The Formation and Stability of HA–Fe/Mn Colloids in Saturated Porous Media
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Formation and Characterization of HA–Fe/Mn
2.3. Analytical Methods
2.4. Aggregation of HA–Fe/Mn Colloids
2.5. Colloid Deposition Kinetics
3. Results
3.1. Inhibition of Fe/Mn (Hydr)oxide Coagulation Behavior by HA
3.2. Mechanism of HA Binding to Fe/Mn
3.3. Microscopic Migration Mechanisms of HA–Fe/Mn Colloids
3.4. Aggregation and Stability of HA–Fe/Mn Colloids
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, S.; Mulligan, C.N. Enhanced mobilization of arsenic and heavy metals from mine tailings by humic acid. Chemosphere 2009, 74, 274–279. [Google Scholar] [CrossRef] [PubMed]
- Harvey, C.F.; Swartz, C.H.; Badruzzaman, A.; Keon-Blute, N.; Yu, W.; Ali, M.A.; Jay, J.; Beckie, R.; Niedan, V.; Brabander, D. Arsenic mobility and groundwater extraction in Bangladesh. Science 2002, 298, 1602–1606. [Google Scholar] [CrossRef] [PubMed]
- Zeng, J.; Tabelin, C.B.; Gao, W.; Tang, L.; Luo, X.; Ke, W.; Jiang, J.; Xue, S. Heterogeneous distributions of heavy metals in the soil-groundwater system empowers the knowledge of the pollution migration at a smelting site. Chem. Eng. J. 2023, 454, 140307. [Google Scholar] [CrossRef]
- Yang, Q.; Li, Z.; Lu, X.; Duan, Q.; Huang, L.; Bi, J. A review of soil heavy metal pollution from industrial and agricultural regions in China: Pollution and risk assessment. Sci. Total Environ. 2018, 642, 690–700. [Google Scholar] [CrossRef]
- Bjerregaard, P.; Andersen, C.B.; Andersen, O. Ecotoxicology of metals-sources, transport, and effects on the ecosystem. In Handbook on the Toxicology of Metals; Elsevier: Amsterdam, The Netherlands, 2022; pp. 593–627. [Google Scholar]
- Mohammed, A.S.; Kapri, A.; Goel, R. Heavy metal pollution: Source, impact, and remedies. In Biomanagement of Metal-Contaminated Soils; Springer: Berlin/Heidelberg, Germany, 2011; pp. 1–28. [Google Scholar]
- Vu, H.P.; Shaw, S.; Brinza, L.; Benning, L.G. Partitioning of Pb (II) during goethite and hematite crystallization: Implications for Pb transport in natural systems. Appl. Geochem. 2013, 39, 119–128. [Google Scholar] [CrossRef]
- Zhang, G.; Qu, J.; Liu, H.; Liu, R.; Wu, R. Preparation and evaluation of a novel Fe–Mn binary oxide adsorbent for effective arsenite removal. Water Res. 2007, 41, 1921–1928. [Google Scholar] [CrossRef] [PubMed]
- Szlachta, M.; Chubar, N. The application of Fe–Mn hydrous oxides based adsorbent for removing selenium species from water. Chem. Eng. J. 2013, 217, 159–168. [Google Scholar] [CrossRef]
- Weng, H.; Yang, Y.; Zhang, C.; Cheng, M.; Wang, W.; Song, B.; Luo, H.; Qin, D.; Huang, C.; Qin, F. Insight into FeOOH-mediated advanced oxidation processes for the treatment of organic polluted wastewater. Chem. Eng. J. 2023, 453, 139812. [Google Scholar] [CrossRef]
- Zhang, H.; Taujale, S.; Huang, J.; Lee, G.-J. Effects of NOM on oxidative reactivity of manganese dioxide in binary oxide mixtures with goethite or hematite. Langmuir 2015, 31, 2790–2799. [Google Scholar] [CrossRef]
- Chen, J.; Gu, B.; Royer, R.A.; Burgos, W.D. The roles of natural organic matter in chemical and microbial reduction of ferric iron. Sci. Total Environ. 2003, 307, 167–178. [Google Scholar] [CrossRef]
- Riedel, T.; Zak, D.; Biester, H.; Dittmar, T. Iron traps terrestrially derived dissolved organic matter at redox interfaces. Proc. Natl. Acad. Sci. USA 2013, 110, 10101–10105. [Google Scholar] [CrossRef]
- Chen, C.; Dynes, J.J.; Wang, J.; Sparks, D.L. Properties of Fe-Organic Matter Associations via Coprecipitation versus Adsorption. Environ. Sci. Technol. 2014, 48, 13751–13759. [Google Scholar] [CrossRef] [PubMed]
- Batchelli, S.; Muller, F.L.L.; Chang, K.-C.; Lee, C.-L. Evidence for Strong but Dynamic Iron-Humic Colloidal Associations in Humic-Rich Coastal Waters. Environ. Sci. Technol. 2010, 44, 8485–8490. [Google Scholar] [CrossRef]
- Liu, L.; Yang, Z.; Zhao, F.; Chai, Z.; Yang, W.; Xiang, H.; Liao, Q.; Si, M.; Lin, Z. Manganese doping of hematite enhancing oxidation and bidentate-binuclear complexation during As(III) remediation: Experiments and DFT calculation. Chem. Eng. J. 2023, 471, 144758. [Google Scholar] [CrossRef]
- Pokrovsky, O.S.; Manasypov, R.M.; Loiko, S.V.; Shirokova, L.S. Organic and organo-mineral colloids in discontinuous permafrost zone. Geochim. Cosmochim. Acta 2016, 188, 1–20. [Google Scholar] [CrossRef]
- Liao, P.; Pan, C.; Ding, W.; Li, W.; Yuan, S.; Fortner, J.D.; Giammar, D.E. Formation and Transport of Cr(III)-NOM-Fe Colloids upon Reaction of Cr(VI) with NOM-Fe(II) Colloids at Anoxic-Oxic Interfaces. Environ. Sci. Technol. 2020, 54, 4256–4266. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Deng, Y.; Xue, J.; Cheng, Y.; Nie, Y.; Pi, K.; Du, Y.; Xie, X.; Shi, J.; Wang, Y. Unravelling the impacts of soluble Mn(III)-NOM on arsenic immobilization by ferrihydrite or goethite under aquifer conditions. J. Hazard. Mater. 2024, 466, 133640. [Google Scholar] [CrossRef] [PubMed]
- Luo, W.; Zhao, X.; Wang, G.; Teng, Z.; Guo, Y.; Ji, X.; Hu, W.; Li, M. Humic acid and fulvic acid facilitate the formation of vivianite and the transformation of cadmium via microbially-mediated iron reduction. J. Hazard. Mater. 2023, 446, 130655. [Google Scholar] [CrossRef]
- Li, W.; Li, X.; Han, C.; Gao, L.; Wu, H.; Li, M. A new view into three-dimensional excitation-emission matrix fluorescence spectroscopy for dissolved organic matter. Sci. Total Environ. 2023, 855, 158963. [Google Scholar] [CrossRef]
- Katoh, M.; Murase, J.; Hayashi, M.; Matsuya, K.; Kimura, M. Nutrient leaching from the plow layer by water percolation and accumulation in the subsoil in an irrigated paddy field. Soil Sci. Plant Nutr. 2004, 50, 721–729. [Google Scholar] [CrossRef]
- Chin, Y.P.; Traina, S.J.; Swank, C.R.; Backhus, D. Abundance and properties of dissolved organic matter in pore waters of a freshwater wetland. Limnol. Oceanogr. 1998, 43, 1287–1296. [Google Scholar] [CrossRef]
- Pan, C.; Troyer, L.D.; Liao, P.; Catalano, J.G.; Li, W.; Giammar, D.E. Effect of humic acid on the removal of chromium (VI) and the production of solids in iron electrocoagulation. Environ. Sci. Technol. 2017, 51, 6308–6318. [Google Scholar] [CrossRef] [PubMed]
- Pan, C.; Troyer, L.D.; Catalano, J.G.; Giammar, D.E. Dynamics of chromium (VI) removal from drinking water by iron electrocoagulation. Environ. Sci. Technol. 2016, 50, 13502–13510. [Google Scholar] [CrossRef]
- Harter, T.; Wagner, S.; Atwill, E.R. Colloid Transport and Filtration of Cryptosporidium parvum in Sandy Soils and Aquifer Sediments. Environ. Sci. Technol. 2000, 34, 62–70. [Google Scholar] [CrossRef]
- Liao, P.; Li, W.; Jiang, Y.; Wu, J.; Yuan, S.; Fortner, J.D.; Giammar, D.E. Formation, aggregation, and deposition dynamics of NOM-iron colloids at anoxic-oxic interfaces. Environ. Sci. Technol. 2017, 51, 12235–12245. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Xie, L.; Jiang, Y.; Fortner, J.D.; Yu, K.; Liao, P.; Liu, C. Formation and stability of NOM-Mn(III) colloids in aquatic environments. Water Res. 2019, 149, 190–201. [Google Scholar] [CrossRef] [PubMed]
- Yan, M.; Liu, C.; Wang, D.; Ni, J.; Cheng, J. Characterization of Adsorption of Humic Acid onto Alumina using Quartz Crystal Microbalance with Dissipation. Langmuir 2011, 27, 9860–9865. [Google Scholar] [CrossRef]
- Chen, Q.; Xu, S.; Liu, Q.; Masliyah, J.; Xu, Z. QCM-D study of nanoparticle interactions. Adv. Colloid Interface Sci. 2016, 233, 94–114. [Google Scholar] [CrossRef]
- Oldham, V.E. The Complexation Chemistry of Dissolved Manganese (iii) in the Ocean and Its Role in the Coupled Cycles of Carbon, Iron and Sulfur; University of Delaware: Newark, Delaware, 2017. [Google Scholar]
- Zhang, Y.; Yang, M.; Dou, X.-M.; He, H.; Wang, D.-S. Arsenate Adsorption on an Fe−Ce Bimetal Oxide Adsorbent: Role of Surface Properties. Environ. Sci. Technol. 2005, 39, 7246–7253. [Google Scholar] [CrossRef]
- Sharma, P.; Ofner, J.; Kappler, A. Formation of Binary and Ternary Colloids and Dissolved Complexes of Organic Matter, Fe and As. Environ. Sci. Technol. 2010, 44, 4479–4485. [Google Scholar] [CrossRef]
- Hay, M.B.; Myneni, S.C.B. Structural environments of carboxyl groups in natural organic molecules from terrestrial systems. Part 1: Infrared spectroscopy. Geochim. Cosmochim. Acta 2007, 71, 3518–3532. [Google Scholar] [CrossRef]
- Hou, L.; Li, X.; Yang, Q.; Chen, F.; Wang, S.; Ma, Y.; Wu, Y.; Zhu, X.; Huang, X.; Wang, D. Heterogeneous activation of peroxymonosulfate using Mn−Fe layered double hydroxide: Performance and mechanism for organic pollutant degradation. Sci. Total Environ. 2019, 663, 453–464. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Nengzi, L.-C.; Li, B.; Gao, Y.; Zhu, G.; Cheng, X. Octadecylamine degradation through catalytic activation of peroxymonosulfate by FeMn layered double hydroxide. Sci. Total Environ. 2019, 695, 133963. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Z.; Yang, L.; Chen, C.; Chen, D.; Zhou, X. Redox reaction between solid-phase humins and Fe(III) compounds: Toward a further understanding of the redox properties of humin and its possible environmental effects. J. Environ. Manag. 2022, 310, 114793. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Santos, F.; Butler, K.; Herndon, E. A critical review on the multiple roles of manganese in stabilizing and destabilizing soil organic matter. Environ. Sci. Technol. 2021, 55, 12136–12152. [Google Scholar] [CrossRef] [PubMed]
- Colombo, C.; Palumbo, G.; Sellitto, V.M.; Cho, H.G.; Amalfitano, C.; Adamo, P. Stability of coprecipitated natural humic acid and ferrous iron under oxidative conditions. J. Geochem. Explor. 2015, 151, 50–56. [Google Scholar] [CrossRef]
- Remucal, C.K.; Ginder-Vogel, M. A critical review of the reactivity of manganese oxides with organic contaminants. Environ. Sci. Process. Impacts 2014, 16, 1247–1266. [Google Scholar] [CrossRef] [PubMed]
- Derjaguin, B.; Churaev, N.; Muller, V.; Derjaguin, B.; Churaev, N.; Muller, V. The Derjaguin—Landau—Verwey—Overbeek (DLVO) theory of stability of lyophobic colloids. In Surface Forces; Springer: Berlin/Heidelberg, Germany, 1987; pp. 293–310. [Google Scholar]
- Tang, H.; Zhao, Y.; Yang, X.; Liu, D.; Shao, P.; Zhu, Z.; Shan, S.; Cui, F.; Xing, B. New insight into the aggregation of graphene oxide using molecular dynamics simulations and extended Derjaguin–Landau–Verwey–Overbeek theory. Environ. Sci. Technol. 2017, 51, 9674–9682. [Google Scholar] [CrossRef]
- Chen, C.; Huang, W. Aggregation kinetics of nanosized activated carbons in aquatic environments. Chem. Eng. J. 2017, 313, 882–889. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, J.; Jiang, M.; Li, Q.; Yang, W. The Formation and Stability of HA–Fe/Mn Colloids in Saturated Porous Media. Environments 2024, 11, 136. https://doi.org/10.3390/environments11070136
Zheng J, Jiang M, Li Q, Yang W. The Formation and Stability of HA–Fe/Mn Colloids in Saturated Porous Media. Environments. 2024; 11(7):136. https://doi.org/10.3390/environments11070136
Chicago/Turabian StyleZheng, Junhao, Mei Jiang, Qingzhu Li, and Weichun Yang. 2024. "The Formation and Stability of HA–Fe/Mn Colloids in Saturated Porous Media" Environments 11, no. 7: 136. https://doi.org/10.3390/environments11070136
APA StyleZheng, J., Jiang, M., Li, Q., & Yang, W. (2024). The Formation and Stability of HA–Fe/Mn Colloids in Saturated Porous Media. Environments, 11(7), 136. https://doi.org/10.3390/environments11070136