Ecotoxicity of Pesticides Approved for Use in European Conventional or Organic Agriculture for Honeybees, Birds, and Earthworms
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Procurement
2.2. Comparison of Potential Ecotoxicity
3. Results
3.1. Comparison of Active Substances
3.2. Comparison of Pesticide Classes
3.3. Potential Hazards to Honeybees
3.4. Potential Hazards to Birds
3.5. Potential Hazards to Earthworms
4. Discussion
4.1. Honeybee Ecotoxicity
4.2. Bird Ecotoxicity
4.3. Earthworm Ecotoxicity
4.4. Study Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IPBES. Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services; IPBES Secretariat: Bonn, Germany, 2019; 1148p. [Google Scholar] [CrossRef]
- Brühl, C.A.; Engelhard, N.; Bakanov, N.; Wolfram, J.; Hertoge, K.; Zaller, J.G. Widespread contamination of soils and vegetation with current use pesticide residues along altitudinal gradients in a European Alpine valley. Commun. Earth Environ. 2024, 5, 72. [Google Scholar] [CrossRef]
- Brühl, C.A.; Zaller, J.G. Biodiversity Decline as a Consequence of an Inappropriate Environmental Risk Assessment of Pesticides. Front. Environ. Sci. 2019, 7, 177. [Google Scholar] [CrossRef]
- Zaller, J.G.; Kruse-Plaß, M.; Schlechtriemen, U.; Gruber, E.; Peer, M.; Nadeem, I.; Formayer, H.; Hutter, H.-P.; Landler, L. Pesticides in ambient air, influenced by surrounding land use and weather, pose a potential threat to biodiversity and human. Sci. Total Environ. 2022, 838, 156012. [Google Scholar] [CrossRef] [PubMed]
- EC. The European Green Deal: Communication from the Commission to the European Parliament, The European Council, The Council, The European Economic and Social Committee and the Committee of the Regions. COM(2019) 640 Final. 2019. Available online: https://eur-lex.europa.eu/resource.html?uri=cellar:b828d165-1c22-11ea-8c1f-01aa75ed71a1.0002.02/DOC_1&format=PDF (accessed on 23 June 2024).
- ECPA. Feedback from: European Crop Protection Association. 2020. Available online: https://ec.europa.eu/info/law/better-regulation/have-your-say/initiatives/12183-Sustainable-food-farm-to-fork-strategy/F506589_en (accessed on 31 October 2022).
- Burtscher-Schaden, H.; Durstberger, T.; Zaller, J.G. Toxicological Comparison of Pesticide Active Substances Approved for Conventional vs. Organic Agriculture in Europe. Toxics 2022, 10, 753. [Google Scholar] [CrossRef] [PubMed]
- Cech, R.; Leisch, F.; Zaller, J.G. Pesticide Use and Associated Greenhouse Gas Emissions in Sugar Beet, Apples, and Viticulture in Austria from 2000 to 2019. Agriculture 2022, 12, 879. [Google Scholar] [CrossRef]
- EP. Regulation (EC) No 1107/2009 of the European Parliament and of the Council of 21 October 2009 concerning the placing of plant protection products on the market and repealing Council Directives 79/117/EEC and 91/414/EEC. Off. J. Eur. Union 2009, 309, 1–50. Available online: http://data.europa.eu/eli/reg/2009/1107/oj (accessed on 23 June 2024).
- EC. Regulation (EC) No 178/2002 of the European Parliament and of the Council of 28 January 2002 laying down the general principles and requirements of food law, establishing the European Food Safety Authority and laying down procedures in matters of food safety. Off. J. Eur. Union 2002, 31, 1–24. Available online: http://data.europa.eu/eli/reg/2002/178/oj (accessed on 23 June 2024).
- Khalifa, S.A.M.; Elshafiey, E.H.; Shetaia, A.A.; El-Wahed, A.A.A.; Algethami, A.F.; Musharraf, S.G.; Alajmi, M.F.; Zhao, C.; Masry, S.H.D.; Abdel-Daim, M.M.; et al. Overview of bee pollination and its economic value for crop production. Insects 2021, 12, 688. [Google Scholar] [CrossRef]
- Breeze, T.D.; Bailey, A.P.; Balcombe, K.G.; Potts, S.G. Pollination services in the UK: How important are honeybees? Agric. Ecosyst. Environ. 2011, 142, 137–143. [Google Scholar] [CrossRef]
- Plata-Rueda, A.; Menezes, C.H.M.d.; Cunha, W.d.S.; Alvarenga, T.M.; Barbosa, B.F.; Zanuncio, J.C.; Martínez, L.C.; Serrão, J.E. Side-effects caused by chlorpyrifos in the velvetbean caterpillar Anticarsia gemmatalis (Lepidoptera: Noctuidae). Chemosphere 2020, 259, 127530. [Google Scholar] [CrossRef]
- Díaz-Siefer, P.; Olmos-Moya, N.; Fontúrbel, F.E.; Lavandero, B.; Pozo, R.A.; Celis-Diez, J.L. Bird-mediated effects of pest control services on crop productivity: A global synthesis. J. Pest Sci. 2022, 95, 567–576. [Google Scholar] [CrossRef]
- Durairaj, P.; Maniarasan, U.; Nagarajan, N. Study on Avifaunal Diversity From Thiruthalaiyur Lake Tiruchirapalli Forest Division, Tamil Nadu. IOSR J. Environ. Sci. Toxicol. Food Technol. 2017, 11, 67–71. [Google Scholar] [CrossRef]
- Tassin de Montaigu, C.; Goulson, D. Identifying agricultural pesticides that may pose a risk for birds. PeerJ 2020, 8, e9526. [Google Scholar] [CrossRef]
- Humann-Guilleminot, S.; Tassin de Montaigu, C.; Sire, J.; Grünig, S.; Gning, O.; Glauser, G.; Vallat, A.; Helfenstein, F. A sublethal dose of the neonicotinoid insecticide acetamiprid reduces sperm density in a songbird. Environ. Res. 2019, 177, 108589. [Google Scholar] [CrossRef]
- Lopez-Antia, A.; Ortiz-Santaliestra, M.E.; Mougeot, F.; Mateo, R. Experimental exposure of red-legged partridges (Alectoris rufa) to seeds coated with imidacloprid, thiram and difenoconazole. Ecotoxicology 2013, 22, 125–138. [Google Scholar] [CrossRef]
- Mineau, P.; Palmer, C. The Impact of the Nation’s Most Widely Used Insecticides on Birds; American Bird Conservancy: The Plains, VA, USA, 2013; 96p, Available online: https://extension.entm.purdue.edu/neonicotinoids/PDF/TheImpactoftheNationsMostWidelyUsedInsecticidesonBirds.pdf (accessed on 23 June 2024).
- Eng, M.L.; Stutchbury, B.J.M.; Morrissey, C.A. Imidacloprid and chlorpyrifos insecticides impair migratory ability in a seed-eating songbird. Sci. Rep. 2017, 7, 15176. [Google Scholar] [CrossRef] [PubMed]
- Beaumelle, L.; Tison, L.; Eisenhauer, N.; Hines, J.; Malladi, S.; Pelosi, C.; Thouvenot, L.; Phillips, H.R.P. Pesticide effects on soil fauna communities—A meta-analysis. J. Appl. Ecol. 2023, 60, 1239–1253. [Google Scholar] [CrossRef]
- Gunstone, T.; Cornelisse, T.; Klein, K.; Dubey, A.; Donley, N. Pesticides and Soil Invertebrates: A Hazard Assessment. Front. Environ. Sci. 2021, 9, 643847. [Google Scholar] [CrossRef]
- Blouin, M.; Hodson, M.E.; Delgado, E.A.; Baker, G.; Brussaard, L.; Butt, K.R.; Dai, J.; Dendooven, L.; Peres, G.; Tondoh, J.E.; et al. A review of earthworm impact on soil function and ecosystem services. Eur. J. Soil Sci. 2013, 64, 161–182. [Google Scholar] [CrossRef]
- Gaupp-Berghausen, M.; Hofer, M.; Rewald, B.; Zaller, J.G. Glyphosate-based herbicides reduce the activity and reproduction of earthworms and lead to increased soil nutrient concentrations. Sci. Rep. 2015, 5, 12886. [Google Scholar] [CrossRef]
- Pelosi, C.; Bertrand, C.; Daniele, G.; Coeurdassier, M.; Benoit, P.; Nélieu, S.; Lafay, F.; Bretagnolle, V.; Gaba, S.; Vulliet, E.; et al. Residues of currently used pesticides in soils and earthworms: A silent threat? Agric. Ecosyst. Environ. 2021, 305, 107167. [Google Scholar] [CrossRef]
- Astaykina, A.; Streletskii, R.; Maslov, M.; Krasnov, G.; Gorbatov, V. Effects of Three Pesticides on the Earthworm Lumbricus terrestris Gut Microbiota. Front. Microbiol. 2022, 13, 853535. [Google Scholar] [CrossRef]
- Pisa, L.; Goulson, D.; Yang, E.-C.; Gibbons, D.; Sánchez-Bayo, F.; Mitchell, E.; Aebi, A.; van der Sluijs, J.; MacQuarrie, C.J.K.; Giorio, C.; et al. An update of the Worldwide Integrated Assessment (WIA) on systemic insecticides. Part 2: Impacts on organisms and ecosystems. Environ. Sci. Poll. Res. 2021, 28, 11749–11797. [Google Scholar] [CrossRef] [PubMed]
- EC. EU Pesticides Database. 2021. Available online: https://ec.europa.eu/food/plant/pesticides/eu-pesticides-database/public/?event=homepage&language=EN (accessed on 21 May 2021).
- Lewis, K.A.; Tzilivakis, J.; Warner, D.J.; Green, A. An international database for pesticide risk assessments and management. Hum. Ecol. Risk Assess. 2016, 22, 1050–1064. [Google Scholar] [CrossRef]
- OECD. OECD Guidelines for the Testing of Chemicals, Section 2. Test No. 213: Honeybees, Acute Oral Toxicity Test; OECD: Paris, France, 1998. [Google Scholar]
- OECD. Test No. 214: Honeybees, Acute Contact Toxicity Test; OECD: Paris, France, 1998; Volume 7. [Google Scholar] [CrossRef]
- OECD. Test No. 223: Avian Acute Oral Toxicity Test; OECD: Paris, France, 2016. [Google Scholar]
- OECD. Test No. 205: Avian Dietary Toxicity Test; OECD: Paris, France, 1984; 10p. [Google Scholar] [CrossRef]
- OECD. Test No. 207: Earthworm, Acute Toxicity Tests, OECD Guidelines for the Testing of Chemicals; OECD: Paris, France, 1984. [Google Scholar] [CrossRef]
- OECD. OECD Guidelines for the Testing of Chemicals. Test No. 222: Earthworm Reproduction Test (Eisenia fetida/Eisenia andrei); OECD: Paris, France, 2016. [Google Scholar]
- Brühl, C.A.; Zaller, J.G. Indirect herbicide effects on biodiversity, ecosystem functions, and interactions with global changes. In Herbicides: Chemistry, Efficacy, Toxicology, and Environmental Impacts; Emerging Issues in Analytical Chemistry; Mesnage, R., Zaller, J.G., Thomas, B.F., Eds.; Elsevier: Amsterdam, The Netherlands, 2021; pp. 231–272. [Google Scholar]
- Börner, H. Pflanzenkrankheiten und Pflanzenschutz, 8th ed.; Springer-Lehrbuch (German Edition); Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Kühne, S.; Burth, U.; Marx, P. Biologischer Pflanzenschutz im Freiland. Pflanzengesundheit im Ökologischen Landbau; Ulmer: Stuttgart, Germany, 2006. [Google Scholar]
- Senthil-Nathan, S. A Review of Biopesticides and Their Mode of Action Against Insect Pests. In Environmental Sustainability: Role of Green Technologies; Thangavel, P., Sridevi, G., Eds.; Springer: New Delhi, India, 2015; pp. 49–63. [Google Scholar]
- JKI. Auflagen und Hinweise zur Bienengefährlichkeit von PSM. Julius-Kühn Institut, Bundesforschungszentrum für Kulturpflanzen. Untersuchungsstelle für Bienenvergiftungen. Available online: https://wissen.julius-kuehn.de/bienenuntersuchung/bienenschutz-und-psm/themen/bienenschutzauflagen (accessed on 26 April 2024).
- EU. Commission Implementing Regulation (EU) 2023/515. Commission Implementing Regulation (EU) 2023/515 of 8 March 2023 Renewing the Approval of the Active Substance Abamectin in Accordance with Regulation (EC) No 1107/2009 of the European Parliament and of the Council, and Amending Commission Implementing Regulation (EU) No 540/2011 (Text with EEA Relevance). Off. J. Eur. Union 2023, L71, 22–26. Available online: https://eur-lex.europa.eu/eli/reg_impl/2023/515/oj (accessed on 23 June 2024).
- EFSA. Public consultation on the reviewed guidance document on risk assessment to bees. EFSA Support. Publ. 2023, 20, 7981E. [Google Scholar] [CrossRef]
- EFSA; Szentes, C.; Wassenberg, J.; Ingels, B.; Neri, F.M.; Rundlöf, M.; Arce, A.; Rortais, A.; Ippolito, A.; Padovani, L.; et al. Supplementary information to the revised guidance on the risk assessment of plant protection products on bees (Apis mellifera, Bombus spp. and solitary bees). EFSA Support. Publ. 2023, 20, 7982E. [Google Scholar] [CrossRef]
- Chavana, J.; Joshi, N.K. Toxicity and Risk of Biopesticides to Insect Pollinators in Urban and Agricultural Landscapes. Agrochemicals 2024, 3, 70–93. [Google Scholar] [CrossRef]
- Plata-Rueda, A.; Rolim, G.S.d.; Wilcken, C.F.; Zanuncio, J.C.; Serrão, J.E.; Martínez, L.C. Acute Toxicity and Sublethal Effects of Lemongrass Essential Oil and Their Components against the Granary Weevil, Sitophilus granarius. Insects 2020, 11, 379. [Google Scholar] [CrossRef] [PubMed]
- Arthidoro de Castro, M.B.; Martinez, L.C.; Cossolin, J.F.S.; Serra, R.S.; Serrão, J.E. Cytotoxic effects on the midgut, hypopharyngeal, glands and brain of Apis mellifera honey bee workers exposed to chronic concentrations of lambda-cyhalothrin. Chemosphere 2020, 248, 126075. [Google Scholar] [CrossRef] [PubMed]
- Plata-Rueda, A.; Martínez, L.C.; Da Silva, B.K.R.; Zanuncio, J.C.; Fernandes, M.E.d.S.; Guedes, R.N.C.; Fernandes, F.L. Exposure to cyantraniliprole causes mortality and disturbs behavioral and respiratory responses in the coffee berry borer (Hypothenemus hampei). Pest Manag. Sci. 2019, 75, 2236–2241. [Google Scholar] [CrossRef] [PubMed]
- Fiaz, M.; Martínez, L.C.; Plata-Rueda, A.; Gonçalves, W.G.; Souza, D.L.L.d.; Cossolin, J.F.S.; Carvalho, P.E.G.R.; Martins, G.F.; Serrão, J.E. Pyriproxyfen, a juvenile hormone analog, damages midgut cells and interferes with behaviors of Aedes aegypti larvae. PeerJ 2019, 7, e7489. [Google Scholar] [CrossRef] [PubMed]
- Amaral, K.D.; Martínez, L.C.; Lima, M.A.P.; Serrão, J.E.; Della Lucia, T.M.C. Azadirachtin impairs egg production in Atta sexdens leaf-cutting ant queens. Environ. Pollut. 2018, 243, 809–814. [Google Scholar] [CrossRef] [PubMed]
- Rolim, G.S.; Plata-Rueda, A.; Martínez, L.C.; Ribeiro, G.T.; Serrão, J.E.; Zanuncio, J.C. Side effects of Bacillus thuringiensis on the parasitoid Palmistichus elaeisis (Hymenoptera: Eulophidae). Ecotoxicol. Environ. Saf. 2020, 189, 109978. [Google Scholar] [CrossRef] [PubMed]
- Plata-Rueda, A.; Martínez, L.C.; Costa, N.C.R.; Zanuncio, J.C.; Sena Fernandes, M.E.d.; Serrão, J.E.; Guedes, R.N.C.; Fernandes, F.L. Chlorantraniliprole-mediated effects on survival, walking abilities, and respiration in the coffee berry borer, Hypothenemus hampei. Ecotoxicol. Environ. Saf. 2019, 172, 53–58. [Google Scholar] [CrossRef] [PubMed]
- Guimarães-Cestaro, L.; Martins, M.F.; Martínez, L.C.; Alves, M.L.T.M.F.; Guidugli-Lazzarini, K.R.; Nocelli, R.C.F.; Malaspina, O.; Serrão, J.E.; Teixeira, É.W. Occurrence of virus, microsporidia, and pesticide residues in three species of stingless bees (Apidae: Meliponini) in the field. Sci. Nat. 2020, 107, 16. [Google Scholar] [CrossRef] [PubMed]
- Dorneles, A.L.; Souza Rosa, A.d.; Blochtein, B. Toxicity of organophosphorus pesticides to the stingless bees Scaptotrigona bipunctata and Tetragonisca fiebrigi. Apidologie 2017, 48, 612–620. [Google Scholar] [CrossRef]
- Soares, H.M.; Jacob, C.R.O.; Carvalho, S.M.; Nocelli, R.C.F.; Malaspina, O. Toxicity of imidacloprid to the stingless bee Scaptotrigona postica latreille, 1807 (Hymenoptera: Apidae). Bull. Environ. Contam. Toxicol. 2015, 94, 675–680. [Google Scholar] [CrossRef]
- Silva, I.P.; Oliveira, F.A.S.; Pedroza, H.P.; Gadelha, I.C.N.; Melo, M.M.; Soto-Blanco, B. Pesticide exposure of honeybees (Apis mellifera) pollinating melon crops. Apidologie 2015, 46, 703–715. [Google Scholar] [CrossRef]
- Lunardi, J.S.; Zaluski, R.; Orsi, R.d.O. Evaluation of Motor Changes and Toxicity of Insecticides Fipronil and Imidacloprid in Africanized Honey Bees (Hymenoptera: Apidae). Sociobiology 2017, 64, 50–56. [Google Scholar] [CrossRef]
- Lopes, M.P.; Fernandes, K.M.; Tomé, H.V.V.; Gonçalves, W.G.; Miranda, F.R.; Serrão, J.E.; Martins, G.F. Spinosad-mediated effects on the walking ability, midgut, and Malpighian tubules of Africanized honey bee workers. Pest Manag. Sci. 2018, 74, 1311–1318. [Google Scholar] [CrossRef] [PubMed]
- Siviter, H.; Koricheva, J.; Brown, M.J.F.; Leadbeater, E. Quantifying the impact of pesticides on learning and memory in bees. J. Appl. Ecol. 2018, 55, 2812–2821. [Google Scholar] [CrossRef] [PubMed]
- Rigal, S.; Dakos, V.; Alonso, H.; Auniņš, A.; Benkő, Z.; Brotons, L.; Chodkiewicz, T.; Chylarecki, P.; de Carli, E.; del Moral, J.C.; et al. Farmland practices are driving bird population decline across Europe. Proc. Natl. Acad. Sci. USA 2023, 120, e2216573120. [Google Scholar] [CrossRef] [PubMed]
- EC. Commission Implementing Regulation (EU) 2022/1252 of 19 July 2022 Amending Implementing Regulation (EU) 2015/408 to Update the List of Candidates for Substitution. Off. J. Eur. Union 2022, L191, 41–44. Available online: http://data.europa.eu/eli/reg_impl/2022/1252/oj (accessed on 23 June 2024).
- Stein-Bachinger, K.; Preißel, S.; Kühne, S.; Reckling, M. More diverse but less intensive farming enhances biodiversity. Trends Ecol. Evol. 2022, 37, 395–396. [Google Scholar] [CrossRef] [PubMed]
- EU. Commission Implementing Regulation (EU) 2023/741. Commission Implementing Regulation (EU) 2023/741 of 5 April 2023 concerning the non-renewal of the approval of the active substance oxamyl, in accordance with Regulation (EC) No 1107/2009 of the European Parliament and of the Council, and amending Commission Implementing Regulation (EU) No 540/2011 (Text with EEA relevance). Off. J. Eur. Union 2023, L98, 1–3. Available online: https://eur-lex.europa.eu/eli/reg_impl/2023/741/oj (accessed on 23 June 2024).
- Mineau, P.; Collins, B.T.; Baril, A. On the use of scaling factors to improve interspecies extrapolation of acute toxicity in birds. Regul. Toxicol. Pharmacol. 1996, 24, 24–29. [Google Scholar] [CrossRef]
- Peters, R.H. The Ecological Implications of Body Size; Cambridge University Press: Cambridge, UK, 1983. [Google Scholar]
- Boatman, N.D.; Brickle, N.W.; Hart, J.D.; Milsom, T.P.; Morris, A.J.; Murray, A.W.A.; Murray, K.A.; Robertson, P.A. Evidence for the indirect effects of pesticides on farmland birds. Ibis 2004, 146, 131–143. [Google Scholar] [CrossRef]
- Tokumoto, J.; Danjo, M.; Kobayashi, Y.; Kinoshita, K.; Omotehara, T.; Tatsumi, A.; Hashiguchi, M.; Sekijima, T.; Kamisoyama, H.; Yokoyama, T.; et al. Effects of Exposure to Clothianidin on the Reproductive System of Male Quails. J. Vet. Med. Sci. 2013, 75, 755–760. [Google Scholar] [CrossRef]
- Berny, P.J.; Buronfosse, F.; Videmann, B.; Buronfosse, T. Evaluation of the toxicity of imidacloprid in wild birds. A new high performance thin layer chromatography (hptlc) method for the analysis of liver and crop samples in suspected poisoning cases. J. Liq. Chromatogr. Relat. Technol. 1999, 22, 1547–1559. [Google Scholar] [CrossRef]
- Hvězdová, M.; Kosubová, P.; Košíková, M.; Scherr, K.E.; Šimek, Z.; Brodský, L.; Šudoma, M.; Škulcová, L.; Sáňka, M.; Svobodová, M.; et al. Currently and recently used pesticides in Central European arable soils. Sci. Tot. Environ. 2018, 613–614, 361–370. [Google Scholar] [CrossRef] [PubMed]
- Neuwirthová, N.; Trojan, M.; Svobodová, M.; Vašíčková, J.; Šimek, Z.; Hofman, J.; Bielská, L. Pesticide residues remaining in soils from previous growing season(s)—Can they accumulate in non-target organisms and contaminate the food web? Sci. Total Environ. 2019, 646, 1056–1062. [Google Scholar] [CrossRef] [PubMed]
- Sabzevari, S.; Hofman, J. A worldwide review of currently used pesticides’ monitoring in agricultural soils. Sci. Total Environ. 2022, 812, 152344. [Google Scholar] [CrossRef]
- Silva, V.; Mol, H.G.J.; Zomer, P.; Tienstra, M.; Ritsema, C.J.; Geissen, V. Pesticide residues in European agricultural soils—A hidden reality unfolded. Sci. Total Environ. 2019, 653, 1532–1545. [Google Scholar] [CrossRef] [PubMed]
- Pelosi, C.; Barot, S.; Capowiez, Y.; Hedde, M.; Vandenbulcke, F. Pesticides and earthworms. A review. Agron. Sustain. Dev. 2014, 34, 199–228. [Google Scholar] [CrossRef]
- Pfiffner, L. Earthworms—Architects of fertile soils: Their significance and recommendations for their promotion in agriculture. In Technical Guide on Earthworms; Research Institute of Organic Agriculture: Frick, Switzerland, 2022. [Google Scholar] [CrossRef]
- Cech, R.M.; Jovanovic, S.; Kegley, S.; Hertoge, K.; Leisch, F.; Zaller, J.G. Reducing overall herbicide use may reduce risks to humans but increase toxic loads to honeybees, earthworms and birds. Environ. Sci. Eur. 2022, 34, 44. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, X.; Liu, Y.; Fang, K.; Liu, T. The Toxic Effects of Sulfoxaflor Induced in Earthworms (Eisenia fetida) under Effective Concentrations. Int. J. Environ. Res. 2020, 17, 1740. [Google Scholar] [CrossRef]
- Dörler, D.; Scheucher, A.; Zaller, J.G. Efficacy of chemical and biological slug control measures in response to watering and earthworms. Sci. Rep. 2019, 9, 2954. [Google Scholar] [CrossRef]
- EFSA; Arena, M.; Auteri, D.; Barmaz, S.; Bellisai, G.; Brancato, A.; Brocca, D.; Bura, L.; Byers, H.; Chiusolo, A.; et al. Peer review of the pesticide risk assessment of the active substance copper compounds copper(I), copper(II) variants namely copper hydroxide, copper oxychloride, tribasic copper sulfate, copper(I) oxide, Bordeaux mixture. EFSA J. 2018, 16, e05152. [Google Scholar] [CrossRef]
- Karimi, B.; Masson, V.; Guilland, C.; Leroy, E.; Pellegrinelli, S.; Giboulot, E.; Maron, P.-A.; Ranjard, L. Ecotoxicity of copper input and accumulation for soil biodiversity in vineyards. Environ. Chem. Lett. 2021, 19, 2013–2030. [Google Scholar] [CrossRef]
- Bernardi, A.d.; Marini, E.; Casucci, C.; Tiano, L.; Marcheggiani, F.; Vischetti, C. Copper Monitoring in Vineyard Soils of Central Italy Subjected to Three Antifungal Treatments, and Effects of Sub-Lethal Copper Doses on the Earthworm Eisenia fetida. Toxics 2022, 10, 310. [Google Scholar] [CrossRef]
- Froger, C.; Jolivet, C.; Budzinski, H.; Pierdet, M.; Caria, G.; Saby, N.P.A.; Arrouays, D.; Bispo, A. Pesticide Residues in French Soils: Occurrence, Risks, and Persistence. Environ. Sci. Technol. 2023, 57, 7818–7827. [Google Scholar] [CrossRef] [PubMed]
- Panico, S.C.; van Gestel, C.A.M.; Verweij, R.A.; Rault, M.; Bertrand, C.; Menacho Barriga, C.A.; Coeurdassier, M.; Fritsch, C.; Gimbert, F.; Pelosi, C. Field mixtures of currently used pesticides in agricultural soil pose a risk to soil invertebrates. Environ. Pollut. 2022, 305, 119290. [Google Scholar] [CrossRef] [PubMed]
- Riedo, J.; Wettstein, F.E.; Rösch, A.; Herzog, C.; Banerjee, S.; Büchi, L.; Charles, R.; Wächter, D.; Martin-Laurent, F.; Bucheli, T.D.; et al. Widespread Occurrence of Pesticides in Organically Managed Agricultural Soils—The Ghost of a Conventional Agricultural Past? Environ. Sci. Technol. 2021, 55, 2919–2928. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Bayo, F. Insecticides Mode of Action in Relation to Their Toxicity to Non-Target Organisms. J. Environ. Anal. Toxicol. 2012, S4, 002. [Google Scholar] [CrossRef]
- EFSA. Conclusion regarding the peer review of the pesticide risk assessment of the active substance captan. EFSA J. 2009, 7, 296r. [Google Scholar] [CrossRef]
- Altmanninger, A.; Brandmaier, V.; Spangl, B.; Gruber, E.; Takács, E.; Mörtl, M.; Klátyik, S.; Székács, A.; Zaller, J.G. Glyphosate-Based Herbicide Formulations and Their Relevant Active Ingredients Affect Soil Springtails Even Five Months after Application. Agriculture 2023, 13, 2260. [Google Scholar] [CrossRef]
- Brandmaier, V.; Altmanninger, A.; Leisch, F.; Gruber, E.; Takács, E.; Mörtl, M.; Klátyik, S.; Székács, A.; Zaller, J.G. Glyphosate-Based Herbicide Formulations with Greater Impact on Earthworms and Water Infiltration than Pure Glyphosate. Soil Syst. 2023, 7, 66. [Google Scholar] [CrossRef]
- Uwizeyimana, H.; Wang, M.; Chen, W.; Khan, K. The eco-toxic effects of pesticide and heavy metal mixtures towards earthworms in soil. Environ. Toxicol. Pharmacol. 2017, 55, 20–29. [Google Scholar] [CrossRef]
- Klátyik, S.; Simon, G.; Oláh, M.; Mesnage, R.; Antoniou, M.N.; Zaller, J.G.; Székács, A. Terrestrial ecotoxicity of glyphosate, its formulations, and co-formulants: Evidence from 2010–2023. Environ. Sci. Eur. 2023, 35, 51. [Google Scholar] [CrossRef]
- Siviter, H.; Bailes, E.J.; Martin, C.D.; Oliver, T.R.; Koricheva, J.; Leadbeater, E.; Brown, M.J.F. Agrochemicals interact synergistically to increase bee mortality. Nature 2021, 596, 389–392. [Google Scholar] [CrossRef]
- Sánchez-Bayo, F.; Baskaran, S.; Kennedy, I.R. Ecological relative risk (EcoRR): Another approach for risk assessment of pesticides in agriculture. Agric. Ecosyst. Environ. 2002, 91, 37–57. [Google Scholar] [CrossRef]
- Vašíčková, J.; Hvězdová, M.; Kosubová, P.; Hofman, J. Ecological risk assessment of pesticide residues in arable soils of the Czech Republic. Chemosphere 2019, 216, 479–487. [Google Scholar] [CrossRef]
- Bart, S.; Amossé, J.; Lowe, C.N.; Mougin, C.; Péry, A.R.R.; Pelosi, C. Aporrectodea caliginosa, a relevant earthworm species for a posteriori pesticide risk assessment: Current knowledge and recommendations for culture and experimental design. Environ. Sci. Pollut. Res. 2018, 25, 33867–33881. [Google Scholar] [CrossRef]
- Pelosi, C.; Joimel, S.; Makowski, D. Searching for a more sensitive earthworm species to be used in pesticide homologation tests—A meta-analysis. Chemosphere 2013, 90, 895–900. [Google Scholar] [CrossRef]
- Heard, M.S.; Baas, J.; Dorne, J.-L.; Lahive, E.; Robinson, A.G.; Rortais, A.; Spurgeon, D.J.; Svendsen, C.; Hesketh, H. Comparative toxicity of pesticides and environmental contaminants in bees: Are honey bees a useful proxy for wild bee species? Sci. Total Environ. 2017, 578, 357–365. [Google Scholar] [CrossRef]
- Lourencetti, A.P.S.; Azevedo, P.; Miotelo, L.; Malaspina, O.; Nocelli, R.C.F. Surrogate species in pesticide risk assessments: Toxicological data of three stingless bees species. Environ. Pollut. 2023, 318, 120842. [Google Scholar] [CrossRef]
- Mineau, P.; Whiteside, M. Pesticide Acute Toxicity Is a Better Correlate of U.S. Grassland Bird Declines than Agricultural Intensification. PLoS ONE 2013, 8, e57457. [Google Scholar] [CrossRef]
- Mineau, P. A Review and Analysis of Study Endpoints Relevant to the Assessment of “Long Term” Pesticide Toxicity in Avian and Mammalian Wildlife. Ecotoxicology 2005, 14, 775–799. [Google Scholar] [CrossRef] [PubMed]
- Marchand, P.A. Basic substances under EC 1107/2009 phytochemical regulation: Experience with non-biocide and food products as biorationals. J. Plant Protect. Res. 2016, 56, 312–318. [Google Scholar] [CrossRef]
- IFOAM. IFOAM Organics Europe’s Recommendations on the Sustainable Use of Pesticides Regulation (SUR). 2023. Available online: https://www.organicseurope.bio/content/uploads/2023/01/IFOAMEU_Policy_SUR_position-paper_202301.pdf?dd (accessed on 29 April 2024).
- Brühl, C.A.; Zaller, J.G.; Liess, M.; Wogram, J. The rejection of synthetic pesticides in organic farming has multiple benefits. Trends Ecol. Evol. 2022, 37, 113–114. [Google Scholar] [CrossRef]
- Mesnage, R.; Straw, E.A.; Antoniou, M.N.; Benbrook, C.; Brown, M.J.F.; Chauzat, M.-P.; Finger, R.; Goulson, D.; Leadbeater, E.; López-Ballesteros, A.; et al. Improving pesticide-use data for the EU. Nat. Ecol. Evol. 2021, 5, 1560. [Google Scholar] [CrossRef]
- Vieira, D.; Franco, A.; de Medici, D.; Martin Jimenez, J.; Wojda, P.; Jones, A. Pesticides Residues in European Agricultural Soils—Results from LUCAS 2018 Soil Module; Publications Office of the European Union: Luxembourg, 2023. [Google Scholar] [CrossRef]
- Klátyik, S.; Simon, G.; Oláh, M.; Takács, E.; Mesnage, R.; Antoniou, M.N.; Zaller, J.G.; Székács, A. Aquatic ecotoxicity of glyphosate, its formulations, and co-formulants: Evidence from 2010 to 2023. Environ. Sci. Eur. 2024, 36, 22. [Google Scholar] [CrossRef]
- Kruse-Plaß, M.; Hofmann, F.; Wosniok, W.; Schlechtriemen, U.; Kohlschütter, N. Pesticides and pesticide-related products in ambient air in Germany. Environ. Sci. Eur. 2021, 33, 114. [Google Scholar] [CrossRef]
- Brühl, C.A.; Bakanov, N.; Köthe, S.; Eichler, L.; Sorg, M.; Hörren, T.; Mühlethaler, R.; Meinel, G.; Lehmann, G.U.C. Direct pesticide exposure of insects in nature conservation areas in Germany. Sci. Rep. 2021, 11, 24144. [Google Scholar] [CrossRef]
- Köthe, S.; Bakanov, N.; Brühl, C.A.; Gemeinholzer, B.; Hörren, T.; Mühlethaler, R.; Sorg, M.; Sumser, H.; Swenson, S.J.; Lehmann, G.U.C. Negative spill-over effects of agricultural practices on plant species conservation in nature reserves. Ecol. Indic. 2023, 149, 110170. [Google Scholar] [CrossRef]
- Gaba, S.; Alignier, A.; Aviron, S.; Barot, S.; Blouin, M.; Hedde, M.; Jabot, F.; Vergnes, A.; Bonis, A.; Bonthoux, S.; et al. Ecology for Sustainable and Multifunctional Agriculture. In Sustainable Agriculture Reviews 28: Ecology for Agriculture; Gaba, S., Smith, B., Lichtfouse, E., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 1–46. [Google Scholar]
- Judt, C.; Korányi, D.; Zaller, J.G.; Batáry, P. Floral resources and ground covers promote natural enemies but not pest insects in apple orchards: A global meta-analysis. Sci. Total Environ. 2023, 903, 166139. [Google Scholar] [CrossRef]
- Rusch, A.; Delbac, L.; Thiéry, D. Grape moth density in Bordeaux vineyards depends on local habitat management despite effects of landscape heterogeneity on their biological control. J. Appl. Ecol. 2017, 54, 1794–1803. [Google Scholar] [CrossRef]
- Zaller, J.G.; Oswald, A.; Wildenberg, M.; Burtscher-Schaden, H.; Nadeem, I.; Formayer, H.; Paredes, D. Potential to reduce pesticides in intensive apple production through management practices could be challenged by climatic extremes. Sci. Total Environ. 2023, 872, 162237. [Google Scholar] [CrossRef]
Organism | Species | Exposure | Ecotoxicological Endpoint | Thresholds | Reference | ||
---|---|---|---|---|---|---|---|
Low Toxic | Moderately Toxic | Highly Toxic | |||||
Honeybees | Western honeybee (Apis mellifera) | Oral and contact, 48 h | Acute LD50 (µg bee−1) | >100 | 1–100 | <1 | OECD test no. 213: Honeybees, acute oral toxicity test; OECD test no. 214: Honeybees, acute contact toxicity test |
Birds | Mallard duck (Anas platyrhynchos), bobwhite quail (Colinus virginianus), Japanese quail (Coturnix japonica) | Oral, 14 days | Acute LD50 (mg kg bw−1) | >2000 | 100–2000 | <100 | OECD test no. 223: Avian, acute oral toxicity test; OECD test no. 206: Avian, reproduction test |
Mixed into food before egg deposition, 21 days | Chronic NOEL (mg bw−1 d−1) | >200 | 10–200 | <10 | |||
Earthworms | Compost worm (Eisenia foetida) | Mixed into artificial soil, 14 days | Acute LD50 (mg kg soil−1) | >1000 | 10–1000 | <10 | OECD test no. 207: Earthworm, acute toxicity test; OECD test no. 222: Earthworm, reproduction test |
Mixed into artificial soil, 28 days | Chronic NOEC, reproduction (mg kg soil−1) | >100 | 0.1–100 | <0.1 |
Ecotoxicological Classification | Approved in Conventional Agriculture | Approved in Organic Agriculture | ||
---|---|---|---|---|
% | n | % | n | |
Total number of EU-approved AIs | 60 | 268 | 40 | 179 |
Of these, those that were ecotoxicologically assessed | 94.8 | 254 | 61.5 | 110 |
Honeybees—moderate or high acute toxicity | 79.1 | 201 | 43.6 | 48 |
Birds—moderate or high acute toxicity | 64.2 | 163 | 13.6 | 15 |
Birds—moderate or high chronic toxicity | 57.1 | 145 | 1.8 | 2 |
Earthworms—moderate or high acute toxicity | 90.6 | 230 | 35.5 | 39 |
Earthworms—moderate or high chronic toxicity | 58.7 | 149 | 7.3 | 8 |
Honeybee Oral Toxicity | Honeybee Contact Toxicity | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Rank | Type | LD50 (µg Bee−1) | conAS | Type | LD50 (µg Bee−1) | orgAS | Type | LD50 (µg Bee−1) | conAS | Type | LD50 (µg Bee−1) | orgAS |
1 | I | 0.004 | Abamectin | I | 0.06 | Spinosad | I | 0.001 | Abamectin | I | 0.004 | Spinosad |
2 | I | 0.026 | Milbemectin | I | 0.85 | (Z)-8-Dodecen-1-ol | I | 0.002 | Deltamethrin | I | 0.013 | Pyrethrins |
3 | I | 0.07 | Deltamethrin | I | 0.85 | (Z)-8-Dodecen-1-yl acetate | I | 0.005 | Gamma-cyhalothrin | I | 11.81 | Azadirachtin |
4 | I | 0.14 | Spinetoram | I | 8.1 | Azarirachtin | I | 0.023 | Cypermethrin | F | 12.5 | COS-OGA |
5 | I | 0.146 | Sulfoxaflor | F | 10 | COS-OGA | I | 0.024 | Pyridaben | I | 20 | Isaria fumosorosea |
6 | I | 0.16 | Formetanate | F | 12.1 | Copper oxychloride | I | 0.024 | Spinetoram | F | 22 | Copper oxide |
7 | I | 0.172 | Cypermethrin | F | 23.3 | Bordeaux mixture | I | 0.025 | Milbemectin | F | 23.5 | Tribasic copper sulfate |
8 | I | 0.21 | Esfenvalerate | F | 24 | Potassium hydrogen carbonate | I | 0.036 | Emamectin | H | 25 | Methyl decanoate |
9 | I | 0.22 | Pirimiphos-methyl | F | 40 | Tribasic copper sulfate | I | 0.038 | Etofenprox | H | 25 | Lauric acid |
10 | I | 0.24 | Aluminum phosphide | F | 48 | Streptomyces K61 | I | 0.038 | Lambda-cyhalothrin | H | 25 | Methyl octanoate |
Bird Chronic Toxicity | Bird Acute Toxicity | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Rank | Type | LD50 (mg kg bw−1 d−1) | conAS | Type | LD50 (mg kg bw−1 d−1) | orgAS | Type | LD50 (mg kg bw−1) | conAS | Type | LD50 (mg kg bw−1) | orgAS |
1 | I | 0.7 | Abamectin | I | 68.4 | Spinosad | I | 3.2 | Oxamyl | F | 72.4 | Tribasic copper sulfate |
2 | I | 1.5 | Oxamyl | I | 82 | Pyrethrins | I | 10 | Fosthiazate | F | 173 | Copper oxychloride |
3 | I | 2 | Tefluthrin | F | 2222 | Trichoderma asperellum strain T25 | I | 11.5 | Formetante | F | 223 | Copper hydroxide |
4 | I | 2.1 | Bifenazate | 1405 | Orange oil | R | 12.9 | Zinc phosphide | F | 616 | Bordeaux mixture | |
5 | I | 2.5 | Fosthiazate | I | 20.9 | Pirimicarb | I | 1000 | Azadirachtin | |||
6 | H | 2.95 | Prosulfuron | I | 26 | Abamectin | F | 1000 | Bacillus amyloliquefaciens | |||
7 | I | 3.3 | Lambda-cyhalothrin | I | 49 | Magnesium phosphide | F | 1183 | Copper oxide | |||
8 | A | 3.65 | Fenpyroximate | I | 49 | Aluminum phosphide | F | 1667 | Ampelomyces quisqualis | |||
9 | I | 4.29 | Cypermethrin | I | 76 | Emamectin | F | 1700 | Laminarin | |||
10 | F | 4.3 | Ipconazole | I | 81 | 1-methylcyclo propene | I | 2000 | Spinosad |
Earthworm Chronic Toxicity | Earthworm Acute Toxicity | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Rank | Type | NOEC (mg kg soil−1) | conAS | Type | NOEC (mg kg soil−1) | orgAS | Type | LC50 (mg kg soil−1) | conAS | Type | LC50 (mg kg soil−1) | orgAS |
1 | F | 0.09 | Dimoxystrobin | I | 0.3 | Pyrethrins | I | 0.9 | Sulfoxaflor | M | 10 | Ferric phosphate |
2 | I | 0.1 | Sulfoxaflor | I | 1.8 | Spinosad | I | 1 | Tefluthrin | I | 23.7 | Pyrethrins |
3 | H | 0.1 | Nicosulfuron | M | 6.7 | Ferric phosphate | F | 2.7 | Mefentrifluconazole | P | 60 | Ethylene |
4 | I | 0.109 | Milbemectin | F | 15 | Tribasic copper sulfate | P | 5 | 1-methylcyclopropene | H | 105 | Methyl decanoate |
5 | H | 0.13 | Sulfosulfuron | F | 15 | Copper hydroxide | I | 6.5 | Dazomet | H | 105 | Lauric acid |
6 | I | 0.16 | Tefluthrin | F | 15 | Copper oxide | I | 9 | Acetamiprid | H | 105 | Methyl octanoate |
7 | I | 0.165 | Deltamethrin | F | 40.5 | Copper oxychloride | I | 10.6 | Esfenvalerate | H | 105 | Oleic acid |
8 | H | 0.167 | Picloram | A | 55.35 | Paraffin oil | P | 11.8 | Sodium 5-nitroguaiacolate | H | 105 | Pelargonic acid |
9 | H | 0.17 | Beflubutamid | H | 250 | Pelargonic acid | A | 13.3 | Fenazaquin | F | 155 | Tribasic copper sulfate |
10 | F | 0.175 | Fluazinam | I | 1000 | Cydia pomonella Granulovirus | H | 15.7 | Flazasulfuron | F | 195.5 | Bordeaux mixture |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Goritschnig, L.; Burtscher-Schaden, H.; Durstberger, T.; Zaller, J.G. Ecotoxicity of Pesticides Approved for Use in European Conventional or Organic Agriculture for Honeybees, Birds, and Earthworms. Environments 2024, 11, 137. https://doi.org/10.3390/environments11070137
Goritschnig L, Burtscher-Schaden H, Durstberger T, Zaller JG. Ecotoxicity of Pesticides Approved for Use in European Conventional or Organic Agriculture for Honeybees, Birds, and Earthworms. Environments. 2024; 11(7):137. https://doi.org/10.3390/environments11070137
Chicago/Turabian StyleGoritschnig, Lena, Helmut Burtscher-Schaden, Thomas Durstberger, and Johann G. Zaller. 2024. "Ecotoxicity of Pesticides Approved for Use in European Conventional or Organic Agriculture for Honeybees, Birds, and Earthworms" Environments 11, no. 7: 137. https://doi.org/10.3390/environments11070137
APA StyleGoritschnig, L., Burtscher-Schaden, H., Durstberger, T., & Zaller, J. G. (2024). Ecotoxicity of Pesticides Approved for Use in European Conventional or Organic Agriculture for Honeybees, Birds, and Earthworms. Environments, 11(7), 137. https://doi.org/10.3390/environments11070137