] [PubMed]
- Zelaya-Molina, L.X.; Guerra-Camacho, J.E.; Ortiz-Alvarez, J.M.; Vigueras-Cortés, J.M.; Villa-Tanaca, L.; Hernández-Rodríguez, C. Plant Growth-Promoting and Heavy Metal-Resistant Priestia and Bacillus Strains Associated with Pioneer Plants from Mine Tailings. Arch. Microbiol. 2023, 205, 318. [Google Scholar] [CrossRef] [PubMed]
- Shen, T.; Jin, R.; Yan, J.; Cheng, X.; Zeng, L.; Chen, Q.; Gu, Y.; Zou, L.; Zhao, K.; Xiang, Q. Study on Diversity, Nitrogen-Fixing Capacity, and Heavy Metal Tolerance of Culturable Pongamia Pinnata Rhizobia in the Vanadium-Titanium Magnetite Tailings. Front. Microbiol. 2023, 14, 1078333. [Google Scholar] [CrossRef] [PubMed]
Plant Species | Group | Total As Concentration in Plants (mg kg−1) | Country | Reference |
---|---|---|---|---|
Artemisia divarica | Dicotyledons/flowering | 50.88 | China | [84] |
Acacia mangium | Dicotyledons/flowering | 1549 | Malaysia | [85] |
Leucaena leucocephala | Dicotyledons/flowering | 6.83 | Ghana | [86] |
Pityrogramma calomelanos | Fern | 161.82–280.18 | Philippines | [87] |
Pteridium aquilinum | Fern | 722 | Nigeria | [88] |
Pteris cretica | Fern | 4875 | UK | [89] |
Pteris ensiformis Burm. | Fern | 2138 | China | [90] |
Pteris vittata | Fern | 1911 | Vietnam | [91] |
Pteris vittata L. | Fern | 7215–11,110 | China | [92] |
Verbascum thapsus | Dicotyledons/flowering | 22,145 | Turkey | [93] |
Methods | Advantages | Disadvantages | References |
---|---|---|---|
Chemical | |||
- Chemicals (e.g., ethylenediamine tetraacetic acid (EDTA), diethylenetriamine pentaacetic acid, ethyleneglycol tetraacetic acid (EGTA), sodium dodecyl sulphate) - Chelating agents (e.g., acetic acid, oxalic acid (OA), malic acid) - Fertilisers, composts, biochar | Stimulate plant growth; increase the phytoextraction capacity of the plants. | Alter the soil microflora activity; may result in reduced ecosystem services. | [18,19,20,100] |
Physical | |||
Electrokinesis | Improves plant biomass production; increases metal uptake. | Exposure of heavy metals to the plants; may exacerbate plant stress. | [21] |
Phytosuction partitioning | Time-efficient; greater tendency to remove As; enables nutrients to move towards the plants. | Suitable for only shallow contaminated soil layers. | [21,23] |
Biological | |||
Genetic engineering (transgenic plants) | High specificity and sensitivity; improves phytoextraction capacity from root to shoot. | Time-consuming; high cost; regulatory issues; genetic pollution of natural environment. | [18,21,101] |
Co-cultivation and intercropping | Economically profitable for contaminated land’s owner; safe for environment. | Requires a commercial crop to be grown. | [21,22] |
Bacteria, fungi, algae - Bacteria (e.g., Pseudomonas sp., Delftia sp., Bacillus sp., nitrogen-fixing bacteria) - Fungi (e.g., Rhizoglomus intraradices, Glomus etunicatum) - Algae (e.g., Chlorodesmis sp., Cladophora sp.) | Cost-effective and environmentally friendly techniques; decrease the requirement for chemical fertilisers. | Microbes (bacteria) cannot always tolerate the high toxicity associated with As-contaminated soils. | [18,102,103,104] |
Nitrogen-Fixing Bacteria | Plant | Pollutants | Results | Reference |
---|---|---|---|---|
Pseudarthrobacter oxydans, Rhodococcus qingshengii | Sulla spinosissima (L.) | - | - Pseudarthrobacter oxydans LMR291 increased the root biomass by 120 mg plant−1. - Pseudarthrobacter phenanthrenivorans LMR429 increased the shoot biomass by up to 70 mg plant−1. | [157] |
Rhizobium sp. G-14, Pseudomonas sp. Y-5 | Bidens pilosa | - | - Rhizobium sp. G-14 treatment doubled the fresh weight of plant roots and shoots compared to the control and Pseudomonas treatment. - Rhizobium sp. G-14 and Pseudomonas sp. Y-5 increased the N content in plant shoots and roots. | [158] |
Mesorhizobium loti HZ76 | Robinia pseudoacacia | Cd, Zn, Pb, Cu | - Mesorhizobium loti HZ76 addition led to higher shoot biomass of plants (up to 0.10 ± 0.025 g plant−1) in Pb-contaminated soil. - Mesorhizobium loti HZ76 addition led to higher Zn uptake by plants (up to 200 mg kg−1 in shoots; up to 800 mg kg−1 in roots). | [159] |
Sinorhizobium saheli YH1 | Leucaena leucocephala | Cd, Mn | - Sinorhizobium saheli YH1 increased the plant biomass, plant height, and root length by 67.2, 39.5, and 27.2%, respectively. - Enhanced N in plants by 10.0%. | [160] |
Bacillus megaterium, Bacillus mojavensis, Bacillus subtilis | Medicago sativa | HMs | - Bacillus megaterium improved the root length by 17.4 cm, compared to the control treatment (7.7 cm). - Bacillus megaterium improved the shoot length by 4.6 cm compared to the control (2.7 cm). | [161] |
Bradyrhizobium, Rhizobium, Ochrobactrum | Pongamia pinnata | Ni, Cd, Mn, Cu | All rhizobia increased the plant biomass and N content, but Rhizobium addition resulted in the highest biomass and N content. | [162] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huslina, F.; Khudur, L.S.; Shah, K.; Surapaneni, A.; Netherway, P.; Ball, A.S. Mine Site Restoration: The Phytoremediation of Arsenic-Contaminated Soils. Environments 2024, 11, 99. https://doi.org/10.3390/environments11050099
Huslina F, Khudur LS, Shah K, Surapaneni A, Netherway P, Ball AS. Mine Site Restoration: The Phytoremediation of Arsenic-Contaminated Soils. Environments. 2024; 11(5):99. https://doi.org/10.3390/environments11050099
Chicago/Turabian StyleHuslina, Feizia, Leadin S. Khudur, Kalpit Shah, Aravind Surapaneni, Pacian Netherway, and Andrew S. Ball. 2024. "Mine Site Restoration: The Phytoremediation of Arsenic-Contaminated Soils" Environments 11, no. 5: 99. https://doi.org/10.3390/environments11050099
APA StyleHuslina, F., Khudur, L. S., Shah, K., Surapaneni, A., Netherway, P., & Ball, A. S. (2024). Mine Site Restoration: The Phytoremediation of Arsenic-Contaminated Soils. Environments, 11(5), 99. https://doi.org/10.3390/environments11050099